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Abstract. This paper is devoted to the study of the self-similar solutions for a

semilinear parabolic equation with spatially dependent nonlinearity which arises

in the model of micro-electro mechanical system. We first provide a result on the

non-existence of slow orbit for a certain range of parameters. Next, we prove the

existence of backward solutions with the desired polynomial growth condition at

infinity to the associated equation by a fixed point argument. Then we give a

detailed analysis of the behavior of global solutions at the origin. Finally, as an

application of the above results, we prove a uniqueness theorem.
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1. Introduction

In this paper, we study the Cauchy problem for the following semilinear parabolic

equation with spatially dependent nonlinearity:

(1.1) ut = uxx − |x|qu−p, x ∈ R, t > 0,

supplemented with a positive initial datum, where p > 1 and q > 0. This problem

arises in the study of the dynamic deflection of an elastic membrane inside a micro-

electro mechanical system (MEMS). The function u represents the distance between the

membrane and the fixed bottom plate. The function |x|q is a particular choice of the

permittivity profile (the dielectric property of the membrane).

Due to the wide applications of MEMS, there have been a lot of research on the related

problems to (1.1) recently. We refer the reader to the works [16, 17, 2] for more details on

the background and derivation of the MEMS model. Depending on whether the device is

embedded in an electrical circuit with a capacitor, the model can be of nonlocal nature in

the sense that an integral term appears in the partial differential equation. For works on

this nonlocal problem, we refer the reader to a recent survey paper [6] and the references
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cited therein. The equation (1.1) is the case when there is no capacitor embedded in

the circuit. This case has been studied extensively for past years, see, e.g., the works

[5, 12, 3, 4, 10, 11, 13, 15, 19].

Physically, the system breaks down when the function u reaches zero, i.e., the membrane

touches the bottom plate. This is the so-called touchdown phenomenon. An important

question is to determine the locations of touchdown (the touchdown points). Since there is

no source at x = 0 for (1.1), it is very interesting to see whether x = 0 is a touchdown point

when touchdown occurs. For the equation (1.1) in a bounded domain, it was conjectured

numerically in [12] that x = 0 is not a touchdown point. Then this conjecture is recently

verified rigorously by the authors in [9]. Indeed, replacing the permittivity profile by a

general nonnegative nontrivial function, it is shown in [9] that any interior zero point of

the permittivity profile cannot be a touchdown point. Moreover, this is true not only for

the one-dimensional case but also for the higher space dimension.

For the Cauchy problem of equation (1.1) with a positive initial datum, by the standard

parabolic theory, it is trivial that there is a unique local (in time) solution. A local (in

time) positive solution may reach zero in a finite time. This (touchdown) phenomenon is

also called quenching mathematically. More precisely, if there is a finite time T such that

u(·, t) > 0 for all t < T and

lim inf
t→T−

{ inf
x∈(−∞,∞)

u(x, t)} = 0,

then we say that u quenches in finite time. A point x0 is a (finite) quenching point, if there

is a sequence {(xn, tn)} such that xn → x0, tn → T− and u(xn, tn) → 0 as n → ∞. One

interesting question is to determine whether x = 0 is a quenching point. Furthermore,

how fast the solution quenches, if x = 0 is a quenching point.

Motivated by the work of Filippas and Tertikas [1] for blow-up problems, we study the

self-similar solution of (1.1) in the form

(1.2) u(x, t) = (T − t)γw(y), y =
|x|√
T − t

,

where T > 0 is given and

γ :=
1 + q/2

1 + p
.

Then w satisfies the equation

(1.3) w′′ − y

2
w′ + γw − yqw−p = 0, y > 0,

with the initial condition w′(0) = 0 and w(0) > 0. Hereafter w′ := dw/dy. It is trivial

that a local solution w of (1.3) with w′(0) = 0 and w(0) > 0 exists.

If there is a global solution w of (1.3) such that w′(0) = 0, w > 0 on [0,∞) and the

limit

(1.4) ℓ := lim
y→∞

[y−2γw(y)]
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exists for some finite positive constant ℓ, then the corresponding self-similar solution u

defined by (1.2) quenches at the finite time T with the self-similar rate (T − t)γ . Note

that u is positive for all t < T and u(0, T−) = 0. Moreover, by (1.4),

u(x, T−) := lim
t↑T

u(x, t) = |x|2γ · lim
y→∞

[y−2γw(y)] = ℓ|x|2γ > 0

for all x ̸= 0. Hence x = 0 is the (only) quenching point.

In this paper, we call a positive global solution w of (1.3) such that w′(0) = 0, w > 0

on [0,∞) and (1.4) holds for a finite positive ℓ a slow orbit. The existence of a slow orbit

renders a solution of (1.1) that quenches in finite time T with the quenching point x = 0

and the self-similar quenching rate (T − t)γ .

For a given global positive solution w of (1.3), if we set

ŵ(y) := w(y)y−2γ ,

then it is easy to check that ŵ satisfies

(1.5) ŵ′′ +

(
4γ

y
− y

2

)
ŵ′ =

1

y2
[ŵ−p + 2γ(1− 2γ)ŵ], y > 0.

Note that a constant solution of (1.5) exists if and only if γ > 1/2. In fact, the constant

solution of (1.5) renders the function

ws(y) := κy2γ , y ≥ 0, κ := [2γ(2γ − 1)]−1/(1+p),

a solution of (1.3) with w(0) = w′(0) = 0 and ℓ = κ in (1.4). Note that ws is not a slow

orbit, since it is singular in the sense that w(0) = 0.

The rest of this paper is organized as follows. In §2, we prove the non-existence of

slow orbits for γ ≤ 1/4, by using a Pohozaev type identity. Also, some comments on the

range γ ∈ (1/4, 1/2] are given. Then, in §3, we derive the existence of backward solutions

to (1.3) and (1.4) for γ > 1/2. This is done by utilizing a fixed-point argument and the

finiteness of an associated energy. Section 4 is devoted to the behavior of global solutions

to (1.3) at y = 0 for γ > 1/2. The analysis of the behavior at y = 0 is much more involved.

