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Abstract. Recent experimental studies of photosensitive Belousov-Zhabotinskii
reaction has revealed the existence of propagating wave segments. The propagat-
ing wave segments are unstable, but can be stabilized by using a feedback control
to continually adjust the excitability of the medium. Experimental studies also
indicate that the locus of the size of a stabilized wave segment as a function of
the excitability of the medium gives the excitability boundary for the existence
of 2D wave patterns with free ends in excitable media. To study the properties of
this boundary curve, we use the wave front interaction model proposed by Zykov
and Showalter. This is equivalent to study a first order system of three ordinary
differential equations which includes a singular nonlinearity. Using two different
reduced first order systems of two ordinary differential equations, we first show
the existence of wave segments for any given propagating velocity. Then the wave
profiles can be classified into two types, namely, convex and non-convex types.
More precisely, when the normalized propagating velocity is small, we show that
the wave profile is of convex type, while the wave profile is of non-convex type
when the normalized velocity is close to 1.
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1. Introduction

Wave propagation in excitable media has been investigated in depth, both by
theoreticians and experimentalists, and has a variety of applications in physical
model, chemical reaction, and biological system. Among them, spiral waves have
been recognized as a fascinating and important spatio-temporal pattern, such as
waves of oxidation in the Belousov-Zhabotinskii reaction [13], waves of cyclic-AMP
signaling in the social amoeba colonies of Dioctyostelium discoideum [5], and waves
of neuromuscular in the heart muscle [9].

A fundamental problem on spiral waves is to understand what is the region of
the excitability of the medium for which spiral waves can exist. For this, we note
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that the existence of spiral waves is closely related to the existence of 1D pulse [14].
It has been shown in [8] that there exists an excitability limit, which we denote
by ζ0, below which the propagation of 1D waves is not possible. Therefore, below
such a excitability limit ζ0, the underlying medium cannot support the propaga-
tion of spiral waves [12, 14]. On the other hand, it is known that spiral waves
can exist in the medium with sufficiently high excitability [12, 14]. Moreover, the
spiral wavelength increases as the excitability of the medium decreases. When the
excitability of the medium decreases from a high value to a critical value, the corre-
sponding wavelength tends to infinity, and the associated wave pattern becomes an
unbounded (nearly) planar wave with one free end, which propagates in the normal
direction without sprouting and retracting at its free end (tip), and is known as
a critical finger [8, 3]. It is worthy to note that this critical excitability does not
coincide with ζ0. This suggests that there should exist a second excitability limit
for 2D wave pattern with free ends.

Recently, Mihaliuk, Sakurai, Chirila and Showalter [6, 7] have used the pho-
tosensitive Belousov-Zhabotinskii reaction to find another wave pattern: a wave
segment which has two free ends, and moves with a constant velocity and fixed
shape (see Fig. 1 for three different wave segments). These wave segments are
unstable, but can be stabilized by using a feedback control to continually adjust
the excitability of the medium. Specifically, when the observed wave segment in-
creases (resp. decreases) in size, by adjusting the incident light one can decrease
(resp. increase) the size of the wave segment, thereby stabilizing the size of the
wave segment. Their experimental study and numerical simulations [6, 7] based on
the Oregonator model [4] also showed that there is a unique stabilized wave seg-
ment for each given (admissible) excitability of the medium determined by the light
intensity. Therefore, the size S of a stabilized wave segment can be viewed as a
function, S = h(ζ), of the medium excitability ζ (determined by the light intensity)
for any ζ larger than a critical value ζ∞. Note that the size h(ζ) of a stabilized
wave segment approaches infinity as ζ ↘ ζ∞. Also, this critical value ζ∞ defines the
second excitability limit for the existence of 2D wave patterns [6, 7]. More precisely,
the numerical results in [6, 7] show that the medium with excitability lying between
ζ∞ and ζ0 can only support the propagation of 2D wave patterns without free ends
(e.g., planar waves and circular waves) [11]. Hence spiral waves cannot exist for
the medium with excitability lying between ζ∞ and ζ0. Furthermore, this second
excitability limit ζ∞ is exactly the same excitability limit suggested by the critical
fingers [6, 7].

Motivated by the above discussion, we see that a good understanding of sta-
bilized propagating wave segments is necessary. Although the experimental and
numerical study in [6, 7] makes a significant step in the understanding of stabilized
propagating wave segments, it does not provide a satisfactory description of these
waves. For example, what is the relationship between the width of the wave seg-
ment and the excitability of the medium? Another possible approach to attack the
stabilized propagating wave segments is to resort to the two-component reaction-
diffusion systems (e.g., the typical FitzHugh-Nagumo equation) analytically, which
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Figure 1. Profiles of the wave segments (with different scales): (a)
(σ, b) = (0.6, 0.44), (b) (σ, b) = (0.9, 0.5247), (c) (σ, b) =
(0.98, 0.5334145).

is quite difficult to perform. To summarize, in order to get a deeper understanding
of the stabilized propagating wave segments, one needs an analytical approach, and
a further reduction of the reaction-diffusion system to a simpler system is necessary.

To do this, Zykov and Showalter [15] have used the so-called free-boundary
approach [1, 12, 3, 10] (also known as wave front interaction model) to reduce the
reaction-diffusion system to two first order systems of three ordinary differential
equations, which still can capture the essential behavior of stabilized propagating
wave segments. Within this frame, Zykov and Showalter [15] have obtained a
relationship between the size of the wave segment and the excitability of the medium
when the excitability is very close to the one corresponding to the critical finger (see
[16] for the higher excitability case). In this paper, we shall use the model of Zykov
and Showalter [15] to establish that (i) for each given size of the wave segment, there
exists a unique excitability such that the stabilized wave segment with the given size
can propagate in the corresponding medium, which, together with the properties
of ζ for small sizes of stabilized wave segments, shows that the locus S = h(ζ) of
stabilized wave segments in the parameter space (ζ, S) is monotone decreasing in the
excitability ζ; and (ii) there are two types of the profiles of stabilized propagating
wave segments.

To describe our results, we need to introduce some notation and the govern-
ing equations. In the wave front interaction model for stabilized propagating wave
segments, a wave segment propagating in a two-dimensional medium can be char-
acterized by its wave front and wave back which form the boundary of the wave
segment. Here the front and the back are realized as dividing the boundary of the
wave segment by its top and bottom points (see Fig. 2). Suppose that the wave
segment is symmetric with respect to the horizontal line through the midpoint of the
front. Let this horizontal line be the x-axis, the y-coordinate of the midpoint of the
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Figure 2. A traveling wave segment and its variables.

wave front be zero and the x-coordinate of the top point of the wave segment be
also zero. Then, the wave front/back is described by the relation

(x(s), y(s), θ(s)) = (x±(s), y±(s), θ±(s)),

where s the arc-length measured from the top point, (x, y) the position, and θ is
the angle of the outward/inward normal measured from the x-axis.

Then in the dimensionless form, (x̃, ỹ, θ̃) = (x+, y+, θ+) is governed by the
following system

(1.1)


x̃′ = sin θ̃,

ỹ′ = − cos θ̃,

θ̃′ = −1 + σ cos θ̃

with (x̃(0), ỹ(0), θ̃(0)) = (0,W (σ), π/2), where W (σ) is the half-width of the wave
segment and σ (the normalized propagation velocity of the wave, see the equa-

tion (2.9)) is a given constant such that σ ∈ (0, 1). Note that θ̃ ∈ [0, π/2]. Since
the wave segment is symmetric with respect to the x-axis, we require that ỹ(s) = 0

when θ̃(s) = 0. Using this condition, we can solve system (1.1) to obtain the ex-

pression for the wave front (x̃, ỹ) = (x+, y+) in terms of θ̃ (see [15, 6] for detail).
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Precisely, we have

x+ =
1

σ
log

1

1 − σ cos θ̃
,

y+ = − θ̃

σ
+

2

σ
√

1 − σ2
tan−1

((1 + σ) tan(θ̃/2)√
1 − σ2

)
for θ̃ ∈ [0, π/2]. In particular, the half-width of the wave segment W (σ) is the

evaluation of y+ at θ̃ = π/2, i.e.,

W = W (σ) := − π

2σ
+

2

σ
√

1 − σ2
tan−1

( 1 + σ√
1 − σ2

)
.

