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Abstract. We study the blow-up behavior for positive solutions of a reaction-
diffusion equation with nonnegative variable coefficient. When there is no sta-
tionary solution, we show that the solution blows up in finite time. Under certain
conditions, we then show that any point with zero source cannot be a blow-up
point.

1. Introduction

In this paper, we study the positive solution of the following initial boundary
value problem (P):

ut = ∆u+ V (x)f(u), x ∈ Ω, t > 0,(1.1)

u(x, 0) = u0(x), x ∈ Ω̄, ,(1.2)

u(x, t) = 0, x ∈ ∂Ω, t > 0,(1.3)

where Ω is a bounded smooth domain in RN , N ≥ 3, f(u) is a nonnegative increasing
smooth function defined on [0,∞), V is a nonnegative smooth function defined in
Ω̄, and u0 is a nonnegative bounded smooth function defined in Ω̄. Throughout this
paper, we assume that V ̸≡ 0. The solution u of (P) is said to blow up (in finite
time), if

lim sup
t→T−

{sup
x∈Ω

u(x, t)} = ∞

for some T < ∞. A point a ∈ Ω̄ is called a blow-up point if there exists a sequence
{(xn, tn)} in Ω× (0, T ) such that xn → a, tn ↑ T and u(xn, tn) → ∞ as n → ∞.
The phenomena of blow-up have attracted a lot of attention for past years. Most

literature are concerned with spatially homogeneous equations, i.e., equations with
constant V . Interesting questions, for example, are about criteria of blow-up, loca-
tions of blow-up points, blow-up rate, spatial blow-up profile and so on. See, for
example, [20, 7, 23, 21, 22, 28, 3, 6, 8, 9, 10, 4, 14, 15, 16, 17, 24, 25] for spatially
homogeneous equations.
Recently, there are many interesting works on the problem (P) in which V is not

a constant function (see, e.g., [5, 26, 12, 13]). In particular, when the function V
takes zero value at a point in Ω, there is no source at this point locally. Therefore,
it is interesting to see whether such a point can be a blow-up point. Intuitively it
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seems that the answer to this question is negative. Surprisingly, the answer can be
positive or negative depending on the situation. By constructing some self-similar
solutions, it is shown in [5] that the origin is a blow-up point for the solution of the
Cauchy problem (1.1)-(1.2) with N ≥ 3, V (x) = |x|σ, σ > 0, and f(u) = up for
certain range of p. On the other hand, when f(u) = up with p > 1, in [12, 13] we
have established the following results:

(1) Let Ω = BR, u be radially symmetric, and V (x) = |x|σ, σ > 0. Suppose
that u blows up in finite time. Then the origin is not a blow-up point, if
either N = 3, p = 1 + σ; or N ≥ 3, 1 < p < 1 + 2σ/(N − 1).

(2) Let Ω = BR, u be radially symmetric, and V (x) = |x|σ, σ > 0. If N = 3
and p > 5 + 2σ, then there are certain radial solutions which blow up in
finite time such that the origin is a blow-up point.

(3) Let Ω be a bounded smooth domain in RN . Suppose that u is monotone
increasing in time. Then any zero of V cannot be a blow-up point, if all
zeros of V are contained in Ω.

It is also interesting to see whether a function V which vanishing somewhere
prevents the blow-up of the solution of (P). Indeed, in [12] we show that the solution
u of (P) blows up in a finite time when the solution u is strictly monotone increasing
in time for any V not identically zero. For the case with constant positive V , we
refer the reader to [27].
All of the above mentioned results share the property that f(0) = 0. When

f(0) > 0, e.g., f(u) = λeu or f(u) = λ(1 + u)p with λ > 0, p > 1, the situation is
quite different. Note that in this case zero is no longer a stationary solution and the
equation (1.1) has a positive source near the boundary. The purpose of this paper
is to study the problem (P) when f(0) > 0. We shall take f(u) = λeu as our typical
example. Our results can be easily extended to the case when f(u) = λ(1 + u)p

with p > 1. Henceforth we assume throughout this paper that f(u) = λeu.
For f(u) = λeu, if λ is sufficiently large so that there do not exist any regular

stationary solutions, then any solution u of the problem (P) blows up in finite time.
For such a result, we also refer the reader to [1, 21, 2]. Furthermore, for general
nonnegative function V (x), we prove that any zero of V cannot be a blow-up point,
if u is strictly increasing in time and all blow-up points are included in a compact
subset of Ω.
This paper is organized as follows. In Section 2, in the case without stationary

solutions, we prove that all solutions of (P) blow up in finite time. In Section 3, a
sufficient condition that blow-up cannot occur at zeros of V is given.