We first derive the monotonicity of the transformed solution by analyzing the associated

energy. Then, with the help of three invariant sets by the phase plane analysis, we are

able to derive the exact two possible asymptotic behaviors. More details on the desired

behavior towards slow orbit is carried out. Also, some comments on the non-existence

of slow orbits for γ > 1/2 are given in §4. Finally, we apply the results obtained in §4
to prove a uniqueness result in §5. This type of uniqueness results can be found, e.g.,

in [8, 7, 18]. However, it seems that the method developed in [8] (see also [7, 18]) does

not work here. Note that, instead of the monotonicity condition (imposed in [8, 7, 18]),

we impose the condition w(0) = 0 here. Due to this singular condition, the standard

uniqueness theory cannot be applied.
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2. Non-existence of slow orbits for γ ≤ 1/4

In this section, we prove that there are no slow orbits when γ ≤ 1/4.

Theorem 1. There is no slow orbit, if γ ≤ 1/4.

Proof. Suppose that there exists a slow orbit w of (1.3). Using (1.3), w′(0) = 0 and (1.4),

we can derive the following Pohozaev’s type identity(
1

2
− 1 + q

p− 1

)∫ ∞

0
ρ(y)[w′(y)]2dy +

1 + p

4(p− 1)

∫ ∞

0
y2ρ(y)[w′(y)]2dy(2.1)

+
(γ + 1/4)q

p− 1

∫ ∞

0
ρ(y)[w(y)]2dy +

q

8(p− 1)

∫ ∞

0
y2ρ(y)[w(y)]2dy = 0,

where ρ(y) = exp{−y2/4}. In fact, re-writing (1.3) as

(2.2) (ρw′)′ + γρw − yqρw−p = 0,

multiplying (2.2) by w, y2w and yw′ respectively, integrating these equations over [0,∞)

using integration by parts, the identity (2.1) can be deduced.

Note that (1 + q)/(p − 1) ≤ 1/2, if γ ≤ 1/4. In this case, all coefficients in (2.1) are

nonnegative. This gives a contradiction and the theorem follows. �

Now, we consider the range γ ∈ (1/4, 1/2]. It is easy to see from (1.5) that any critical

point of ŵ must be a strictly minimal point, if γ ≤ 1/2. Suppose that there is a slow

orbit w. Note that we always have w′′(0) < 0 so that w is decreasing near y = 0. Hence

ŵ′(y) < 0 for any small y > 0. This implies that either ŵ′ < 0 in (0,∞), or there exists a

unique y0 > 0 such that ŵ′ < 0 in (0, y0) and ŵ
′ > 0 in (y0,∞).

Suppose that ŵ′(y) > 0 for y > y0 for some positive constant y0. Then ŵ′′(y) > 0

for all y ≫ 1, due to (1.5) and γ ≤ 1/2. This implies that ŵ(y) → ∞ as y → ∞, a

contradiction to the fact that w is a slow orbit. Therefore, we conclude that ŵ′ < 0 in

(0,∞) for any slow orbit w (if it exists), when γ ≤ 1/2. However, it may happen that

ŵ(y) → 0 as y → ∞. We were unable to exclude this case and so leave it open here.

3. Existence of backward solutions to (1.3) and (1.4) for γ > 1/2

From now on, we shall always assume that γ > 1/2. Set

(3.1) v(ξ) := w(y)y−2γ , y = eξ.

Then it is easy to check that w satisfies the equation (1.3) if and only if v satisfies

(3.2)
d2v

dξ2
− (e2ξ/2 + 1− 4γ)

dv

dξ
+ g(v) = 0, ξ ∈ (−∞,∞),

where

g(v) := βv − v−p, β := 2γ(2γ − 1) > 0.

Note that v ≡ κ is the only constant solution of (3.2).
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Let v be a nonconstant solution of (3.2). Introduce the following energy functional

E(ξ) :=
1

2
v2ξ (ξ) +G(v(ξ)), G(v) :=

∫ v

κ
g(s)ds.

It is easy to see that

dE

dξ
(ξ) = (e2ξ/2 + 1− 4γ)v2ξ (ξ)

so that E is monotone non-decreasing (non-increasing, resp.) for ξ > ξ̄ (ξ < ξ̄, resp.),

where ξ̄ := [ln(8γ − 2)]/2. In fact, it is strictly increasing (decreasing, resp.) for ξ > ξ̄

(ξ < ξ̄, resp.). Thus the limits

L± := lim
ξ→±∞

E(ξ)

exist. Moreover, we have L± > 0, since v ̸≡ κ and G(v) > 0 for all v ∈ (0,∞) \ {κ}.
For notational convenience, hereafter we let δ := 2γ − 1/2. We first prove the local

existence of positive solutions to (3.2) at ξ = +∞ as follows.

Proposition 3.1. For any ℓ > 0 with ℓ ̸= κ, the equation (3.2) has a solution v defined

in a neighborhood of +∞ such that

(3.3) v(ξ) = ℓ− g(ℓ)e−2ξ +O(e−4ξ) as ξ → ∞.

Proof. We write the equation (3.2) as the following system

dv

dξ
=W,

dW

dξ
= [e2ξ/2− (4γ − 1)]W − g(v).

Then we introduce the new independent variable τ := e2ξ to transform the system into

dv

dτ
=
W

2τ
,(3.4)

dW

dτ
=

(
1

4
− δ

τ

)
W − g(v)

2τ
.(3.5)

First, using v(∞) = ℓ, we write (3.4) in the integral form

(3.6) v(τ) = ℓ−
∫ ∞

τ

W (s)

2s
ds.

Similarly, assuming limτ→∞W (τ) = 0, we write (3.5) in the integral form as

(3.7) W (τ) =
1

2

{∫ ∞

τ
e

1
4
(τ−s)

( s
τ

)δ g(v(s))

s

}
ds.

Combining (3.6) and (3.7) yields

(3.8) W (τ) =
1

2

∫ ∞

τ
e

1
4
(τ−s)

( s
τ

)δ 1

s
g

(
ℓ−

∫ ∞

s

W (z)

2z
dz

)
ds.

We will find a solution W (τ), defined on [a,∞) for some a > 0, of (3.8) satisfying

(3.9) lim
τ→∞

τ |W (τ)− 2g(ℓ)/τ | = 0.
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For this, we put

ϕ(τ) = τ [W (τ)− 2g(ℓ)/τ ].