Note that W (0+) = 1 and W (1−) = ∞. Hereafter we use the notation W (0+) =
limσ↘0 W (σ),W (1−) = limσ↗1 W (σ) and so on for simplicity. This orbit (x+, y+)
gives the relation x+ = fσ(y+). Note that fσ (depending on σ) is a decreasing
function defined only on [0,W (σ)] such that

fσ(0) = − log(1 − σ)

σ
, fσ(W (σ)) = 0,

f ′
σ(0) = 0, f ′

σ(W−(σ)) = −∞, f ′′
σ (0) = σ − 1 < 0.

Hence we have the complete description for the wave front of a stabilized wave
segment for each normalized propagation velocity σ of the wave segment.

It remains to describe the wave back. Indeed, in the dimensionless form, the
wave back (x, y, θ) = (x−, y−, θ−) satisfies the following initial value problem (Pσ,b):

x′ :=
dx

ds
= sin θ,(1.2)

y′ :=
dy

ds
= − cos θ,(1.3)

θ′ :=
dθ

ds
= 1 + σ cos θ − b[fσ(y) − x],(1.4)

with the initial conditions

(1.5) x(0) = 0, y(0) = W (σ), θ(0) = −π/2.

Due to the symmetric assumption of the wave back with respect to the x-axis, the
positive constant b associated with the wave back is to be determined so that the
following boundary condition holds

(1.6) y(s∗) = 0, θ(s∗) = 0 and y′ < 0 in (0, s∗)

for some s∗ > 0. Here the parameter b is decreasing in the excitability of the
medium (see Section 2). Indeed, the parameter b can be used as an excitability
measure by (2.11).

We recall that for each normalized propagation velocity σ of the wave segment,
we have the complete description for the wave front which is independent of b. On
the other hand, the b dependence of the problem (Pσ,b) implies that the normalized
propagation velocity σ of the wave segment alone cannot characterize the wave
back. Indeed, to describe the wave back of a stabilized wave segment for a given
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normalized propagation velocity σ of the wave segment, we need to look for a
particular excitability (a positive constant b) so that the problem (Pσ,b) with the
boundary condition (1.6) admits a solution.

For the reader’s convenience and physical implication, in Section 2, we shall
follow [15] to give a brief description on deriving these governing equations for the
wave front and back. We also refer to [15] for more details of the background.

We now state our main existence and uniqueness result as follows.

Theorem 1. For each σ ∈ (0, 1), there exists a unique b∗ = b∗(σ) > 0 and s∗ =
s∗(σ) > 0 such that the solution (x, y, θ) of (Pσ,b∗) defined on [0, s∗] satisfies y′ < 0
on (0, s∗), y(s∗) = 0 and θ(s∗) = 0. Moreover, |θ| < π/2 and x < fσ(y) on (0, s∗].

We note that the half-width W (σ) of the wave segment is increasing in σ (see
Lemma 3.4), and that the parameter b is decreasing in the excitability ζ of the
medium (see the equation (2.11)). From this and Theorem 1, we may conclude that
for each given size of the wave segment, there exists a unique excitability such that
the stabilized wave segment with the given size can propagate in the corresponding
medium. This shows that the locus S = h(ζ) of stabilized wave segments in the
parameter space (ζ, S) is monotone in the excitability ζ. Furthermore, from Section
6 we see that b∗(σ) is increasing in σ for small σ. Together with (2.11) and the
fact that the parameter Is is decreasing in the excitability ζ of the medium, we
have that the locus S = h(ζ) is decreasing in ζ provided S is small. Hence the
monotonicity of the locus S = h(ζ) in ζ yields that S = h(ζ) is decreasing in ζ,
which is consistent with experimental studies [6, 7].

We also remark that, as will be shown in Lemma 6.2, the stationary wave
segment (i.e., when σ = 0) is precisely the unit circle which corresponds to b = 0.
On the other hand, when b = 0, by Theorem 1, the problem (Pσ,b) with (1.6) can
be solved only if σ = 0.

Note that y′ < 0 on (0, s∗) if and only if θ ∈ (−π/2, π/2). Also, θ may
be positive and θ′ may change sign in (0, s∗). We can roughly classify the wave
segments into the following two types:

(I) Convex type : θ′ > 0 on [0, s∗).
(II) Non-convex type : θ′ can change its sign in (0, s∗).

By using numerical simulation, we find that θ′ can change sign at most once. Fur-
thermore, the wave segment is of convex type for σ ∈ (0, σ̂], and of non-convex type
for σ ∈ (σ̂, 1). Here σ̂ is roughly between 0.83 and 0.85. Indeed, we can prove the
following result on the types of wave profiles.

Theorem 2. The propagating wave segment obtained in Theorem 1 is convex when
σ is small, while it becomes non-convex when σ is close to 1.
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Finally, the plan of this paper is as follows. In Section 2, following [15], we
present a brief derivation of the mathematical model of stabilized wave segments.
Section 3 is concerned with some mathematical preparations. In particular, the local
existence and uniqueness of solution to the problem (Pσ,b) is established. Then in
Section 4 we prove that there is at most one stabilized wave segment for a given
σ ∈ (0, 1) via the comparison principle. The existence of stabilized wave segments
is established in Section 5. In Section 6, we classified the profiles of stabilized wave
segments. Finally, a summary and discussion of the results is given in Section 7.

2. Derivation of the model

In this section, we follow [15] to derive the problem (Pσ,b) for the wave back,
and the governing equations (1.1) for the wave front. We first consider the two-
component reaction-diffusion model of the form

∂u

∂t
= D∇2u + F (u, v),(2.1)

∂v

∂t
= ε[G(u, v) + I(t)],(2.2)

where u = u(x, y, t) and v = v(x, y, t) represent, respectively, the activator and
the inhibitor in a two-dimensional medium with the diffusion coefficient D, and
the parameter ε is sufficiently small. Here the function I(t) corresponds to the
light intensity in the photosensitive Belousov-Zhabotinskii reaction. It controls the
excitability of the medium. Precisely, the excitability of the medium decreases
with increasing light intensity [6, 7]. When the wave segment tends to a stead-
state, I(t) will approach a constant value Is. Therefore, we can view Is as an
decreasing function of the excitability of the medium for which the corresponding
stabilized wave segment exists. For the reaction functions F and G, we use the
typical FitzHugh-Nagumo nonlinearity, i.e.,

F (u, v) = 3u − u3 − v, G(u, v) = u − δ

with the constant δ satisfying 0 < δ +
√

3 ¿ 1. With this choice of δ, the system
(2.1)-(2.2) with I(t) ≡ 0 has a unique uniform resting state (u0, v0) = (δ, 3δ − δ3).
Note that the quantity E := −v0 measures the excitability of the system (2.1)-(2.2)
with I(t) ≡ 0 (see [3]). In the remaining of this section, we assume |E| ¿ 1.

