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Abstract. We study entire solutions for a discrete diffusive equation with bistable convo-
lution type nonlinearity. We construct three different types of entire solutions. Each of these
entire solutions behaves as two traveling wavefronts connecting two of those three equilibria
as time approaches minus infinity. Moreover, the first and second ones are solutions which
behave as two traveling wavefronts approaching each other from both sides of x-axis. The
behavior of the second one is like the first one except it connects two different wavefronts.
The third one is a solution which behaves as two different traveling wavefronts and one
chases another from the same side of x-axis.

1. Introduction

In this paper, we study the following discrete diffusive equation with convolution type

nonlinearity.

ut(x, t) = D2[u](x, t)− du(x, t) +
∑
i∈Z

J(i)b(u(x− i, t)), x ∈ R, t ∈ R,(1.1)

where d > 0, J(i) = J(−i) ≥ 0,
∑

i∈Z J(i) = 1, and

D2[u](x, t) := D[u(x+ 1, t) + u(x− 1, t)− 2u(x, t)]

for some positive constant D. Throughout this paper, we shall always assume that the

function b(·) is an increasing smooth function on [0, 1] such that

(P1) b(0) = b(a)− ad = b(1)− d = 0, where 0 < a < 1,

(P2) b(t) < dt for 0 < t < a, b(t) > dt for a < t < 1,

(P3) max{b′(0), b′(1)} < d < b′(a) (bistable nonlinearity),

(P4)
∫ 1

0
[b(u)− du]du > 0 (unbalanced case).

When J(0) = 1 and J(i) = 0 for all i �= 0, (1.1) is reduced to the classical equation

ut(x, t) = D2[u](x, t) + f(u(x, t)), f(u) := b(u)− du,

which has been studied recently in [5, 6].

Date: May 18, 2011. Corresponding Author: J.-S. Guo.
This work was partially supported by the National Science Council of the Republic of China under the

grant NSC 99-2115-M-032-006-MY3. We would like to thank the referee for the valuable comments.
2000 Mathematics Subject Classification. Primary: 34K05, 34A34; Secondary: 34K60, 34E05.
Key words and phrases: Entire solution, traveling wavefront, asymptotic behavior.

1



2 JONG-SHENQ GUO AND YING-CHIH LIN

We also note that (1.1) is the continuum version of the following lattice dynamical system:

(1.2) u′n(t) = D[un+1(t) + un−1(t)− 2un(t)]− dun(t) +
∑
i∈Z

J(i)b(un−i(t)), n ∈ Z, t ∈ R.

For (1.2), in ecology, un represents the population density at site n, D is the migration co-

efficient, d is the death rate and the nonlinear function b is the birth function of population

density which is interacting with neighbors by the nonnegative weighted function J , if the

habitat is divided into discrete regions and the population density is measured at the repre-

sentative point in each region. In this model, we assume that the migration only happens

to the nearest neighbors and the interaction happens with finite or infinite range.

We say that {un(t)} is a traveling wavefront solution of (1.2) connecting two different

equilibria {u±} ⊂ {0, a, 1} with speed c, if un(t) = U(n + ct) for n ∈ Z and t ∈ R for some

function U (called wave profile) such that U(±∞) = u±. Then (c, U) satisfies the following

equation

(1.3) cU ′(y) = D2[U ](y)− dU(y) +
∑
i∈Z

J(i)b(U(y − i)), y ∈ R,

where (as before)

D2[U ](x) := D[U(x+ 1) + U(x− 1)− 2U(x)].

Similarly, we can define the notion of traveling wavefront solution of (1.1) by setting u(x, t) =

U(x+ ct), then U also satisfies the equation (1.3).

Recently, a more general version of (1.2) including time delay was studied in [11, 10]. In

[11], they studied (1.2) with time delay for the bistable case. They proved that the problem

admits a unique (up to a translation) strictly monotone increasing traveling wavefront solu-

tion connecting from 0 to 1 with a positive wave speed when D ≥ D0 for a certain positive

constant D0, under the following extra assumption

(1.4)
∑
i∈Z

J(i) < max

{
2
∫ 1

0
[b(u)− du]du∫ 1

0
b(u)du

,
2
∫ 1

0
[b(u)− du]du∫ 1

0
b(u)du− d

}
.