Then ∫ ∞

s

W (z)

2z
dz =

g(ℓ)

s
+

∫ ∞

s

ϕ(z)

2z2
dz

and we define

F [ϕ](τ) :=
τ

2

∫ ∞

τ
e

1
4
(τ−s)

( s
τ

)δ 1

s
g

(
ℓ− g(ℓ)

s
−

∫ ∞

s

ϕ(z)

2z2
dz

)
ds− 2g(ℓ)

for τ ∈ [a,∞) for ϕ ∈ X, where

X := {ϕ ∈ C[a,∞) : ∥ϕ∥1 := sup
a≤s<∞

s|ϕ(s)| ≤ K},

with positive constants a,K to be determined later. The space X is a Banach space with

the norm ∥ϕ∥1.
We shall prove in Lemma 3.1 below that F is a contraction mapping on X. Hence F

has a fixed point, say ϕ∗. Then the function

(3.10) w∗(τ) :=
2g(ℓ)

τ
+
ϕ∗(τ)

τ
, τ ≥ a,

gives a solution of (3.8) on [a,∞). Consequently,

(3.11) v∗(τ) := ℓ− g(ℓ)

τ
−

∫ ∞

τ

ϕ∗(z)

2z2
dz, τ ≥ a,

is a desired solution, since there is an M1 > 0 such that∣∣∣∣v∗(τ)− ℓ+
g(ℓ)

τ

∣∣∣∣ ≤ ∫ ∞

τ

|ϕ∗(z)|
2z2

dz ≤
∫ ∞

τ

M1

2z3
dz =

M1

4τ2
for all τ ≥ a.

This proves the proposition. �

Lemma 3.1. The mapping F is a contraction mapping from X to X.

Proof. To show that F is a contraction mapping, we may rewrite F as

F [ϕ](τ) =
g(ℓ)

2

[
e

τ
4

(
1

τ

)δ−1 ∫ ∞

τ

{
e−

s
4 sδ−1 − g′(ℓ)e−

s
4 sδ−2

}
ds− 4

]

+
1

2

∫ ∞

τ
e

1
4
(τ−s)

( s
τ

)δ−1
R(ϕ, s)ds,

where

R(ϕ, s) := g

(
ℓ− g(ℓ)

s
−

∫ ∞

s

ϕ(z)

2z2
dz

)
− g(ℓ) +

g′(ℓ)g(ℓ)

s
.

Integration by parts shows that∫ ∞

τ
e−

s
4 sδ−1ds = 4e−

τ
4 τ δ−1 + 4(δ − 1)

∫ ∞

τ
e−

s
4 sδ−2ds.

By this, we obtain that

(3.12) F [ϕ](τ) = Ag(ℓ)

∫ ∞

τ
e

τ−s
4

( s
τ

)δ−1
s−1ds+

1

2

∫ ∞

τ
e

τ−s
4

( s
τ

)δ−1
R(ϕ, s)ds,

where A := [−g′(ℓ) + 4(δ − 1)]/2.
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We define the constant

Ca :=

∫ ∞

0
e−y/4

(y
a
+ 1

)δ
dy.

Setting s = y + τ , it is clear that∫ ∞

τ
e

τ−s
4

( s
τ

)δ−1
ds =

∫ ∞

0
e−y/4

(
y + τ

τ

)δ−1

dy ≤
∫ ∞

0
e−y/4

(y
τ
+ 1

)δ
dy ≤ Ca

for all τ ≥ a. Hence we see that

(3.13)

∣∣∣∣∫ ∞

τ
e

τ−s
4

( s
τ

)δ−1
s−1ds

∣∣∣∣ ≤ Ca

τ
, ∀τ ∈ [a,∞).

Notice that Ca → 4 as a→ ∞.

On the other hand, rewrite

R(ϕ, s) = g

(
ℓ− g(ℓ)/s−

∫ ∞

s

ϕ(z)

2z2
dz

)
− g(ℓ− g(ℓ)/s)

+g(ℓ− g(ℓ)/s)− g(ℓ) +
g′(ℓ)g(ℓ)

s
.

Then for s ≥ a there exists θ ∈ (0, 1) such that

R(ϕ, s) = −
∫ 1

0
g′
(
ℓ− g(ℓ)/s− h

∫ ∞

s

ϕ(z)

2z2
dz

)
dh

{∫ ∞

s

ϕ(z)

2z2
dz

}
(3.14)

+
1

2
g′′(ℓ− θg(ℓ)/s)(g(ℓ)/s)2.

Now we choose a positive constant K such that

K > 1, K ≥ max
a≥1

{2Ag(ℓ)Ca}, K > max
a≥1

{4Ca}.

For this constant K, we choose a sufficiently large constant a such that

(3.15) a ≥ β(1 + p)K, a ≥ 2p(1 + p)κ−2−pg(ℓ)2, ℓ− g(ℓ)

a
− K

4a2
≥ κ.

For ϕ ∈ X, we have ∫ ∞

s

ϕ(z)

2z2
dz ≤

∫ ∞

s

K

2z3
dz =

K

4s2
, ∀s ≥ a.

It follows that

ℓ− θg(ℓ)/s ≥ ℓ− g(ℓ)/s ≥ ℓ− g(ℓ)/s− h

∫ ∞

s

ϕ(z)

2z2
dz

≥ ℓ− g(ℓ)/s−
∫ ∞

s

ϕ(z)

2z2
dz ≥ ℓ− g(ℓ)

a
− K

4a2
≥ κ

for any h, θ ∈ [0, 1] for all s ≥ a. Note that we have

g′(v) = β + pv−1−p ≤ β(1 + p),

|g′′(v)| = |p(1 + p)v−2−p| ≤ p(1 + p)κ−2−p

for all v ≥ κ. It then follows from (3.14) and (3.15) that

(3.16) |R(ϕ, s)| ≤ β(1 + p)K/(4s2) +
1

2
p(1 + p)κ−2−pg(ℓ)2/s2 ≤ 1

2s
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for all s ≥ a. Hence, we obtain that

(3.17)

∣∣∣∣∫ ∞

τ
e

τ−s
4

( s
τ

)δ−1
R(ϕ, s)ds

∣∣∣∣ ≤ Ca

2τ
, ∀τ ∈ [a,∞).

Combining (3.13) and (3.17), it follows from (3.12) that

|F [ϕ](τ)| ≤ [Ag(ℓ)Ca + Ca/4]/τ ≤ K/τ for all τ ≥ a.

Hence F [ϕ] ∈ X.

Finally, we show that F is a contraction mapping. For this, we first observe from (3.12)

that

F [ϕ1](τ)−F [ϕ2](τ) =
1

2

∫ ∞

τ
e

1
4
(τ−s)

( s
τ

)δ−1
[R(ϕ1, s)−R(ϕ2, s)]ds.