A wave segment propagating in the x direction can be described by its two
boundaries: the wave front and the wave back. These two boundaries separate the
enclosed domain Ω of excitation from the refractory region. Due to the small ε,
the wave front can be viewed as a sharp interface which connects the resting state
(u0, v0) and the excited state (ue(v0), v0), and propagates with the velocity cp(v0).
Here u = ue(v) is the largest root of the equation F (u, v) = 0, and the propagation
velocity cp(v) of a planar interface with the slow variable v at the moving boundary
is given by

(2.3) cp(v) = −α
√

Dv,
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provided v is sufficiently small. Here α is a constant determined by F (u, 0) (see
[12, 3]). We also note that the slow variable v is approximately equal to v0 on
the wave front. In the excited domain Ω, the inhibitor v evolves slowly according
to (2.2) with u replaced by u = ue(v), while the activator u approximately equals
ue(v0) ≈

√
3. Now we let v− be the value of v evaluated on the wave back. After the

excited region Ω, the activator u abruptly changes from ue(v−) ≈
√

3 to ur(v−) ≈
−
√

3, where u = ur(v) is the smallest root of the equation F (u, v) = 0. As before,
the wave back can be viewed as a sharp interface which connects the excited state
(ue(v−), v−) and the state (ur(v−), v−), and propagates with the velocity cp(v−).

It is well known [12] that the normal velocity cn of the wave front (back) obeys
the following linear eikonal equation

(2.4) cn(v) = cp(v) − Dκ.

Also, the normal direction of the stabilized wave segment at the midpoint (y = 0)
coincides with the propagation direction of the full wave segment along the x axis.
Then the free-boundary problem for the stabilized wave segment propagating along
the x axis with the constant velocity cs reads as

cp(v0) − Dκ+ = cs cos(Θ+),(2.5)

−cp(v−) − Dκ− = cs cos(Θ−),(2.6)

cs
dv

dx
= −ε[G(ue(v), v) + Is] in Ω,(2.7)

where Is := I(+∞), Θ+ (resp. Θ−) denotes the angle between the x axis and the
outward (resp. inward) normal on the front (resp. back), s+ (resp. s−) measures
the arc length from the top of the stabilized wave segment, and κ± = −dΘ±/ds± is
the local curvature on the front (resp. back). According to (2.4), cs = cp(v0)−Dκm,
where κm is the local curvature at the midpoint of the wave front.

The equation (2.5) (resp. (2.6)-(2.7)) describes the shape x+ = x+(y) (resp.
x− = x−(y)) of the wave front (resp. the wave back). Moreover, if we let (x+, y+)
(resp. (x−, y−)) denote the Cartesian coordinates of the wave front (back), then we
have

(2.8)
dx±

ds±
= sin Θ±,

dy±
ds±

= − cos Θ±.

Now set s = cp(v0)s+/D, x̃ = cp(v0)x+/D, ỹ = cp(v0)y+/D, θ̃ = Θ+, and

(2.9) σ = 1 − Dκm

cp(v0)
.

Then the equation (2.8) for (x+, y+) together with the equation (2.5) for Θ+ can

be transformed into the governing equations (1.1) for (x̃, ỹ, θ̃) (see [15, 6, 7]).

To characterize the shape x− = x−(y) of the wave back, we need to take (2.7)
into account due to v−. Note that G(ue(v), v) + Is ≈ G∗ := G(ue(0), 0) + Is in the
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excited region Ω. Hence (2.7) gives

v− = v0 +
G∗ε

cs

[x+(y) − x−(y)],

which, together with (2.6) and (2.3), yields

(2.10) D
dΘ−

ds−
= cp(v0) −

α
√

DG∗ε

cs

[x+(y) − x−(y)] + cs cos Θ−.

Then, by setting s = cp(v0)s−/D, x = cp(v0)x−/D, y = cp(v0)y−/D, θ = Θ−,

(2.11) σ = 1 − Dκm

cp(v0)
and b =

G∗ε

α2E3σ
=

ε

α2E3σ
[G(ue(0), 0) + Is],

the equation (2.8) for (x−, y−) together with the equation (2.10) for Θ− can be
transformed into the problem (Pσ,b) for (x, y, θ). Note that the parameter b is
decreasing in the excitability of the medium by the definition of Is.

3. Preliminaries

From now on we assume that σ ∈ (0, 1) and b ≥ 0. We first investigate the local
existence and uniqueness of solutions to the problem (Pσ,b). Indeed, fσ is continuous
and bounded on [0,W (σ)], the local existence of a solution to the problem (Pσ,b)
follows from the standard existence theorem for differential equations (see [2]).

Now we turn to the uniqueness. Note that the uniqueness of the solution to
the problem (Pσ,b) with σ ∈ (0, 1) and b = 0 is trivial. When b > 0, since fσ is
not Lipschitz continuous at y = W (σ), the usual theory of uniqueness cannot be
applied to the problem (Pσ,b). Nevertheless, we have the following uniqueness and
asymptotic expansion for solutions of (Pσ,b) near s = 0.

Lemma 3.1. Suppose that b > 0 and σ ∈ (0, 1). Then there exists a unique solution
(x, y, θ) of (Pσ,b) such that

x(s) = −s + O(s3),

y(s) = W (σ) − 1

2
s2 + O(s3),

θ(s) = −π

2
+ s +

σ − 2b

2
s2 + O(s3)

for small s ≥ 0.

Proof. First, we study the behavior of fσ. By (1.1), we have

∂x̃

∂θ̃
=

sin θ̃

−1 + σ cos θ̃
,

∂ỹ

∂θ̃
=

cos θ̃

1 − σ cos θ̃
, θ̃ ∈ [0, π/2],

which implies

∂x̃

∂θ̃
(π/2) = −1,

∂ỹ

∂θ̃
(π/2) = 0,

∂2x̃

∂θ̃2
(π/2) = σ,

∂2ỹ

∂θ̃2
(π/2) = −1.
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It follows from the implicit function theorem that

fσ(y) =
√

2[W (σ) − y] + O([W (σ) − y]).

Set

x = −s + ξ, y = W (σ) − 1

2
s2 − η, θ = −π

2
+ s + ϕ.

Then (ξ, η, ϕ) satisfies

ξ′ = sin(−π/2 + s + ϕ) + 1 = 1 − cos(s + ϕ),

η′ = cos(−π/2 + s + ϕ) − s = sin(s + ϕ) − s,

ϕ′ = σ cos(−π/2 + s + ϕ) − b[fσ(W (σ) − s2/2 − η) + s − ξ]

with (ξ(0), η(0), ϕ(0)) = (0, 0, 0).

Now, we consider the metric space

M := {(ξ, η, ϕ) | ξ, η, ϕ ∈ C0[0, s0],

0 ≤ ξ(s) ≤ As2, 0 ≤ η(s) ≤ Bs3, 0 ≤ ϕ(s) ≤ Cs2}

with the metric

‖(ξ, η, ϕ)‖M := sup
0≤s≤s0

(s−2|ξ(s)| + s−3|η(s)| + s−2|ϕ(s)|)

and the mapping F on M given by

F(ξ, η, ϕ)(s) = (F1(ξ, η, ϕ)(s),F2(ξ, η, ϕ)(s),F3(ξ, η, ϕ)(s)),

where

F1(ξ, η, ϕ)(s) :=

∫ s

0

(
1 − cos(τ + ϕ(τ))

)
dτ,

F2(ξ, η, ϕ)(s) :=

∫ s

0

(
sin(τ + ϕ(τ)) − τ

)
dτ,

F3(ξ, η, ϕ)(s) :=

∫ s

0

(
σ sin(τ + ϕ(τ)) − b[fσ(W (σ) − τ 2/2 − η(τ)) + τ − ξ(τ)]

)
dτ.

We can easily check that

|F1(ξ, η, ϕ)| ≤ (1 + Cs0)
2s0s

2

|F2(ξ, η, ϕ)| ≤ C

3
s3

|F3(ξ, η, ϕ)| ≤
(
|σ − 2b|

2
+

σCs0

3
+

K1bB

4
s2
0 +

bAs0

3

)
s2

where K1 is a constant depending only on fσ. An appropriate choice of positive
constants A,B,C and s0 assures that F maps from M into M. Similarly we see
that F is a contraction mapping on M and that the solution uniquely exists for
0 ≤ s ≤ s0. This calculation also implies the asymptotic expansion of x, y, θ for
s ≥ 0 small. ¤



STABILIZED PROPAGATION WAVE SEGMENT 11

This lemma also implies that the solution (x, y, θ) depends on (σ, b) continu-
ously for (σ, b) ∈ [0, 1) × [0,∞).