More precisely, from [11, Theorem 1.1], under the above assumptions, there exist a unique

speed ĉ > 0 and a unique (up to translations) wave profile U(x) such that{
ĉU ′(x) = D2[U ](x)− dU(x) +

∑
i∈Z J(i)b(U(x− i)), x ∈ R,

U(−∞) = 0, U(+∞) = 1, 0 < U < 1, U ′ > 0 in R,
(1.5)

if D ≥ D0. Note that a propagation failure occurs when D is small enough.

The monostable case for (1.2) with time delay was considered in [10]. In the present

setting, it corresponding to the case for connecting two equilibria {a, 1} or {0, a}. They

obtained the existence of the asymptotic speed of propagation, the existence and (partial)

uniqueness of the traveling wavefront and the minimal speed of the traveling wavefront for
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the delayed lattice dynamical system under the following extra condition at the unstable

equilibrium a, namely,

(1.6) b′(a)(u− a)−M |u− a|1+α ≤ b(u)− da ≤ b′(a)(u− a) +M |u− a|1+α for u ∈ [0, 1]

for some constants M > 0 and α ∈ (0, 1]. In fact, by [10, Theorem 1.2], there exist two

constants c∗, c∗ with c∗ > 0 > c∗ such that for any c1, c2 (with c1 ≥ c∗, c2 ≤ c∗) there exist

V1(x) and W2(x) satisfying the following equations:{
c1V

′
1(x) = D2[V1](x)− dV1(x) +

∑
i∈Z J(i)b(V1(x− i)), x ∈ R,

V1(−∞) = a, V1(+∞) = 1, a < V1 < 1, V ′
1 > 0 in R.

(1.7)

and {
c2W

′
2(x) = D2[W2](x)− dW2(x) +

∑
i∈Z J(i)b(W2(x− i)), x ∈ R,

W2(−∞) = 0, W2(+∞) = a, 0 < W2 < a, W ′
2 > 0 in R,

(1.8)

where c∗ (c∗, resp.) is the minimal (maximal, resp.) speed of (1.7) ((1.8), respectively).

The study of traveling wavefront solutions are important in many applications. It can de-

scribe certain dynamical behavior of the studied problem such as (1.2). But, the dynamics

of reaction-diffusion equations or its discrete analogue is so rich that there might be other

interesting patterns. Recently it is found that two-front entire solutions exist in many prob-

lems. Here an entire solution is meant by a solution defined for all (x, t) ∈ R
2. In particular,

traveling wavefront solutions are also entire solutions. For the study of entire solutions, we

refer the reader to, for instance, [3, 5, 6, 7, 8, 9, 12, 13] and reference therein.

In a very interesting work by Morita and Ninomiya [12], they gave three different types of

entire solutions for a bistable reaction-diffusion equation (see also [6] for the discrete diffusive

case). The purpose of this work is to construct these three types of entire solutions for (1.1).

Although the main idea and the methods of proofs in this paper are from [6, 12], there are

certain difficulties in dealing with (1.1) (or (1.2)) due to the convolution type nonlinearity.

For example, in the construction of super/sub solutions, we need to derive some estimations.

In these estimations, the compactness (finite range interaction) assumption is needed in this

study. So, from now on, besides the assumptions (1.4) and (1.6), we shall assume that

(1.9) J(i) = 0 for |i| > m for some m ∈ N.

We left the problem with infinite range interaction for the future study.

In fact, to construct these two-front entire solutions it is crucial to have a precise infor-

mation on the asymptotic behavior of wave tails. More precisely, we need the following

estimates for solutions U, V1,W2 of (1.5), (1.7), (1.8) respectively.