Also, by the mean value theorem, for each s ≥ a there exists h ∈ [0, 1] such that

R(ϕ1, s)−R(ϕ2, s) = −g′
(
ℓ− g(ℓ)/s− h

∫ ∞

s

ϕ(z)

2z2
dz

)∫ ∞

s

ϕ1(z)− ϕ2(z)

2z2
dz.

It follows that

|R(ϕ1, s)−R(ϕ2, s)| ≤ β(1 + p)∥ϕ1 − ϕ2∥1
∫ ∞

s

dz

2z3
≤ β(1 + p)∥ϕ1 − ϕ2∥1/(4s2)

for all s ≥ τ . Hence we obtain

τ |F [ϕ1](τ)−F [ϕ2](τ)| ≤ τ

2

∫ ∞

τ
e

1
4
(τ−s)

( s
τ

)δ−1
|R(ϕ1, s)−R(ϕ2, s))|ds

≤ τ

2

Ca

4τ2
β(1 + p)∥ϕ1 − ϕ2∥1

≤ 1

8a
β(1 + p)Ca∥ϕ1 − ϕ2∥1 ≤

1

2
∥ϕ1 − ϕ2∥1

for all τ ≥ a. Therefore, F is a contraction mapping on X. This concludes the proof of

the lemma and the proof of Proposition 3.1. �

The following lemma gives the global existence of positive solutions to (3.2) in R.

Lemma 3.2. Let v be a solution of (3.2) in an infinite interval [ξ0,∞) for some ξ0,

constructed in Proposition 3.1 with v(∞) = ℓ > 0 and ℓ ̸= κ. Then v(ξ) can be extended

backwards to ξ = −∞ and v(ξ) > 0 for all ξ ∈ (−∞,∞).

Proof. Let ṽ(τ) = v(−τ). Then ṽ is a solution to

(3.18)
d2ṽ

dτ2
+ (e−2τ/2 + 1− 4γ)

dṽ

dτ
+ g(ṽ) = 0

for τ ∈ (−∞,−ξ0]. Then the energy

(3.19) Ẽ(τ) :=
1

2
ṽ2τ +G(ṽ), G(v) :=

∫ v

κ
g(s)ds,

satisfies

d

dτ
Ẽ(τ) = (4γ − 1− e−2τ/2)ṽτ (τ)

2

≤ 2(4γ − 1)

(
1

2
ṽτ (τ)

2 +G(ṽ(τ))

)
= 2(4γ − 1)Ẽ(τ).
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This implies that Ẽ(τ) is finite for any τ finite and grows at most exponentially. Hence

we can continue the solution up to τ = ∞. This yields the desired result. �

By returning to the original variable, i.e., letting w(y) = y2γv(ln y), Lemma 3.2 im-

plies that a positive solution w(y) to the equation (1.3) exists for y ∈ (0,∞) such that

w(y)y−2γ → ℓ as y → ∞. We have proved

Theorem 2. For each positive constant ℓ ̸= κ, there is a positive solution w of (1.3) in

(0,∞) such that w(y)y−2γ → ℓ as y → ∞.

Since v(∞) = ℓ ̸= κ, it is easy to see from (3.2) that vξξ has a fixed sign for any critical

point ξ of v as long as ξ ≫ 1. It follows that v is monotone ultimately at ξ = ∞.

4. Behavior of global solutions of (1.3) at y = 0 for γ > 1/2

Throughout this section, we always assume that γ > 1/2. Let w be a global positive

solution of (1.3) in (0,∞) such that w ̸= ws. Then the corresponding function v defined

by (3.1) satisfies the equation (3.2) in (−∞,∞). Note that v is non-constant. For a

slow orbit, we note that conditions w′(0+) = 0 and w(0+) ∈ (0,∞) are equivalent to the

following conditions:

lim
ξ→−∞

{e(2γ−1)ξ[vξ(ξ) + 2γv(ξ)]} = 0,(4.1)

the limit limξ→−∞[e2γξv(ξ)] exists and is a finite positive constant.(4.2)

To study the asymptotic behavior of solutions v of (3.2) at ξ = −∞, we set V (τ) =

ṽ(τ) = v(−τ), τ = −ξ, and introduce W = ṽτ . Then the equation (3.18) is converted to

the system

(4.3)

{
V ′ := dV

dτ =W,

W ′ := dW
dτ = (4γ − 1− e−2τ/2)W − g(V ).

Therefore, to study the behavior of w at y = 0, we are reduced to study the asymptotic

behavior of V at τ = ∞.

First, we have the following lemma on the divergence of the energy Ẽ as τ → ∞.

Lemma 4.1. Let (V,W ) be a solution of (4.3) for τ ∈ (−∞,∞) such that V ̸≡ κ. Then

lim
τ→∞

Ẽ(τ) = ∞,

where Ẽ is defined by (3.19).

Proof. We show the assertion of the lemma by the contradiction argument. Suppose that

(4.4) lim
τ→∞

Ẽ(τ) = e∞ <∞.

Then there are three cases: (a) there is a T1 such that W (τ) > 0 for all τ > T1; (b) there

is a T2 such that W (τ) < 0 for all τ > T2; (c) W (τ) has infinitely many zeros.

First, we consider the case (a). Then V (τ) is monotone for τ > T1 and it has the

limit V∞(̸= κ) as τ → ∞. On the other hand the assumption (4.4) implies G(V∞) = e∞,
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otherwise limτ→∞ V ′(τ) > 0, which is a contradiction. Thus we have limτ→∞W (τ) = 0.

However, by the equation for W

lim
τ→∞

W ′(τ) = −g(V∞) ̸= 0

which contradicts the fact that limτ→∞W (τ) = 0. Hence (a) cannot occur.

In a similar way we can exclude the case (b).

We next consider (c). Notice that the function F (V,W ) :=W 2/2+G(V ) has a unique

minimum F (κ, 0) and every level set of F (V,W ) is a simple closed curve if F (V,W ) >

F (κ, 0) = G(κ). Moreover, every curve {(V,W ) : F (V,W ) = s} takes the maximum

W =
√

2(s−G(κ)) for s > G(κ). Then

(V (τ),W (τ)) ∈ D := {(V,W ) : W 2/2 +G(V ) ≤ e∞} (∀τ > T )

since Ẽ(τ) is nondecreasing for τ > −1
2 log(2(4γ−1)). We note (κ, 0) ∈ D. Set the closed

curve C := {(V,W ) : W 2/2 + G(V ) = e∞}. The trajectory of the solution goes around

(κ, 0) clockwise infinitely many times and it approaches C. Thus there are sequences {τ−k }
and {τ+k } such that

τ−1 < τ+1 < · · · < τ−k < τ+k < τ−k+1 < τ+k+1 < · · · , lim
k→∞

τ±k = ∞,

W (τ±k ) = b/2 (k = 1, 2, . . .), W (τ) > b/2 (τ−k < τ < τ+k ),

where b :=
√

2(e∞ −G(κ)). We may assume that there is a positive number c1 such that

(4.5) τ+k − τ−k ≥ c1.