For a given σ ∈ (0, 1) and b ≥ 0, we let (x(s; σ, b), y(s; σ, b), θ(s; σ, b)) denote the
solution of (Pσ,b) and let [0, Sσ,b) be the corresponding maximal existence interval
such that y(s; σ, b) > 0. Note that y(S−

σ,b; σ, b) = 0 if Sσ,b < +∞. If there is no
ambiguity, we shall suppress the subindex.

Lemma 3.2. Let (x, y, θ) be the solution of (Pσ,b).

(i) If −π/2 ≤ θ(s; σ, b) < 0 and θ′(s; σ, b) = 0, then

θ′′(s; σ, b) < 0.

(ii) If θ(s; σ, b) = π/2 and θ′(s; σ, b) = 0, then

θ′′(s; σ, b) > 0.

(iii) If y(s; σ, b) = 0, θ(s; σ, b) = 0 and θ′(s; σ, b) = 0, then

θ′′(s; σ, b) = 0, θ′′′(s; σ, b) = −bf ′′
σ (0) > 0.

Proof. Differentiating Eq. (1.4) with respect to s, we have

(3.1) θ′′ = −σθ′ sin θ − b
(
− f ′

σ(y) cos θ − sin θ
)

= b
(
f ′

σ(y) cos θ + sin θ
)
,

if θ′ = 0. The first statement follows from f ′
σ ≤ 0, cos θ ≥ 0 and sin θ < 0. The

equation (3.1) also implies the second statement.

For the last statement, (3.1) and the fact that f ′
σ(0) = 0 implies

θ′′(s; σ, b) = 0

at (s, σ, b) as in the lemma. We also have

θ′′′ = −σθ′′ sin θ − σ(θ′)2 cos θ − b
(
f ′′

σ (y) cos2 θ + f ′
σ(y)θ′ sin θ − θ′ cos θ

)
,

which implies
θ′′′(s; σ, b) = −bf ′′

σ (0).

Thus we have completed the proof. ¤

Next, we recall the following comparison principle from p.28 of Hartman [2].

Lemma 3.3. (Comparison Principle)

(a) Let f(t,y) = (f1(t,y), ..., fd(t,y)), g(t,y) = (g1(t,y), ..., gd(t,y)) be con-
tinuous on the strip S = {(t,y) | a ≤ t ≤ b, y ∈ Rd} such that fk(t,y) <
gk(t,y) for k = 1, · · · , d, and that, for each k = 1, · · · , d, either fk(t,y) or
gk(t,y) is nondecreasing with respect to yi with i 6= k. On a ≤ t ≤ b,
let y = y(t) be the solution of y′ = f(t,y) with the initial condition
y(a) = y0; and z = z(t) be the solution of z′ = g(t, z) with the initial
condition z(a) = z0, where yk

0 ≤ zk
0 for k = 1, · · · , d. Then yk(t) ≤ zk(t)

for a ≤ t ≤ b and k = 1, · · · , d.
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(b) If, in part (a), all initial value problems associated with y′ = f(t,y) and
z′ = g(t, z) have unique solutions, fk(t,y) and gk(t,y) are increasing with
respect to yi, i 6= k and k = 1, 2, ..., d, and yj

0 < zj
0 for at least one index j,

then yk(t) < zk(t) for a < t ≤ b and k = 1, ..., d.
(c) If, in addition to the assumption of (a), there is an index h such that either

gh(t,y) or fh(t,y) is nondecreasing with respect to yh, then zh(t) − yh(t)
is nondecreasing on a ≤ t ≤ b.

Finally, in this section, we show that W (σ) is strictly increasing in σ ∈ (0, 1)
as the following lemma.

Lemma 3.4. The following holds:

dW

dσ
(σ) > 0 for σ ∈ (0, 1).

Proof. Since

d

dσ

(
tan−1 1 + σ√

1 − σ2

)
=

1

2
√

1 − σ2
,

we have

dW

dσ
=

π(1 − σ2)3/2 + 4(2σ2 − 1)tan−1 1 + σ√
1 − σ2

+ 2σ
√

1 − σ2

2σ2(1 − σ2)3/2
,

d2W

dσ2
=

−[2σ − 5σ3 + π(1 − σ2)2]
√

1 − σ2 + 2(2 − 5σ2 + 6σ4)tan−1 1 + σ√
1 − σ2

σ3(1 − σ2)5/2
.

Note that

2 − 5σ2 + 6σ4 ≥ −5σ2 + 2
√

2 · 6σ4 = (
√

48 − 5)σ2 > 0.

Set

ξ(σ) := − [2σ − 5σ3 + π(1 − σ2)2]
√

1 − σ2

(2 − 5σ2 + 6σ4)
+ 2tan−1 1 + σ√

1 − σ2
.

Then we have

dξ

dσ
(σ) =

σ2(1 − σ2)3/2(8 + 9πσ + 36σ2 + 6πσ3)

(2 − 5σ2 + 6σ4)2
> 0

for σ > 0. It follows from ξ(0) = 0 that ξ(σ) > 0 for 0 < σ < 1. Hence

d2W

dσ2
(σ) > 0 for 0 < σ < 1.

Also, the l’Hôpital rule implies that

lim
σ→0+

dW

dσ
(σ) =

π

4
.

Thus the lemma follows. ¤
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4. Uniqueness

This section is devoted to the proof of uniqueness. We first introduce the
following definition.

Definition 1. Let (x, y, θ) be the solution of (Pσ,b) defined on [0, Sσ,b). Let ŝ± =
ŝ±(σ, b) be the smallest positive s such that θ(s) = ±π/2, if it exists. Otherwise,

set ŝ± = Sσ,b. We also set θ̂± = θ̂±(σ, b) := θ(ŝ±; σ, b), ŷ± = ŷ±(σ, b) := y(ŝ±; σ, b),

ẑ± = ẑ±(σ, b) := W (σ) − ŷ±, ŝ = min{ŝ+, ŝ−}, θ̂ = θ̂(σ, b) := θ(ŝ; σ, b), ŷ =
ŷ(σ, b) := y(ŝ; σ, b) and ẑ = ẑ(σ, b) := W (σ) − ŷ.

Let (x, y, θ) be the solution of (Pσ,b). Since y′ < 0 on (0, ŝ), we can express x
and θ as functions of z := W (σ) − y. Let X(z) = x(s(z)) and Θ(z) = θ(s(z)) for
z ∈ (0,W (σ)− ŷ). Also set g(z) = fσ(W (σ)− z). Note that g depends on σ. Then
it follows from (1.2)-(1.4) that (X, Θ) satisfies the following problem (Rσ,b):

X′ :=
dX

dz
= tan Θ,(4.1)

Θ′ :=
dΘ

dz
=

1 + σ cos Θ − b(g(z) − X)

cos Θ
(4.2)

for z ∈ (0,W (σ) − ŷ) with the initial conditions

(4.3) X(0) = 0, Θ(0) = −π/2.

Lemma 4.1. Let (Xi(z), Θi(z)) = (X(z; σ, bi), Θ(z; σ, bi)) be the solution of (Rσ,bi
)

defined on [0, ẑ(σ, bi)), i = 1, 2. If 0 ≤ b1 < b2 and Xi(z) < g(z) for each z ∈
(0, ẑ(σ, bi)), i = 1, 2, then X2 < X1 and Θ2 < Θ1 on (0, min{ẑ(σ, b1), ẑ(σ, b2)}).

Proof. Since cos Θ(0; σ, bi) = 0, i = 1, 2, we cannot apply the comparison principle
near z = 0. However, Lemma 3.1 guarantees that Θ2 < Θ1 and X2 < X1 when z is
sufficiently small.