First, there exists a positive constant η such that

inf
y≤0

U ′(y)
U(y)

≥ η, inf
y≥0

U ′(y)
1− U(y)

≥ η.(1.10)
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Furthermore, there are positive constants K, k, γ, δ such that

keλy ≤ U(y) ≤ Keλy, ∀ y ≤ m; γe−μy ≤ 1− U(y) ≤ δe−μy, ∀ y ≥ −m,(1.11)

where λ is the unique positive root of the characteristic equation

ĉλ = D(eλ + e−λ − 2)− d+ b′(0)
m∑

i=−m

J(i)eiλ,(1.12)

and μ is the unique positive root of the equation

−ĉμ = D(eμ + e−μ − 2)− d+ b′(1)
m∑

i=−m

J(i)eiμ.(1.13)

Next, for any c1 ≥ c∗ and c2 ≤ c∗, let (c1, V1(x)) and (c2,W2(x)) be solutions of (1.7) and

(1.8), respectively. Then there exist positive constants λi, μi, κi, γi, i = 1, 2, such that the

following inequalities hold:

V1(y)− a ≥ κ1e
λ1y on (−∞, 0]; 1− V1(y) ≥ γ1e

−μ1y on [0,∞).(1.14)

W2(y) ≥ κ2e
λ2y on (−∞, 0]; a−W2(y) ≥ γ2e

−μ2y on [0,∞).(1.15)

Furthermore, there exist positive constants N , ρ such that

ρ[V1(y)− a] ≤ V ′
1(y) ≤ Neλ1y on (−∞, 0],(1.16)

ρ[1− V1(y)] ≤ V ′
1(y) ≤ Ne−μ1y on [0,∞),(1.17)

ρW2(y) ≤W ′
2(y) ≤ Neλ2y on (−∞, 0],(1.18)

ρ[a−W2(y)] ≤W ′
2(y) ≤ Ne−μ2y on [0,∞).(1.19)

The above asymptotic behavior of wave tail at the unstable equilibrium can be found in

[4]. But, due to the technical difficulty arising from the convolution type nonlinearity, we

need to assume that m = 2. As for the wave tail at the stable equilibrium, the method

developed in [2] is well applicable here for any finite m.

Based on these asymptotic behaviors, we prove the following theorems on two-front entire

solutions.

Theorem 1. Let (1.9) be in force with m = 2 and let (ĉ, U(x)) be a solution of (1.5). Then

for any real number θ there exists an entire solution u(x, t) of (1.1) such that

lim
t→−∞

{sup
x≥0

|u(x, t)− U(x+ ĉt + θ)|+ sup
x≤0

|u(x, t)− U(−x + ĉt+ θ)|} = 0.(1.20)

Moreover, u(x, t) → 1 as t→ ∞ for any x.
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Theorem 2. Let (1.9) be in force with m = 2. For any c1 > c∗ and c2 < c∗, let (c1, V1(x))

and (c2,W2(x)) be solutions of (1.7) and (1.8) respectively. Then there exist a constant ω

and an entire solution u(x, t) of (1.1) such that

lim
t→−∞

{ sup
x≥−(c1+c2)t/2

|u(x, t)− V1(x+ c1t+ ω)|(1.21)

+ sup
x≤−(c1+c2)t/2

|u(x, t)−W2(x+ c2t− ω)|} = 0.

Moreover, there exists θ ∈ R such that

lim
t→∞

{sup
x∈R

|u(x, t)− U(x + ĉt+ θ)|} = 0.(1.22)

Theorem 3. Let (1.9) be in force with m = 2. For any c2 < c∗ with −c2 < ĉ, let (ĉ, U(x))

and (c2,W2(x)) be solutions of (1.5) and (1.8) respectively. Then there exist a constant ω

and an entire solution u(x, t) of (1.1) such that

lim
t→−∞

{ sup
x≥(c2−ĉ)t/2

|u(x, t)− U(x+ ĉt+ ω)|

+ sup
x≤(c2−ĉ)t/2

|u(x, t)−W2(−x+ c2t− ω)|} = 0.

Moreover, we have

lim
t→∞

{ inf
x∈R

u(x, t)} = a, lim
t→∞

{ sup
x≥−C

|u(x, t)− 1|} = 0, ∀C > 0.