Indeed, take V1 < V2 so that√
2(e∞ −G(Vj)) =

b

2
(j = 1, 2),

and put V ±
k = V (τ±k ). Then for the solution in D∩{(V,W ) :W ≥ b/2}, we see W (τ) ≤ b

and
dτ

dV
=

1

W
yields

τ+k − τ−k =

∫ V +
k

V −
k

1

W
dV ≥

V +
k − V −

k

b
≥ V2 − V1

2b

for sufficiently large k. If necessary, by relabeling of k, we have (4.5).

We estimate

Ẽ(τ+k )− Ẽ(τ−k ) =

∫ τ+k

τ−k

(4γ − 1− e−2τ/2)W 2 dτ

≥ (τ+k − τ−k )(4γ − 1− ε)(b/2)2

≥ (V2 − V1)(4γ − 1− ε)b2/8.

The left-hand side, however, goes to 0 as k → ∞. This is again a contradiction. As a

result any case of (a), (b) and (c) never occurs. This leads to a contradiction of (4.4), so

Ẽ(τ) goes to infinity as τ → ∞. �
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With Lemma 4.1, we now prove that any non-constant solution v of (3.2) must be

monotone ultimately at ξ = −∞ as follows.

Lemma 4.2. Let v(ξ) be a non-constant global solution of (3.2) in (−∞,∞). Then vξ(ξ)

has at most finitely many zeros in (−∞, 0).

Proof. Consider ṽ(τ) = v(−τ) and (3.18). Then to show that vξ has at most finitely many

zeros in (−∞, 0), it suffices to prove that there are only finitely many zeros of W in a half

infinite interval [T,∞) for some large T .

We show by a contradiction and suppose that W has infinitely many zeros in [T,∞)

for some large T . Take c ∈ (2γ − 1, 2γ) and T ≫ 1 so that

(4.6) c2 − (4γ − 1− ε)c+ β < 0, ε := e−2T /2

holds. Indeed, since β = 2γ(2γ − 1), it is possible to choose such an ε (and so T ) for any

c ∈ (2γ − 1, 2γ).

We consider the orbit of the solution in the phase plane (V,W ). Define

Σc := {(V,W ) : V > 0, W ≥ cV }.

Assume τ > T . Then in {(V,W ) : V > 0, W > 0}
dW

dV
= 4γ − 1− 1

2
e−2τ − β(V/W ) + V −p/W

> 4γ − 1− ε− β(V/W ).

Thus on the half line {W = cV, V > 0}
dW

dV
> 4γ − 1− ε− β/c > c

holds by (4.6). This implies that Σc is a positively invariant region for the flow defined

by (4.3) for τ ≥ T .

There are four possible cases: (i) there is a T1 > T such that (V (τ),W (τ)) ∈ Σc for all

τ > T1; (ii) there is a T2 > T such that (V (τ),W (τ)) /∈ Σc and W (τ) > 0 for all τ > T2;

(iii) there is a T3 > T such that W (τ) < 0 for all τ > T3; (iv) (V (τ),W (τ)) /∈ Σc for any

t > T and W (τ) has infinitely many zeros. It suffices for the assertion of the lemma to

show that (iv) is excluded. To carry it out, we will use the fact that limτ→∞ Ẽ(τ) = ∞.

Recall that κ is the zero of g(V ). Then W ′ > 0 and W ′ < 0 hold on {(V,W ) : W =

0, 0 < V < κ} and {(V,W ) : W = 0, κ < V } respectively. Suppose that there are

infinite number of zeros of W . We can take an infinite sequence {τk} such that τk > T ,

W (τk) = 0, κ > V (τk) > V (τk+1) > 0 for all k ∈ N, and

lim
k→∞

τk = ∞, lim
k→∞

V (τk) = 0.

Note that the fact that limk→∞ V (τk) = 0 follows from limτ→∞ Ẽ(τ) = ∞.

Put αk := V (τk) and consider

dV

dW
=

W

(4γ − 1− e−2τ/2)W − g(V )
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for V in the region αk ≤ V ≤ V1 := κ/2 and τ ≥ τk. Since V (τk) < V (τ) for τk < τ as

long as W > 0, we have g(αk) ≤ g(V (τ)) ≤ g(V1) < 0, thus

dV

dW
≤ W

(4γ − 1− ε)W +K
, K := −g(V1) > 0.

Let (V1,W1) be a point which the orbit of the solution starting from (αk, 0) goes through.

Namely, W1 is given by W1 = W (τ †) where τ † first achieves V (τ †) = V1 from τk. We

see that the V (τ) and W (τ) is monotone increasing in the region under consideration.

Integrating the both side of the above inequality yields

V1 − αk <

∫ W1

0

W

(4γ − 1− ε)W +K
dW

=
1

4γ − 1− ε

{
W1 −

K

4γ − 1− ε
log

(4γ − 1− ε)W1 +K

K

}
.

As a result

(4.7) V1 −
1

4γ − 1− ε
W1 < αk −

K

(4γ − 1− ε)2
log

(4γ − 1− ε)W1 +K

K
.

On the other hand if αk < κ/4, we have a lower estimate for W1 by

κ/4 = V1/2 <
1

4γ − 1− ε
W1.

Take k sufficiently large in (4.7) so that the right-hand side is negative. Then invoking of

(4.6) we obtain

cV1 −W1 < (c+ β/c)V1 −W1 < (4γ − 1− ε)V1 −W1 < 0.

This implies that (V1,W1) exists in Σc. However, since Σc is positively invariant, it

contradicts the choices of {τk}. Therefore, we have the desired conclusion. �

Next, we prove that v tends to infinity as ξ → −∞ as follows.

Lemma 4.3. Let v be a non-constant solution of (3.2) defined in a neighborhood of

ξ = −∞. Then v(ξ) → ∞ as ξ → −∞.

Proof. Suppose that v is a non-constant solution of (3.2) defined in (−∞, ξ0] for some

ξ0. Recall from Lemma 4.2 that v is monotone near ξ = −∞. Hence the limit l− :=

limξ→−∞ v(ξ) exists.