Note that the function of the right hand side of (4.1) is an increasing function
of Θ for Θ ∈ (−π/2, π/2). Also, the function of the right hand side of (4.2) is an
increasing and decreasing function of X and b respectively, as long as b ≥ 0 and
Θ ∈ (−π/2, π/2). By Definition 1, we always have −π/2 < Θi(z) < π/2 for each
z ∈ (0, ẑ(σ, bi)), i = 1, 2. Therefore, by Lemma 3.3, we have

X2 < X1 and Θ2 < Θ1

for all z ∈ (0, min{ẑ(σ, b1), ẑ(σ, b2)}). ¤

Similarly, we have the following lemma.

Lemma 4.2. Let (Xi(z), Θi(z)) = (X(z; σi, b), Θ(z; σi, b)) be the solution of (Rσi,b)
defined on [0, ẑ(σi, b)), i = 1, 2. If 0 ≤ σ1 < σ2 and Xi(z) < g(z) for each z ∈
(0, ẑ(σi, b)), i = 1, 2, then X1 < X2 and Θ1 < Θ2 on (0, min{ẑ(σ1, b), ẑ(σ2, b)}).



14 JONG-SHENQ GUO, HIROKAZU NINOMIYA, AND JE-CHIANG TSAI

Proof. Lemma 3.1 guarantees that Θ1 < Θ2 and X1 < X2 when z is sufficiently
small. Note that the function of the right hand side of (4.1) is an increasing function
of Θ for Θ ∈ (−π/2, π/2). Since the function of the right hand side of (4.2) is an
increasing function of X and σ as long as b ≥ 0 and Θ ∈ (−π/2, π/2), Lemma 3.3
shows X1 < X2 and Θ1 < Θ2 for all z ∈ (0, min{ẑ(σ1, b), ẑ(σ2, b)}). ¤

The following corollary follows easily from Lemma 4.1.

Corollary 4.3. For each fixed σ ∈ (0, 1), the (b∗, s∗) in Theorem 1 is unique.

Similarly, we define the following.

Definition 2. Let (x, y, θ) be the solution of (Pσ,b) defined on [0, Sσ,b). Let s̄ =
s̄(σ, b) be the first zero of θ′ if it exists. Otherwise, set s̄ = Sσ,b. We also set
θ̄ = θ̄(σ, b) := θ(s̄; σ, b), ȳ = ȳ(σ, b) := y(s̄; σ, b) and z̄ = z̄(σ, b) := W (σ) − ȳ.

Let (x, y, θ) be the solution of (Pσ,b). Since θ′ > 0 on [0, s̄), we can express x
and y as functions of θ for θ ∈ [−π/2, θ̄). Let X(θ) = x(s(θ)) and Y (θ) = y(s(θ))
for θ ∈ [−π/2, θ̄). Then X and Y satisfy the following problem (Qσ,b):

X ′ :=
dX

dθ
=

sin θ

1 + σ cos θ − b(fσ(Y ) − X)
,(4.4)

Y ′ :=
dY

dθ
= − cos θ

1 + σ cos θ − b(fσ(Y ) − X)
,(4.5)

for θ ∈ [−π/2, θ̄) with the initial conditions

X(−π/2) = 0, Y (−π/2) = W (σ).

Note that X ′(θ) < 0 for θ ∈ [−π/2, min{θ̄, 0}) and X(θ) < 0 for θ ∈ (−π/2, min{θ̄, 0}].

From Lemma 3.3, we also have the following lemma.

Lemma 4.4. Let (Xi, Yi) be the solution of (Qσ,bi
) defined on [−π/2, θ̄(σ, bi)), i =

1, 2. If 0 < b1 < b2, then we have X2 < X1 < 0, Y2 < Y1, X ′
2 < X ′

1 and Y ′
2 < Y ′

1 on
(−π/2, min{θ̄(σ, b1), θ̄(σ, b2), 0}). Moreover, X1−X2 and Y1−Y2 are nondecreasing
on (−π/2, min{θ̄(σ, b1), θ̄(σ, b2), 0}].

Proof. Note that the function of the right hand side of (4.4) is an increasing function
of X, Y and decreasing function of b, respectively, as long as b > 0, θ ∈ (−π/2, 0),
and 1 + σ cos θ − b(fσ(Y ) − X) > 0. The same conclusion holds for the function of
the right hand side of (4.5). Then by applying Lemma 3.3 to (Qσ,bi

), i = 1, 2, we
reach the desired conclusion. ¤
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5. Existence

In this section, we shall prove Theorem 1 by analyzing the behavior of y(s; σ, b)
and θ(s; σ, b) for (σ, b) ∈ (0, 1) × [0,∞).

First we consider the case when b = 0.

Lemma 5.1. Assume b = 0. Let (X(z; σ, 0), Θ(z; σ, 0)) be the solution of the prob-
lem (Rσ,0). Then there exists σ∗ ∈ (0, 1) such that

(i) for 0 < σ < σ∗, ẑ(σ, 0) = W (σ), −π/2 < Θ(z; σ, 0) < π/2 for 0 < z ≤
W (σ) and Θ(W (σ)−; σ, 0) := lim

z→W (σ)−
Θ(z; σ, 0) ∈ (0, π/2);

(ii) for σ = σ∗, ẑ(σ, 0) = W (σ), −π/2 < Θ(z; σ, 0) < π/2 for 0 < z < W (σ)
and Θ(W (σ)−; σ, 0) = π/2;

(iii) for σ∗ < σ < 1, 0 < ẑ(σ, 0) < W (σ), −π/2 < Θ(z; σ, 0) < π/2 for
0 < z < ẑ(σ, 0) = ẑ+(σ, 0) and Θ(ẑ(σ, 0)−; σ, 0) = π/2.

Proof. First, we note that, by the definition of Sσ,b, ẑ(σ, 0) ≤ W (σ) for any σ ∈
(0, 1). Let b = 0. By (4.2), we have

z =

∫ Θ(z;σ,0)

−π/2

cos Θ

1 + σ cos Θ
dΘ.

The function

H(Θ, σ) := W (σ) −
∫ Θ

−π/2

cos θ

1 + σ cos θ
dθ

is decreasing in Θ ∈ (−π/2, π/2] and increasing in σ ∈ [0, 1). We also have

H(Θ, 0+) = − sin Θ, H(Θ, 1−) = ∞

for Θ ∈ (−π/2, π/2]. Let σ∗ be the unique root of

H(π/2, σ) = 0, σ ∈ (0, 1).

Then H(π/2, σ) < 0 for σ ∈ (0, σ∗) and H(π/2, σ) > 0 for σ ∈ (σ∗, 1). The lemma
follows. ¤

To derive the information of θ̄, we consider the orbit by the function of θ.
Namely, let (X(θ; σ, 0), Y (θ; σ, 0)) be a solution of (Qσ,0) with σ ∈ (0, 1). We claim
that θ̄(σ, 0) > 0. Indeed, proceeding as in the proof of Lemma 5.1, it is sufficient to
prove that the function

K(σ) := W (σ) −
∫ 0

−π/2

cos θ

1 + σ cos θ
dθ

is positive for σ ∈ (0, 1). As before, we can show that K is increasing in σ ∈ (0, 1),
K(0+) = 0 and K(1−) = +∞. Hence we have θ̄(σ, 0) > 0 for each σ ∈ (0, 1).
Therefore, (X(θ; σ, 0), Y (θ; σ, 0)) is defined at least on [−π/2, 0].
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Clearly, Y ′(θ; σ, 0) < 0 on (−π/2, π/2). Integrating (4.5) over [−π/2, 0], we
obtain

Y (0; σ, 0) = −π

σ
+

2

σ
√

1 − σ2

[
tan−1

( 1 + σ√
1 − σ2

)
+ tan−1

( 1 − σ√
1 − σ2

)]
.