The above constructed entire solutions have some common characters. When −t 
 1,

they behave as two traveling wavefronts on the opposite sides or on the same side of x-axis.

Note that, different from the previous works, we choose the distinguishing line of the initial

conditions in the above theorems to be the mid-points of two front-positions of traveling

wavefronts. For example, in Theorem 2, x = −c1t and x = −c2t are front-positions for two

traveling wavefronts V1(x + c1t) and W2(x + c2t), respectively. It is nature to choose the

distinguishing line to be x = −(c1 + c2)t/2 in (1.21).

We organize this paper as follows. In section 2, we give some proofs of the asymptotic

behaviors of the traveling wavefronts stated above and some useful functions. Next, in

section 3, we offer the proofs of Theorem 1, Theorem 2 and Theorem 3 by constructing

suitable super/sub solutions.

2. Preliminaries

In this section, we first study the asymptotic behaviors of a solution U(y) of (1.5) as

y → ±∞. Since the behavior near y = ∞ is similar to the one near y = −∞, we shall only
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give the details for y = −∞. For this, we use the following notation

N [uj](t) := u′j(t)−D[uj+1(t) + uj−1(t)− 2uj(t)]

+duj(t)−
m∑

i=−m

J(i)b(uj−i(t)), j ∈ Z, t ∈ R.

First, we have the following strong comparison principle.

Lemma 2.1. Let c ∈ R, j0 ∈ Z and t0 ∈ R. Assume that uj(t) and vj(t) are bounded and

continuous in the set {(j, t) ∈ Z× R| j ≤ j0 − ct, t ∈ [t0,∞)} and satisfy

N [uj](t) ≥ N [vj ](t) when j ≤ j0 − ct, t > t0,

uj(t0) ≥ vj(t0) when j ≤ j0 − ct0.

Then uj(t) ≥ vj(t) for all j ≤ j0 − ct, t > t0. In addition, if uj1(t0) > vj1(t0) for some

j1 ≤ j0 − ct0, then uj(t) > vj(t) for all j ≤ j0 − ct, t > t0.

Since the proof is exactly the same as the one for [2, Lemma 1], we omit it here.

Using this comparison principle (Lemma 2.1), we can follow the proof of [2, Theorem 2]

to prove the following theorem on the asymptotic behavior.

Theorem 4. Assume that (c, {uj(t)}) is a traveling wave solution of (1.2) connecting from

0 to 1 with positive speed c. Then there exists two positive constants C1, C2 such that

(2.1) C1 ≤ uj(t)

eΛ(j+ct)
≤ C2, ∀j + ct ≤ −m, t ≥ 0

where Λ is the positive root of the following characteristic equation

P (c, λ) := cλ−D(eλ + e−λ − 2) + d− b′(0)
m∑

i=−m

J(i)e−iλ = 0.

By the definition of Λ, the function ψ(x) := eΛx is a solution of the following equation

cψ′(x)−D[ψ(x+ 1) + ψ(x− 1)− 2ψ(x)] + dψ(x)− b′(0)
m∑

i=−m

J(i)ψ(x− i) = 0.

In the construction of sub/supersolutions, ψ(x) play an important role. Indeed, we define

u+j (t; ε1, θ, ε3) := ε1ψ(0) + θψ(Λ)eΛ(j+ct) − ε3ψ(2Λ)e
2Λ(j+ct), j ∈ Z, t ∈ R.

where ε1 ≥ 0, ε3 ≥ 0, θ ∈ R. Hereafter the function b is suitably defined so that it is smooth

with b, b′, b′′ bounded in R. Since P (c, 0) > P (c,Λ) = 0 > P (c, 2Λ) (due to the fact that

b′(0) < d), we have

N [u+j ](t) ≥ 0 when j + ct ≤ −m, t ∈ R,

if

0 ≤ ε1 ≤ E1, ε3 = E3θ
2, |θ| ≤ E2,
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where

E1 :=
P (c, 0)

2Lψ(0)
, E3 :=

8Lψ(Λ)2e2Λm

−P (c, 2Λ)ψ(2Λ), E2 :=
ψ(Λ)

E3ψ(2Λ)
, L := max

u∈R
|b′′(u)|.