By contradiction, we assume that l− is finite. Then we can find a sequence ξn → −∞
such that vξ(ξn) → 0 as n → ∞. Moreover, by Lemma 4.1, we have l− = 0 due to the

fact that G(v) = ∞ only when v = 0,∞.

Now, integrating (3.2) from ξn to ξ1 for any n > 1, we obtain

(4.8) vξ(ξ1)− vξ(ξn) +

∫ ξ1

ξn

[
(4γ − 1)− 1

2
e2ξ

]
vξ(ξ)dξ = −

∫ ξ1

ξn

g(v(ξ))dξ.

We compute that∫ ξ1

ξn

[
(4γ − 1)− 1

2
e2ξ

]
vξ(ξ)dξ = (4γ − 1)[v(ξ1)− v(ξn)]−

1

2

∫ ξ1

ξn

e2ξvξ(ξ)dξ.
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Furthermore,∫ ξ1

ξn

e2ξvξ(ξ)dξ = [e2ξ1v(ξ1)− e2ξnv(ξn)]− 2

∫ ξ1

ξn

e2ξv(ξ)dξ.

Then, due to the boundedness of v, the integral∫ ξ1

ξn

e2ξv(ξ)dξ

is uniformly bounded for all n. Hence the left-hand side of (4.8) is uniformly bounded for

all n. However, the right-hand side of (4.8) is unbounded as n → ∞. This contradiction

leads to the conclusion of the lemma. �

Recall from the proof of Lemma 4.2 that the set Σc is positively invariant for the system

(4.3) for any c ∈ (2γ − 1, 2γ). In fact, we have the following two more types of positively

invariant regions.

Lemma 4.4. There is a sufficiently large T > 0 such that the sets

Σ−
c := {(V,W ) | V > 0, 0 < W ≤ cV }, c ∈ (0, 2γ − 1),

Σc1,c2 := {(V,W ) | V > 0, c1V ≤W ≤ c2V }, c1 ∈ (2γ − 1, 2γ), c2 > 2γ,

are positively invariant regions for the system (4.3) for τ ≥ T .

Proof. Take an arbitrary c ∈ (0, 2γ − 1) ∪ (2γ,∞) and fix it. Then there is an ε > 0 such

that

c2 − (4γ − 1)c+ β > ε.

At W = cV , we have

dW

dV
= 4γ − 1− 1

2
e−2τ − β(V/W ) + V −p/W

≤ 4γ − 1− β/c+ V −p/W

<
c2 − ε

c
+ V −p/W = c− ε

c
+

1

cV p+1
< c

for all sufficiently large τ such that

1

V p+1(τ)
< ε,

due to Lemma 4.3.

Combining this with the fact that Σc is positively invariant region for any c ∈ (2γ−1, 2γ)

(proved in Lemma 4.2), the lemma follows. �

Now, we are ready to prove the following lemma by using the above invariant sets.

Lemma 4.5. Let (V,W ) be a global solution of (4.3) in (−∞,∞) such that V ̸≡ κ. Then

the limit

(4.9) µ := lim
τ→∞

W (τ)

V (τ)

exists and µ ∈ {2γ − 1, 2γ}.
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Proof. By contradiction, we assume that

A := lim inf
τ→∞

W (τ)

V (τ)
< lim sup

τ→∞

W (τ)

V (τ)
:= B.

Note that due to Lemma 4.3 we have W (τ) > 0 for all τ sufficiently large. Hence we have

0 ≤ A < B ≤ ∞.

We divide our discussion into the following cases.

Case 1. A < 2γ − 1. In this case, we choose c ∈ (A,min{2γ − 1, B}) and consider

the positively invariant region Σ−
c . By the definition of A, there is a sequence τn → ∞

such that W (τn)/V (τn) → A as n → ∞. Let T ≫ 1 such that (V,W )(τ) ∈ Σ−
c for all

τ ≥ τ0 as long as (V,W )(τ0) ∈ Σ−
c for some τ0 ≥ T . Choose N ≫ 1 such that τN ≥ T

and W (τn)/V (τn) < c for all n ≥ N . Without loss of generality, we may assume that

W (τ) > 0 for all τ ≥ T . Then (V,W )(τN ) ∈ Σ−
c and so (V,W )(τ) ∈ Σ−

c for all τ ≥ τN .

This contradicts the definition of B.

Case 2. A ≥ 2γ. In this case, we consider the invariant region Σc1,c2 for c1 ∈ (2γ−1, 2γ)

and c2 = (A+B)/2. Then the flow defined by (4.3) would enter the region Σc1,c2 for all

sufficiently large τ by the same argument as Case 1, a contradiction.

Case 3. A ∈ [2γ − 1, 2γ). In this case, we consider the invariant region Σc for c ∈
(A,min{2γ,B}). By taking a sequence τn → ∞ such that W (τn)/V (τn) → B as n→ ∞,

it also leads to a contradiction to the definition of A by the a similar argument to that of

Case 1.

Hence we have proved that the limit µ exists such that 0 ≤ µ ≤ ∞.

To proceed further, in the sequel we set ϕ(τ) := W (τ)/V (τ). Then ϕ satisfies the

equation

(4.10) ϕ′(τ) = −[ϕ(τ)− 2γ][ϕ(τ)− (2γ − 1)] + V −p−1(τ)− 1

2
e−2τϕ(τ).

Suppose that µ = 0. Then, due to Lemma 4.3, we can choose τ0 large enough such

that

ϕ(τ) < γ − 1/2, V −p−1(τ) < δ :=
1

2
(γ2 − 1/4), V (τ) > κ

for all τ ≥ τ0. Hence we obtain from (4.10) that

ϕ′(τ) < −δ for all τ ≥ τ0.

This implies that ϕ(τ) reaches zero at a finite τ , say ϕ(τ1) = 0 for some τ1 > τ0. However,

from (4.3) we see that W ′(τ1) < 0, since V (τ1) > κ. Moreover, by the phase plane

analysis, W (τ) < 0 for all τ > τ1. This contradicts the fact that V (∞) = ∞. Hence we

must have µ > 0.

Since µ > 0, it follows from Lemma 4.3 that W (τ) → ∞ as τ → ∞. Applying the

l’Hôpital’s rule and using the system (4.3), we compute

lim
τ→∞

W (τ)

V (τ)
= lim

τ→∞

W ′(τ)

V ′(τ)
= 4γ − 1− β lim

τ→∞

V (τ)

W (τ)
.