2. Finite time blow-up for general V

In this section, we shall study the problem (P) with f(u) = λeu and general
nonnegative V . First we define

λ∗ := sup{λ > 0 : a (regular) stationary solution of (1.1)-(1.3) exists}
Using the results obtained in [18, 19] for constant V , it is easy to see that the
quantity λ∗ is well-defined as long as V ̸≡ 0. Indeed, using the monotone iteration
method we can easily see that a stationary solution of (1.1)-(1.3) for all λ < λ0
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exists, if a stationary solution of (1.1)-(1.3) exists for a certain λ = λ0 > 0. This
simply follows from the fact that the latter solution is a supersolution of the sta-
tionary problem for all λ < λ0. Note that 0 is always a subsolution. Also, the
existence of stationary solution for small positive λ can be derived by a contraction
mapping principle. Hence the quantity λ∗ is well-defined. The finiteness of λ∗ can
be shown as that in [18, 19]. See also [11].
We shall prove the finite time blow-up of solutions to the problem (1.1)-(1.3) with

λ > λ∗ for any nonnegative bounded smooth initial data u0. In [21], the author has
obtained the same blow-up result for the case V ≡ 1, 2 < N < 10 and λ > λ∗ (see
also [1, 2]). Based on the idea of [2], we can prove the following blow-up result.
Although the proof is the same as the one in [2], we provide the details here for the
reader’s convenience.

Theorem 1. For λ > λ∗, the solution u of (1.1)-(1.3) with nonnegative bounded
smooth initial data u0 blows up in finite time.

Proof. Assume that λ > λ∗. Choosing ε ∈ (0, 1) sufficiently small such that λ(1 −
ε) > λ∗. We define

g(w) = ew, h(w) :=

∫ w

0

ds

g(s)
,

hε(w) := (1− ε)−1h(w), ηε(w) = h−1
ε (h(w)).

Indeed, we have

h(w) = 1− e−w, ηε(w) = − ln[1− (1− ε)(1− e−w)].

Note that h(∞) = 1 and ηε(∞) = − ln ε < ∞. We can easily check that ηε(0) = 0,
0 ≤ ηε(w) < w, and

η′ε(w) = (1− ε)g(ηε(w))/g(w) > 0,(2.1)

η′′ε (w) = −ε(1− ε)g2(ηε(w))/g(w) ≤ 0.(2.2)

By the comparison principle, we only need to prove that the case with initial
value u0 ≡ 0. Assume on the contrary that the solution u of (P) exists globally and
we define

vε(x, t) := ηε(u)(x, t).

This is equivalent to h(vε) = (1− ε)h(u). Then (2.1) and (2.2) yield

−∆vε = −η′ε(u)∆u−η′′ε (u)|∇u|2 ≥ η′ε(u){λV (x)eu−ut} = λ(1−ε)V (x)g(vε)−(vε)t.

This means that vε is a supersolution of (1.1)-(1.3) with λ replaced by λ(1 − ε).
Note that vε is uniformly bounded and 0 is a subsolution. The iteration sequence
{vk}, k ≥ 0, defined by

(vk+1)t = ∆vk+1 + λ(1− ε)V (x)evk , x ∈ Ω, t > 0,

vk+1(x, t) = 0, x ∈ ∂Ω, t > 0,

vk+1(x, 0) = 0, x ∈ Ω̄

with v0 = vε, is monotone decreasing in k and it converges to a bounded classical
solution uε of (1.1)-(1.3) with λ replaced by λ(1 − ε) and u0 ≡ 0. Furthermore,
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(uε)t ≥ 0 by the comparison principle. Therefore, uε converges to a classical station-
ary solution of (1.1)-(1.3) with λ replaced by λ(1− ε) as t → ∞. This contradicts
the definition of λ∗. Thus the theorem follows. �

3. Blow-up points

In this section, we give a sufficient condition such that any zero of V cannot be a
(finite time) blow-up point for the problem (1.1)-(1.3). Without loss of generality,
we may assume that λ = 1 so that f(u) = eu.