Similarly, by defining

u−j (t; ε1, θ, ε3) := −ε1ψ(0) + θψ(Λ)eΛ(j+ct) + ε3ψ(2Λ)e
2Λ(j+ct),

we also get

N [u−j ](t) ≤ 0 when j + ct ≤ −m, t ∈ R.

Then Theorem 4 can be proved by using the comparison principle as given in the proof of

[2, Theorem 2]. We omit the details here.

Now, for a solution U of (1.5), using un(t) = U(n + ĉt) we obtain from (2.1) that

C1e
λy ≤ U(y) ≤ C2e

λy, ∀ y ≤ −m,

where λ is the unique positive root of the equation (1.12). Hence the first part of (1.11)

follows. We remark that this process can be carried out as long as the equilibrium is stable.

Therefore, all of the exponential tail behaviors of U, V1,W2 near the stable equilibria {0, 1}
in (1.11), (1.14) and (1.15) can be derived similarly.

As for the exponential tail behavior near the unstable equilibrium a, we refer to [4, The-

orem 5]. There it is assumed that m = 2. Therefore, we have the exponential tail behaviors

of V1,W2 near the equilibrium a in (1.14) and (1.15) for c1 > c∗ and c2 < c∗ when m = 2.

For the estimates related the first derivatives of U, V1,W2, we recall from [4, Theorem 2]

that the limits

lim
y→−∞

V ′
1(y)

V1(y)− a
, lim

y→∞
W ′

2(y)

a−W2(y)

exist and are positive. Here we need to assume that m = 2. This result is based on [4,

Theorem 1] and is applicable to the case of stable equilibrium. Therefore, we also have the

limits

lim
y→−∞

U ′(y)
U(y)

, lim
y→∞

U ′(y)
1− U(y)

, lim
y→∞

V ′
1(y)

1− V1(y)
, lim

y→−∞
W ′

2(y)

W2(y)

exist and are positive. Then the estimates (1.10) and (1.16)-(1.19) can be derived.

Next, we give some useful functions which were constructed in [5]. Given positive constants

α, c,M and consider p(t) and q(t) solutions of

p′(t) = c+Meαp(t), q′(t) = c−Meαq(t), t ≤ 0,(2.2)

p(0) ≤ 0, q(0) < min{0, ln(c/M)/α}, e−αq(0) − e−αp(0) < 2M/c.(2.3)
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Indeed, p(t) and q(t) can be solved explicitly by

p(t) = p(0) + ct− ln[1 +Meαp(0)(1− ecαt)/c]/α,

q(t) = q(0) + ct− ln[1−Meαq(0)(1− ecαt)/c]/α.

Furthermore, there exists a positive constant κ such that

−κecαt/2 ≤ q(t)− ct− ω < 0 < p(t)− ct− ω ≤ κecαt/2, if t ≤ 0,(2.4)

where

ω := p(0)− ln(1 +Meαp(0)/c)/α = q(0)− ln(1−Meαq(0)/c)/α.(2.5)

Hence,

0 < p(t)− q(t) ≤ κecαt(≤ κ), if t ≤ 0.(2.6)

Finally, we give the following definitions about a supersolution and a subsolution.

Definition 2.1. A function u(x, t) is called a supersolution (subsolution, resp.) of (1.1)

on (x, t) ∈ R × (−∞,−T ] for some T ∈ R, if L[u](x, t) ≥ 0 (L[u](x, t) ≤ 0, resp.) for all

(x, t) ∈ R× (−∞,−T ], where

L[v](x, t) := vt(x, t)−D2[v](x, t) + dv(x, t)−
m∑

i=−m

J(i)b(v(x− i, t)).

The following useful lemma can be found in [1, 3, 5].