We see that limσ→0+ Y (0; σ, 0) = 0 and Y (0; σ, 0) is an increasing function in σ.
Thus we have that 0 < Y (0; σ, 0) for all σ ∈ (0, 1). Moreover, by a similar argument
as the proof of Lemma 3.4, one can show that Y (0; σ, 0) < W (σ), and hence

0 < Y (0; σ, 0) < W (σ) for all σ ∈ (0, 1).

Next we consider the case when b is large.

Lemma 5.2. Assume that σ ∈ (0, 1) and η ∈ (−π/2, 0]. If b ≥ (1+σ)/fσ(Y (η; σ, 0)),
then

−π

2
< θ̄(σ, b) ≤ η.

In particular, the following equalities hold:

(5.1) lim
b→+∞

θ̄(σ, b) = −π

2
, lim

b→+∞
ȳ(σ, b) = W (σ).

Proof. We show this lemma by a contradiction argument. Assume that θ̄(σ, b) > η
for some b ≥ (1 + σ)/fσ(Y (η; σ, 0)). Then the solution (x, y, θ) of (Pσ,b) satisfies
that θ′ > 0 for 0 ≤ s < s̄. Since η ∈ (−π/2, 0], there is a constant s1 ∈ (0, s̄) such
that θ′ > 0 on [0, s1], x(s1; σ, b) < 0, y(s1; σ, b) > 0 and θ(s1; σ, b) = η. It follows
from Lemma 4.4 that

Y (η; σ, 0) > y(s1; σ, b).

Using (1.4) and noting that f is decreasing, we have

θ′(s1; σ, b) = 1 + σ cos η − b[fσ(y(s1; σ, b)) − x(s1; σ, b)]

< 1 + σ − bfσ(y(s1; σ, b))

< 1 + σ − bfσ(Y (η; σ, 0)) ≤ 0,

which is a contradiction. Hence we have θ̄(σ, b) ∈ (−π/2, η]. Furthermore, since

lim
η→−π/2

Y (η; σ, 0) = W (σ),

we have

lim
η→−π/2

1 + σ

fσ(Y (η; σ, 0))
= ∞,

which gives the first equality in (5.1) and then the second one. This completes the
proof. ¤

Using this lemma, we can derive the following behavior of the solution (X, Θ)
of (Rσ,b) for large b.

Lemma 5.3. Let (X(z; σ, b), Θ(z; σ, b)) be the solution of the problem (Rσ,b). Then
there exists a positive number b# such that the following statements hold for b ≥ b#:

(i) 0 < z̄ < ẑ < W (σ) and Θ′ > 0 on (0, z̄) and Θ′ < 0 on (z̄, ẑ), where
z̄ = z̄(σ, b), ẑ = ẑ(σ, b) and Θ = Θ(z; σ, b).
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(ii) Θ(z; σ, b) ∈ (−π/2, 0) for all z ∈ (0, ẑ) and Θ(ẑ−; σ, b) = −π/2.

Proof. Lemma 5.2 assures us that there is a sufficiently large constant b1 such that
θ̄(σ, b) ∈ (−π/2,−π/4) and ȳ(σ, b) ∈ (7W (σ)/8, W (σ)) for each b > b1. Recall that
z̄(σ, b) = W (σ) − ȳ(σ, b). Then, for b > b1, we have z̄ < W (σ)/8 and Θ′ > 0 on
(0, z̄). At z = z̄, we have Θ′ = 0, Θ = θ̄ ∈ (−π/2,−π/4), and so

(5.2)
d2Θ

dz2

∣∣∣
Θ′=0

=
−b(g′(z) − tan Θ)

cos Θ
< 0.

Thus we see that Θ′ becomes negative just after z = z̄. The equation (5.2) also
implies that Θ′ < 0 as long as Θ(z; σ, b) ∈ (−π/2, 0).

Now set

b# := max

b1,

√
2π

W (σ)
+ (1 + σ)

min
z∈[W (σ)/4,W (σ)/2]

g(z)

 .

Fix a b ≥ b#. We claim that ẑ ∈ (z̄,W (σ)) such that Θ′ < 0 on (z̄, ẑ) and
Θ(ẑ−; σ, b) = −π/2. Suppose not. Then Θ is defined on [0,W (σ)), Θ′ < 0 on
(z̄,W (σ)) and Θ(W (σ)−) ∈ [−π/2,−π/4). Since X′ < 0 for Θ ∈ [−π/2,−π/4),
X < 0. Thus we have

dΘ

dz
=

1 + σ cos Θ − b(g(z) − X)

cos Θ
<

1 + σ − bg(z)

cos Θ

for z ∈ [W (σ)/4,W (σ)/2]. By the choice of b, for z ∈ [W (σ)/4, W (σ)/2], we obtain

dΘ

dz
< −

√
2π

W (σ)

1

cos Θ
≤ − 2π

W (σ)
.

Integrating this inequality over [W (σ)/4,W (σ)/2] yields that

Θ(W (σ)/2) − Θ(W (σ)/4) < −π

2
.

This contradicts that Θ(W (σ)−) ∈ [−π/2,−π/4), and hence the claim is estab-
lished. The proof is thus completed. ¤

To prove the existence part of Theorem 1, it is equivalent to find solutions
(x, y, θ) of (Pσ,b) satisfying

(5.3)


−π

2
< θ(s; σ, b) <

π

2
, y(s; σ, b) > 0 for 0 < s < s∗,

fσ(y(s; σ, b)) − x(s; σ, b) > 0 for 0 < s ≤ s∗,

(θ(s∗; σ, b), y(s∗; σ, b)) = (0, 0)

with some b = b∗(σ) > 0 and s∗ = s∗(σ) > 0 for any σ ∈ (0, 1). For this, we first
prove the following lemma.
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Lemma 5.4. For each b > 0, we have that

−π

2
< Θ(z; σ, b) <

π

2
, g(z) > X(z; σ, b)

for 0 < z < ẑ(σ, b).

Proof. The assertion

−π

2
< Θ(z; σ, b) <

π

2
for 0 < z < ẑ(σ, b) follows from the definition of ẑ.

For the second assertion, we first note that, by Lemma 5.3, there exists a
sufficiently large b0 such that X(z; σ, b) < 0 for all z ∈ (0, ẑ] and b ≥ b0. Hence
g(z) > X(z; σ, b) for all z ∈ (0, ẑ] and b ≥ b0.

Next, recall from (1.1) that
dx̃

dỹ
= − tan θ̃,

dθ̃

dỹ
=

1 − σ cos θ̃

cos θ̃

and θ̃ ∈ [0, π/2). This orbit corresponds to fσ(ỹ) = x̃. Similarly the back is
represented by the solution (x(y), θ(y)) of

dx

dy
= − tan θ,

dθ

dy
= −1 + σ cos θ − b(fσ(y) − x)

cos θ

with θ ∈ (−π/2, π/2).

Now we show that g(z) > X(z; σ, b) for all z ∈ (0, ẑ) for all b > 0, by a
contradiction argument. Indeed, by the choice of b0, we assume that there is a
largest b < b0 and y2 ∈ [0,W (σ)) such that

x̃(y) > x(y), θ̃(y) < π/2, −π/2 < θ(y) for 0 < y < y2,

θ̃(y2) = θ(y2), x̃(y2) = x(y2),

d

dy
(x̃ − x)|y=y2 = 0,

d2

dy2
(x̃ − x)|y=y2 ≥ 0.

We have

d

dy
(x̃ − x) = tan θ − tan θ̃,

d2

dy2
(x̃ − x) =

θy

cos2 θ
− θ̃y

cos2 θ̃

= −1 + σ cos θ − b(fσ(y) − x)

cos3 θ
− 1 − σ cos θ̃

cos3 θ̃
.
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This implies

d2

dy2
(x̃ − x)|y=y2 = − 2

cos3 θ
< 0.

This contradicts the choice of y2. Hence the proof is completed. ¤

Finally, we prove the following lemma, which completes the proof of Theorem 1.