We conclude that µ <∞ and µ ∈ {2γ − 1, 2γ}. �
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To derive the exact asymptotic behavior of V , we shall focus on the case µ = 2γ, since

the other case (µ = 2γ − 1) does not produce any slow orbits. For this, we first prove the

following lemma.

Lemma 4.6. Assume that µ = 2γ for a global solution (V,W ) of (4.3). Then there is a

constant λ ∈ (0, 1) such that

(4.11) lim
τ→∞

{eλτ [ϕ(τ)− 2γ]} = 0.

Proof. Set ψ := ϕ− 2γ. Then ψ satisfies the equation

(4.12) ψ′ = −ψ − ψ2 − 1

2
ψe−2τ + V −p−1(τ)− γe−2τ .

Since ϕ(τ) → 2γ as τ → ∞, for a given ϵ ∈ (0, q/(1 + p)) there is a τ0 large enough such

that

ϕ(τ) ≥ 2γ − ϵ for all τ ≥ τ0.

An integration gives that

(4.13) V (τ) ≥ C0e
(2γ−ϵ)τ for all τ ≥ τ0

for some positive constant C0. Since (2γ− ϵ)(p+1) = (2+ q)− (1+p)ϵ > 2, by the choice

of ϵ, there is a τ1 > τ0 such that V −p−1(τ)− γe−2τ < 0 for all τ ≥ τ1. This implies that

ψ′(τ) < 0 when ψ(τ) = 0 for some τ > τ1. Hence it is easy to see that either ψ(τ) > 0

for all τ ≫ 1, or ψ(τ) < 0 for all τ ≫ 1.

Suppose that ψ(τ) > 0 for all τ ≫ 1. It follows from (4.12) that (ψ′ +ψ)(τ) < 0 for all

τ ≫ 1. This gives

(4.14) 0 < ψ(τ) ≤ C1e
−τ

for τ ≫ 1 for some positive constant C1. Then for any λ ∈ (0, 1) we have

0 ≤ lim
τ→∞

{eλτ [ϕ(τ)− 2γ]} ≤ C1 lim
τ→∞

e−(1−λ)τ = 0,

and (4.11) follows.

On the other hand, for the case ψ(τ) < 0 for all τ ≫ 1, taking an η ∈ (0, 1/2), there

exists τ2 large enough such that ψ(τ) > −η for all τ ≥ τ2. Hence we have

ψ′(τ) ≥ −(1− η)ψ − γe−2τ .

This implies that

(4.15) −C2e
−(1−η)τ < ψ(τ) < 0 for τ ≫ 1 for some positive constant C2

for the case ψ(τ) < 0 for all τ ≫ 1. Now, taking λ = (1 − η)/2 ∈ (0, 1), it follows from

(4.15) that

0 ≥ lim
τ→∞

{eλτ [ϕ(τ)− 2γ]} ≥ −C2 lim
τ→∞

e−(1−η)τ/2 = 0,

and (4.11) follows. This proves the lemma. �

Applying Lemma 4.6, we have the following lemma on the asymptotic behavior of V

at τ = ∞ when µ = 2γ.
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Lemma 4.7. Suppose that µ = 2γ for a global solution (V,W ) of (4.3). Then the limit

θ := lim
τ→∞

{e−2γτV (τ)}

exists and is positive.

Proof. For the λ ∈ (0, 1) defined in Lemma 4.6, it follows from (4.11) that

V ′(τ)

V (τ)
= 2γ + e−λτo(1),

where o(1) → 0 as τ → ∞. An integration gives that

e−2γτV (τ) = V (τ0)e
−2γτ0 exp

{∫ τ

τ0

e−λso(1)ds

}
for τ > τ0 ≫ 1. Hence the lemma follows. �

The following lemma gives a dichotomy for the asymptotic behavior of V at τ = ∞
when µ = 2γ.

Lemma 4.8. Suppose that µ = 2γ. Set ψ = ϕ− 2γ and recall (4.12). Then we have the

following two alternatives, namely, either (I) the limit

(4.16) χ := lim
τ→∞

[eτψ(τ)]

exists and is a nonzero finite number, or, (II) limτ→∞[e2τψ(τ)] = γ.

Proof. Due to Lemma 4.7, we have V −p−1(τ)− γe−2τ < 0 for all τ ≥ τ0 for some τ0 ≫ 1.

Then ψ′(τ) < 0 when ψ(τ) = 0 for some τ ≫ 1. Hence, as before, either ψ(τ) > 0 for all

τ ≫ 1, or ψ(τ) < 0 for all τ ≫ 1.

First, we deal with the case when ψ(τ) < 0 for all τ ≥ τ0 for some τ0 ≫ 1. in this case,

using (4.12) we have

ψ′(τ) ≤ −
(
1 +

1

2
e−2τ

)
ψ(τ),

since V −p−1(τ)− γe−2τ < 0 for all τ ≫ 1. From this, we easily deduce that

(4.17) ψ(τ) ≤ −C4e
−(1+η)τ

for all τ ≫ 1 for some positive constant C4. Hereafter the constant η is the same as in

(4.15).

Now, we re-write (4.12) as

ψ′(τ)

ψ(τ)
= −1− ψ(τ)− 1

2
e−2τ +

V −p−1(τ)− γe−2τ

ψ(τ)
.

Using (4.13), (4.15) and (4.17), we obtain

ψ′(τ)

ψ(τ)
= −1 +O(e−(1−η)τ ) for all τ ≫ 1,

where

|O(e−(1−η)τ )| ≤ Ce−(1−η)τ for all τ ≫ 1
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for some positive constant C. An integration gives that

eτψ(τ) = eτ0ψ(τ0) exp

{∫ τ

τ0

O(e−(1−η)s)ds

}
for all τ ≫ 1.

Thus the limit (4.16) exists and is a finite nonzero number. The alternative (I) holds for

the case ψ(τ) < 0 for all τ ≫ 1.

Now, we consider the case ψ(τ) > 0 for all τ ≫ 1. Then it follows from (4.12) and

(4.14) that

ψ′(τ) ≥ −ψ
{
1 + Ce−(1−η)τ +

1

2
e−2τ

}
− γe−2τ for all τ ≫ 1.

For the same constant η, we end up with

ψ′(τ) ≥ −(1 + η)ψ(τ)− γe−2τ for all τ ≫ 1.

This implies that

(4.18) ψ(τ) ≥ e−(1+η)τe(1+η)τ0

{
ψ(τ0)−

γ

1− η
e−2τ0

}
for all τ ≥ τ0 for some τ0 ≫ 1.