Lemma 2.2. Suppose that u(x, t) and u(x, t) are a subsolution and a supersolution of (1.1)

on (x, t) ∈ R× (−∞,−T ] for some T ∈ R, respectively and satisfy that u(x, t) ≤ u(x, t) on

(x, t) ∈ R× (−∞,−T ]. Then there exists an entire solution u(x, t) of (1.1) such that

u(x, t) ≤ u(x, t) ≤ u(x, t) for all (x, t) ∈ R× (−∞,−T ].

With this lemma, the construction of entire solutions is reduced to finding a suitable pair

of super/sub solutions.

3. Entire solutions

This section is devoted to the proofs of main theorems stated in the introduction. Since

the proofs work as long as the asymptotic behaviors (1.10), (1.11), (1.14)-(1.19) hold, we

shall present the proof for general m ∈ N here.
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3.1. Proof of Theorem 1. Let p(t) and q(t) be the solutions of (2.2)-(2.3) with c = ĉ,

α = λ and a constant M to be determined later. We divide our discussion into two cases:

b′(0) ≤ b′(1) and b′(0) > b′(1).

First, we consider the case that b′(0) ≤ b′(1). In this case, we have λ > μ, where λ and μ

are positive roots of (1.12) and (1.13), respectively. Define{
u(x, t) := U(x+ p(t)) + U(−x + p(t)), x ∈ R, t ≤ 0
u(x, t) := U(x+ q(t)) + U(−x + q(t)), x ∈ R, t ≤ 0.

(3.1)

Then

L[u](x, t)

= p′(t)[U ′(x+ p(t)) + U ′(−x+ p(t))] + (2D + d)[U(x+ p(t)) + U(−x+ p(t))]

−D[U(x+ 1 + p(t)) + U(−x − 1 + p(t)) + U(x− 1 + p(t)) + U(−x + 1 + p(t))]

−
m∑

i=−m

J(i)b(U(x − i+ p(t)) + U(−x+ i+ p(t))).

By using (1.5), we obtain

L[u](x, t) = (p′(t)− ĉ)[U ′(x+ p(t)) + U ′(−x+ p(t))]−
m∑

i=−m

J(i)G(x, t, i)

= [U ′(x+ p(t)) + U ′(−x+ p(t))]

{
Meλp(t) −

m∑
i=−m

J(i)P (x, t, i)

}
,

where

G(x, t, i) := b(U(x− i+ p(t)) + U(−x+ i+ p(t)))

−b(U(x − i+ p(t))− b(U(−x + i+ p(t)),

P (x, t, i) := G(x, t, i)/[U ′(x+ p(t)) + U ′(−x+ p(t))].

From

|b(u+ v)− b(u)− b(v)| ≤ Luv if u, v ∈ (0, 1),

it follows that

L[u](x, t) ≥ [U ′(x+ p(t)) + U ′(−x+ p(t))]

{
Meλp(t) − L

m∑
i=−m

J(i)P1(x, t, i)

}
,

where

P1(x, t, i) :=
U(x− i+ p(t))U(−x + i+ p(t))

U ′(x+ p(t)) + U ′(−x+ p(t))
.
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For any i ∈ {−m, · · · ,−1, 0, 1, · · · , m}, by using (1.10) and (1.11), we obtain

P1(x, t, i) ≤ U(x− i+ p(t))

U ′(−x+ p(t))
≤ K

ηγ
e−λie(λ−μ)xe(λ+μ)p(t), if x < p(t),(3.2)

P1(x, t, i) ≤ K2eλ(x−i+p(t))eλ(−x+i+p(t))

ηk[eλ(x+p(t)) + eλ(−x+p(t))]
≤ K2

2ηk
eλp(t), if p(t) ≤ x ≤ −p(t),(3.3)

P1(x, t, i) ≤ U(−x + i+ p(t))

U ′(x+ p(t))
≤ K

ηγ
eλie(μ−λ)xe(λ+μ)p(t), if x > −p(t).(3.4)

By using the facts λ > μ and p(t) < 0, it follows from (3.2) and (3.4) that

P1(x, t, i) ≤ Keλm

ηγ
eλp(t), if x < p(t) or x > −p(t).