Lemma 5.5. For each σ ∈ (0, 1), there is a positive constant b∗ such that

ẑ(σ, b∗) = W (σ), Θ(W (σ)−; σ, b∗) = 0.

Proof. First, we claim that there exists a b1 > 0 such that

ẑ(σ, b1) = min{ẑ+(σ, b1), ẑ−(σ, b1)} = W (σ).

Indeed, the assertion holds for σ ∈ (0, σ∗] by Lemma 5.1 and the continuous depen-
dence on the parameter b. Therefore, we focus on the case σ ∈ (σ∗, 1). For contra-
diction, we assume that ẑ(σ, b) < W (σ) for any b > 0. It follows from Lemma 5.1
that ẑ+(σ, b) < W (σ) for small b. By Lemma 5.3 (ii), ẑ−(σ, b) < ẑ+(σ, b) for suffi-
ciently large b. Hence we can take the smallest b = b∗ such that ẑ−(σ, b∗) ≤ ẑ+(σ, b∗).
Actually, we have ẑ−(σ, b∗) < ẑ+(σ, b∗). Then

Θ(ẑ−(σ, b∗); σ, b∗) = −π

2
, −π

2
< Θ(z; σ, b∗) <

π

2

for z ∈ (0, ẑ−(σ, b∗))∪ (ẑ−(σ, b∗), ẑ+(σ, b∗)), which implies that there is s1 such that

θ(s1; σ, b∗) = −π

2
, θ′(s1; σ, b∗) = 0, θ′′(s1; σ, b∗) ≥ 0.

This contradicts Lemma 3.2 (i). Therefore, we conclude that there exists a b1 > 0
such that ẑ(σ, b1) = W (σ).

Next, we define the set

A(σ) :=
{
b > 0

∣∣∣ Θ(z; σ, b) is defined on [0,W (σ)), Θ(z; σ, b) ∈ (−π/2, π/2)

for all z ∈ (0,W (σ)), and Θ(W (σ)−; σ, b) ∈ (−π/2, π/2)
}
.

We shall show that the set A(σ) is nonempty. If Θ(W (σ)−; σ, b1) ∈ (−π/2, π/2),
then b1 ∈ A and we are done.

Suppose that Θ(W (σ)−; σ, b1) = π/2. Let (x(s; σ, b1), y(s; σ, b1), θ(s; σ, b1)) be
the solution of the problem (Pσ,b1). We claim that θ′(ŝ−; σ, b1) > 0, where ŝ =
ŝ(σ, b1). We first note that θ′(ŝ−; σ, b1) ≥ 0 by the definition of b1. Thus, for
contradiction, we assume that θ′(ŝ−; σ, b1) = 0. By differentiating (1.4), we can
compute that θ′′(ŝ−; σ, b1) = b1 > 0. This is a contradiction, and so establishing the
assertion of this claim.

By the continuous dependence on the parameter b and Lemma 4.1, we can
choose a sufficiently small positive number δ > 0 and z1 ∈ (0,W (σ)) such that the
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solution (X(z; σ, b), Θ(z; σ, b)) of (Rσ,b) satisfies

X(z; σ, b) < X(z; σ, b1), Θ(z; σ, b) < Θ(z; σ, b1),

Θ(z; σ, b) ∈ (−π/2, π/2) for all z ∈ [0, z1],

Θ(z1; σ, b) ∈ (0, π/2), Θ′(z1; σ, b) > 0

for each b ∈ (b1, b1 + δ). Recall that g′(W (σ)) = f ′
σ(0) = 0 and tan θ → +∞ as

θ → (π/2)−. Therefore, we can choose δ small enough and z1 sufficiently close to
W (σ) such that tan θ − g′(z) > 0 for all (z, θ) ∈ [z1,W (σ)) × [Θ(z1; σ, b), π/2) for
any b ∈ (b1, b1 + δ).

Fix a b ∈ (b1, b1 + δ). We claim that ẑ(σ, b) = W (σ) and Θ(W (σ)−; σ, b) ∈
(0, π/2). We first show that ẑ(σ, b) = W (σ). Suppose not. Then from Lemmas 4.1
and 5.4 it follows that Θ(z; σ, b) < Θ(z; σ, b1) for all z ∈ [0, ẑ(σ, b)). Hence there
exists a z0 ∈ (z1, ẑ(σ, b)) such that

Θ(z0; σ, b) ∈ (Θ(z1; σ, b), π/2), Θ′(z; σ, b) > 0 on [z1, z0) and Θ′(z0; σ, b) = 0.

By the choice of z1, we have

tan Θ(z0; σ, b) − g′(z0) > 0.

On the other hand, by using (4.2), we can compute

Θ′′(z0; σ, b) = b · tan Θ(z0; σ, b) − g′(z0)

cos Θ(z0; σ, b)
> 0,

a contradiction. Therefore, we have ẑ(σ, b) = W (σ).

Moreover, from the above proof it yields that Θ′(z; σ, b) > 0 for all z ∈
[z1,W (σ)), which implies Θ(W (σ)−; σ, b) ∈ (0, π/2]. Since θ′(ŝ−; σ, b1) > 0, by
(1.4) and (4.2), we have 1 − b1(g(W (σ)) − X(W (σ−); σ, b1)) > 0. Hence by choos-
ing a smaller δ, we may assume that 1 − b(g(z) − X(z; σ, b)) > 0 for all (z, b) ∈
[z1,W (σ)) × [b1, b1 + δ). By Lemma 4.1, we have that X(z; σ, b) < X(z; σ, b1),
Θ(z; σ, b) < Θ(z; σ, b1) for all z ∈ [z1,W (σ)). Together with the choice of δ, we have

Θ′(z; σ, b1) = σ +
1 − b1

(
g(z) − X(z; σ, b1)

)
cos Θ(z; σ, b1)

> σ +
1 − b

(
g(z) − X(z; σ, b)

)
cos Θ(z; σ, b)

= Θ′(z; σ, b).

for all (z, b) ∈ [z1,W (σ)) × (b1, b1 + δ), where we have used the fact that g(z) −
X(z; σ, b) > 0 for all (z, b) ∈ [z1,W (σ)) × [b1, b1 + δ) (see Lemma 5.4). Therefore,
we have Θ(W (σ)−; σ, b) ∈ (0, π/2) for all b ∈ (b1, b1 + δ).

The case when Θ(W (σ)−; σ, b1) = −π/2 can be treated similarly. This estab-
lishes the nonempty of the set A(σ).
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For each b ∈ A(σ), we see that the curve {(z, Θ(z; σ, b))} intersects the line
{z = W (σ)} transversely (i.e., Θ′(W (σ)−; σ, b) 6= ±∞). Hence, with the use of the
continuous dependence on the parameter b, we can conclude that A(σ) is open.

Now we choose a nonempty open interval Â(σ) contained in A(σ). Consider
the following two quantities:

b− = b−(σ) := inf Â(σ), b+ = b+(σ) := sup Â(σ).

Since Â(σ) is nonempty, b− is well-defined. From Lemma 5.3, we have that b+ is also

well-defined. Since Â(σ) is open, the function Θ(· ; σ, b+) and Θ(· ; σ, b−) are de-
fined on [0,W (σ)) such that Θ(W (σ)−; σ, b+) = −π/2 and Θ(W (σ)−; σ, b−) = π/2,
if b− > 0; Θ(W (σ)−; σ, b−) ∈ (0, π/2], if b− = 0 (by Lemma 5.1). Furthermore, we
have Θ′(W (σ)−; σ, b+) = −∞ and Θ′(W (σ)−; σ, b−) = +∞, if Θ(W (σ)−; σ, b−) =
π/2. Therefore, together with the theory of continuous dependence on the param-
eter b, we can conclude that the function

G : Â(σ) 7−→ (−π

2
, Θ(W (σ)−; σ, b−))

given by G(b) = Θ(W (σ)−; σ, b) is continuous and onto. Hence there is a b∗ ∈
Â(σ) ⊆ A(σ) such that Θ(W (σ)−; σ, b∗) = 0. This completes the proof of this
lemma, thereby completing the proof of Theorem 1. ¤

6. Profiles of wave segments

6.1. Classification of the wave profile. Although we have shown the existence
and uniqueness of wave segments in the previous sections, we do not have too much
information about the profile of a wave segment. Let (x, y, θ) be a wave segment
defined on [0, s∗]. We classify the wave segments into the following two types:

(I) Convex type : θ′ > 0 on [0, s∗).
(II) Non-convex type : θ′ can change its sign in (0, s∗).