If

(4.19) ψ(τ0) >
γ

1− η
e−2τ0 for some τ0 ≫ 1,

then we have

(4.20) ψ(τ) ≥ C3e
−(1+η)τ

for all τ ≫ 1 for some positive constant C3. Using (4.13), (4.14) and (4.20), by the same

argument as in the negative case, we easily prove that the limit (4.16) exists and is a

finite nonzero number.

Finally, it remains to consider the case when (4.19) is violated, namely,

(4.21) ψ(τ0) ≤
γ

1− η
e−2τ0 for all τ0 ≫ 1.

Under this assumption, we claim that

(4.22) lim
τ→∞

[e2τψ(τ)] = γ.

For this, we set h(τ) := e2τψ(τ). Then h satisfies

(4.23) h′(τ)− h(τ) = −γ − e−2τh2(τ)− 1

2
e−2τh(τ) +O(e−qτ ),

where we have used Lemma 4.7. Note that h is uniformly bounded for all τ ≫ 1 due to

(4.21).

Suppose that h is monotone. Then the limit h(∞) exists and there is a sequence {τn}
tending to infinity such that h′(τn) → 0 as n→ ∞. It follows from (4.23) that h(∞) = γ.

On the other hand, suppose that h is oscillatory at τ = ∞. Then along its extremal

sequence {τn}, τn → ∞ as n → ∞, we have h(τn) → γ as n → ∞. Hence we also have

h(∞) = γ. Thus the claim (4.22) is proved.

The proof of the lemma is then completed. �
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We remark that there are no slow orbits for γ > 1/2, if the alternative (II) in Lemma 4.8

never happen. To see this, we claim that there are no global solutions (V,W ) of (4.3)

for τ ∈ (−∞,∞) such that (4.1) and (4.2) hold simultaneously. Let (V,W ) be a global

solution of (4.3) in (−∞,∞). Recall from Lemma 4.5 that µ ∈ {2γ − 1, 2γ}.
It is trivial that condition (4.2) is not valid for a global solution (V,W ) of (4.3) with

µ = 2γ − 1. For µ = 2γ, we write

e−(2γ−1)τ [V ′(τ)− 2γV (τ)] = [e−2γτV (τ)]{eτ [ϕ(τ)− 2γ]}.

Then, for a global solution (V,W ) of (4.3) with µ = 2γ, Lemmas 4.7 and 4.8(I) imply

that

lim
τ→∞

{e−(2γ−1)τ [V ′(τ)− 2γV (τ)]} = θχ ̸= 0.

Hence the condition (4.1) does not hold for a global solution (V,W ) of (4.3) with µ = 2γ

such that the alternative (I) holds in Lemma 4.8. This proves the claim.

In the original variable y, the alternative (II) corresponds to the condition w′(0) = 0.

It is trivial that a unique solution w of (1.3) with w′(0) = 0 and w(0) > 0 exists locally.

It remains open whether the alternative (II) occurs for a backward solution of (1.3) such

that (1.4) holds for some positive constant ℓ.

5. An application: a uniqueness theorem

In this section, we prove the following uniqueness theorem.

Theorem 3. Assume that q > p+1. Let w be a global positive solution of (1.3) in (0,∞)

such that w(0) = 0, w′(0) = 0 and (1.4) holds for some positive constant ℓ. Then w = ws.

Proof. Note that γ > 1/2 due to q > p+ 1. By contradiction, we suppose that there is a

global positive solution of (1.3) in (0,∞) such that w(0) = 0, w′(0) = 0 and (1.4) holds

for some positive constant ℓ ̸= κ. Let v be the corresponding function defined by (3.1).

Then v is a global solution of (3.2) and its corresponding function pair (V,W ) is a global

solution of (4.3) such that V ̸≡ κ. Moreover, µ ∈ {2γ − 1, 2γ} for the limit µ defined by

(4.9).

Suppose that µ = 2γ − 1. Set ϕ = 2γ − 1 + ω. Then ω satisfies the equation

(5.1) ω′(τ) = ω(τ)− ω2(τ)− 1

2
e−2τω + V −p−1 − (γ − 1/2)e−2τ .

Due to q > p+ 1, we can choose a positive constant ϵ small enough such that

(2γ − 1− ϵ)(p+ 1) = 2 + q − (1 + ϵ)(p+ 1) > 2.

Since ϕ(τ) → 2γ − 1 as τ → ∞, there exists a τ0 such that

V ′(τ)

V (τ)
= ϕ(τ) > 2γ − 1− ϵ for all τ ≥ τ0.

An integration gives that

(5.2) V (τ) ≥ Ce(2γ−1−ϵ)τ for all τ ≥ τ0.
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By taking τ0 larger (if necessary), it follows from (5.2) that

V −p−1(τ) < (γ − 1/2)e−2τ

for all τ ≥ τ0. Hence ω′(τ) < 0, if ω(τ) = 0 for some τ ≥ τ0. This implies that either

ω(τ) > 0 for all τ ≫ 1, or ω(τ) < 0 for all τ ≫ 1.

Suppose that ω(τ) < 0 for all τ ≫ 1. Then it follows from (5.1) that

ω′(τ) ≤ 1

2
ω(τ) for all τ ≫ 1,

due to (1− e−2τ/2) > 1/2 for τ > 0. Then an integration gives

(5.3) ω(τ) ≤ eτ/2e−τ1/2ω(τ1)

for all τ ≥ τ1 for some τ1 ≫ 1. This leads to a contradiction, since the right-hand side of

(5.3) tends to −∞ as τ → ∞. We conclude that ω(τ) > 0 for all τ ≫ 1, i.e., ϕ(τ) > 2γ−1

for all τ ≫ 1. An integration gives that V (τ) ≥ Ke(2γ−1)τ for all τ ≫ 1 for some positive

constant K. Then we obtain

lim sup
τ→∞

{e−(2γ−1)τ [V ′(τ)− 2γV (τ)]}

= lim sup
τ→∞

{e−(2γ−1)τV (τ)[ϕ(τ)− 2γ]} ≤ −K < 0,

a contradiction to w′(0) = 0.

On the other hand, if µ = 2γ, then Lemma 4.7 implies that w(0) > 0. We also have

reached a contradiction. Hence we must have ℓ = κ. Using the energy defined by (3.19),

we conclude that V ≡ κ, i.e., w = ws. Therefore, the theorem is proved. �
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