Theorem 2. Suppose that a solution u(x, t) of (1.1)-(1.3) blows up in the finite
time T such that ut > 0 in Ω×[0, T ). If all blow-up points are included in a compact
subset of Ω, then any zero of V cannot be a blow-up point.

Proof. By assumption, we may take a domain Ω′ such that Ω̄′ ⊂ Ω and u is bounded
in [Ω̄ \ Ω′] × [0, T ). Since ut > 0 in Ω × [0, T ), ut is bounded below by a positive
constant in the region Ω̄′ × [0, T ). Hence we can choose a positive constant ε small
enough so that the function (cf. [6])

J := ut − εeu

is nonnegative on the parabolic boundary of Ω′ × [0, T ). By a simple calculation,
we have

Jt −∆J = V (x)euJ + εeu|∇u|2 ≥ V (x)euJ.

It follows from the maximum principle that J ≥ 0 in Ω′ × [0, T ). Consequently, we
have

e−uut ≥ ε in Ω′ × [0, T ).

By integrating this inequality from t ∈ (0, T ) to τ ∈ (t, T ) and letting τ → T , we
obtain

(3.1) u(x, t) ≤ C − ln(T − t), x ∈ Ω′, t ∈ (0, T )

for some positive constant C.
Let x0 be any zero point of V (x) in Ω′. We may assume that {x : |x − x0| ≤

2r0} ⊂ Ω′ for some r0 > 0. Then we define

w(x, t) := A− ln[v(x) + (T − t)],

v(x) := δ cos2
(π|x− x0|

2r0

)
,

B0 := {x : |x− x0| ≤ r0},

where δ, A are positive constants to be specified later. Note that w(x, t) ≥ u(x, t)
for x ∈ ∂B0 and t ∈ (0, T ), by (3.1), if we choose A > C. Also,

w(x, 0) = A− ln[v(x) + T ] ≥ u0(x), |x− x0| ≤ r0,

if we take A sufficiently large.
For w to be a super-solution, we need the following inequality

wt −∆w − V (x)ew ≥ 0
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which is equivalent to

1− eAV (x) + ∆v(x)− |∇v(x)|2

v(x) + (T − t)
≥ 0

for all (x, t) ∈ B0 × (0, T ). We have this inequality if

(3.2) 1− eAV (x) + ∆v(x)− |∇v(x)|2

v(x)
≥ 0

for all x ∈ B0. It is easy to see that ∆v and [|∇v|2/v] are bounded in B0 by Mδ for
a constant M independent of δ for any positive constant δ. Furthermore, by fixing
A and taking r0 sufficiently small, we have eAV (x) < 1/3 for all x ∈ B0. For these
fixed A and r0, we can take δ > 0 sufficiently small so that the last two terms in
the inequality (3.2) are bounded by 1/3 in B0. Hence (3.2) holds in B0 and, by the
comparison principle, we conclude that

w(x, t) ≥ u(x, t), |x− x0| ≤ r0, t ∈ (0, T ).

This implies that x0 cannot be a blow-up point. The proof is completed. �
We make some remarks on the assumptions of Theorem 2. First, the condition

that ut > 0 can be realized if we assume that

∆u0 + V f(u0) ≥ 0 in Ω.

The assumption that the blow-up set is compact made in Theorem 2 can be verified
in the case of homogeneous nonlinearity (i.e., when V is constant) by the moving
plane argument as in [6]. Assume that Ω is convex and the function V is decreasing
in the direction normal to the boundary in a neighborhood of the boundary of the
domain, the moving plane argument also works well so that we have the compactness
of the blow-up set.
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