6.2. Existence of convex wave segments. First, we show the continuity of b∗(σ),
where the function b∗(σ) is obtained in Theorem 1.

Lemma 6.1. The function b∗(σ) is continuous in σ ∈ (0, 1).

Proof. Suppose that b∗ is not continuous at some σ0. Then there exist a positive
constant ε and a sequence {σj} such that

lim
j→∞

σj = σ0, |b∗(σ0) − b∗(σj)| > ε.

By Lemma 5.2, b∗(σ) is bounded for σ close to σ0. Hence we can take a subsequence
{σjn} of {σj} such that b∗jn

:= b∗(σjn) converges to b∗∗(6= b∗(σ0)) as n → ∞. The
facts that (X(z; σ, b), Θ(z; σ, b)) is continuously depending on z, σ, b and that

Θ(W (σjn); σjn , b∗jn
) = 0 for all n ∈ N,
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imply
Θ(W (σ0); σ0, b

∗∗) = 0.

This contradicts the uniqueness of b∗ in Theorem 1. Hence the lemma follows. ¤

For small σ, we show that the propagating wave segment is of convex type by
the following lemma.

Lemma 6.2. There holds
lim

σ→0+
b∗(σ) = 0.

Proof. When σ = b = 0, the solution is given by

(x(s; 0, 0), y(s; 0, 0), θ(s; 0, 0)) = (− cos(−π/2 + s),− sin(−π/2 + s),−π/2 + s)

for s ∈ [0, π/2]. Indeed, it is the unit circle.

Suppose that b∗(0+) > 0. Note that W (σ) is increasing in σ and W (0+) =
1. Then we can fix a b0 sufficiently close to b∗(0+) and σ0 ∈ (0, 1) such that
Θ(1; 0, b0) is defined and b0 < b∗(σ) for all σ ∈ (0, σ0). Together with the fact that
Θ(W (σ); σ, b∗(σ)) = 0 for σ ∈ (0, σ0), it follows from Lemma 4.1 that Θ(1; 0, b0) > 0.

On other hand, since Θ(1; 0, 0) = 0, it follows from Lemma 4.1 that Θ(1; 0, b0) <
0, a contradiction. This completes the proof. ¤

Now with the help of the above lemma, we can show that for small σ, the
propagating wave segment is of convex type. Indeed, since θ′(s; 0, 0) = 1 for all s ∈
[0, π/2], the continuity of θ′ with respect to s, σ, b∗(σ) implies that θ′(s; σ, b∗(σ)) > 0
for all s ∈ [0, s∗(σ)], provided that σ is small enough. Therefore, the wave segment
is of convex type for small σ.

6.3. Existence of non-convex wave segments. In this subsection, we will show
that when σ is close to 1, the wave segment must be non-convex.

To begin with, we need the following lemma which shows that if the wave
segment is of convex type for σ = σ1, σ2 with σ1 < σ2, then b∗(σ1) < b∗(σ2).

Lemma 6.3. If 0 < σ1 < σ2 < 1 and θ′(·; σj, b
∗(σj)) > 0 on [0, s∗(σj)), j = 1, 2,

then b∗(σ1) < b∗(σ2).

Proof. Note that Θ(W (σj); σj, b
∗(σj)) = 0 and Θ(z; σj, b

∗(σj)) ∈ (−π/2, 0) for all
z ∈ (0,W (σj)), j = 1, 2. Recall W (σ1) < W (σ2), by Lemma 3.4.

For contradiction, we suppose that b∗(σ1) ≥ b∗(σ2). Then, by Lemma 4.1,

(6.1) Θ(z; σ2, b
∗(σ1)) ≤ Θ(z; σ2, b

∗(σ2)) < 0

for all z ∈ (0, min{ẑ(σ2, b
∗(σ1)), W (σ2)}). Also, by Lemma 4.2, we have

(6.2) Θ(z; σ2, b
∗(σ1)) ≥ Θ(z; σ1, b

∗(σ1)) > −π/2

for all z ∈ (0, min{W (σ1), ẑ(σ2, b
∗(σ1))}).
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Set Ẑ := ẑ(σ2, b
∗(σ1)). We claim that Ẑ ≥ W (σ1). Otherwise, if Ẑ < W (σ1),

then it follows from (6.1) and (6.2) that Θ(Ẑ; σ2, b
∗(σ1)) ∈ (−π/2, 0), a contradiction

to the definition of Ẑ. This establishes the assertion of the claim. Now from (6.1)
we have Θ(W (σ1); σ2, b

∗(σ1)) < 0. However, (6.2) implies

Θ(W (σ1); σ2, b
∗(σ1)) ≥ Θ(W (σ1)

−; σ1, b
∗(σ1)) = 0,

a contradiction. This completes the proof. ¤

Now we are in a position to establish the existence of non-convex wave segments
for σ close to 1. Recall that the wave segment is of convex type for σ ∈ (0, σ0] for
some σ0 ∈ (0, 1), by the conclusion of Section 6.2. Since fσ(0) converges to +∞ as
σ → 1−, we can choose a σ1 ∈ (σ0, 1) such that fσ(0) > 2/b∗(σ0) for all σ ∈ [σ1, 1).

Now we claim that the wave profile is of non-convex type for σ ∈ [σ1, 1).
Otherwise, there exists a σ ∈ [σ1, 1) such that Θ(z; σ, b∗(σ)) ∈ (−π/2, 0) for any
z ∈ (0,W (σ)). This implies that θ(s; σ, b∗(σ)) ∈ (−π/2, 0) and x(s; σ, b∗(σ)) < 0
for all s ∈ (0, s∗(σ)). By Lemma 6.3, b∗(σ) > b∗(σ0). Thus we have

1 + σ cos θ − b∗(σ)(fσ(y) − x) ≤ 1 + σ cos θ − b∗(σ)fσ(y) ≤ 2 − b∗(σ0)fσ(y),

for s ∈ (0, s∗(σ)). This, together with the choice of σ1, implies that θ′(·; σ, b∗(σ))
becomes negative near s = s∗(σ), a contradiction. Thus we have shown that the
wave profile is non-convex when σ is close to 1.

7. Discussion

In this paper, we use the model of Zykov and Showalter [15] to study the
existence of stabilized propagating wave segments. In this model, a stabilized prop-
agating wave segment can be described by two systems of ordinary differential
equations for the wave front, (1.1), and for the wave back (i.e., the problem (Pσ,b)
and (1.6)). Although this model is a reduction of two-component reaction-diffusion
system, it can still reflect the essential behavior of stabilized propagating wave seg-
ments. Moreover, it is easier to handle analytically, and only the key parameters
are involved in this model.

Within this frame, we have established that for each given size of the wave
segment, there exists a unique excitability such that the stabilized wave segment
with the given size can propagate in the corresponding medium. The physical
implication of this is that the excitability limit S = h(ζ) is monotone decreasing
in the excitability, which agrees with the experimental study. Our analysis also
shows that there are two types of the profiles of stabilized wave segments (see
Fig. 2), namely, convex and non-convex types. In particular, the wave profile is of
convex type when the normalized propagating velocity is small. However, it is of
non-convex type when the normalized propagating velocity is close to 1.
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