Therefore, if we choose

M ≥ max{LKe
λm

ηγ
,
LK2

2ηk
},

then L[u] ≥ 0 on R× (−∞, 0]. By a similar estimation, we get L[u] ≤ 0 on R× (−∞, 0].

It follows from Lemma 2.2 that there exists an entire solution u(x, t) of (1.1) such that

u(x, t) ≤ u(x, t) ≤ u(x, t), ∀(x, t) ∈ R× (−∞, 0].

Now, we derive the initial condition (1.20). By translation, we may only check θ = ω. For

x ≥ 0, by the mean-value theorem, (2.4) and (2.6), we get

|u(x, t)− U(x+ ĉt+ ω)|
≤ [u(x, t)− u(x, t)] + U(−x + q(t)) + |U(x+ q(t))− U(x + ĉt+ ω)|
≤ [u(x, t)− u(x, t)] +Keλ(−x+q(t)) +

κ

2
sup{U ′(·)}eĉλt

≤ Keλq(t) +K1e
ĉλt

for some constant K1. The case for x ≤ 0 is similar. Hence (1.20) holds.

Secondly, we consider the case that b′(1) < b′(0). In this case, we define{
u(x, t) := U(x+ p(t)) + U(−x + p(t)), x ∈ R, t ≤ 0
u(x, t) := max{U(x+ ĉt + ω), U(−x+ ĉt + ω)}, x ∈ R, t ≤ 0.

(3.5)

Note that the definition of u(x, t) is the same as the former case in (3.1). Also, (3.3) holds,

since we do not need the fact that λ > μ when x ∈ [p(t),−p(t)]. Therefore, we focus on

the other two ranges. Since b′(1) < b′(0), by extending the definition of b(·) and taking a

suitable translation of U(·), we may find δ1 > 0 such that

b′(u) < b′(0) if u > 1− δ1; U(z) ≥ 1− δ1 if z ≥ −m.(3.6)

First, we consider the case x ≤ p(t). From the equality

b(u+ v)− b(u)− b(v) = v

∫ 1

0

[b′(u+ sv)− b′(sv)]ds
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and (3.6), it follows that

G(x, t, i) ≤ U(x− i+ p(t))

∫ 1

0

[b′(0)− b′(sU(x − i+ p(t)))]ds ≤ L[U(x − i+ p(t))]2.

Therefore,

L[u](x, t) ≥ [U ′(x+ p(t)) + U ′(−x+ p(t))]

{
Meλp(t) − L

m∑
i=−m

J(i)P2(x, t, i)

}
,

where

P2(x, t, i) := [U(x− i+ p(t))]2/[U ′(x+ p(t)) + U ′(−x+ p(t))].

For any i ∈ {−m, · · · ,−1, 0, 1, · · · , m}, by (1.10) and (1.11), we have

P2(x, t, i) ≤ U(x+ p(t))

U ′(x+ p(t))
· U(x− i+ p(t))

U(x+ p(t))
· U(x− i+ p(t))

≤ K2e2λm

ηk
eλ(x+p(t)) ≤ K2e2λm

ηk
eλp(t)

for x ≤ p(t). So if we choose M ≥ LK2e2λm/(ηk), then we have L[u] ≥ 0 for x ≤ p(t). The

case when x ≥ −p(t) can be treated similarly. By the definition of u(x, t) in (3.5), we can

easily check that it is a subsolution. Hence, by Lemma 2.2, there exists an entire solution

u(x, t) such that

u(x, t) ≤ u(x, t) ≤ u(x, t), ∀(x, t) ∈ R× (−∞, 0].

Finally, we study the asymptotic behavior of u near t = −∞. For x ≥ 0, by the definition

of u(x, t), we obtain u(x, t) = U(x+ ĉt+ ω). So, by the estimation of Lemma 2.2 and (2.4),

0 ≤ u(x, t)− U(x+ ĉt+ ω) ≤ u(x, t)− U(x+ ĉt + ω)

≤ U(x + p(t))− U(x + ĉt+ ω) + U(−x + p(t))

≤ sup{U ′(·)}(p(t)− ĉt− ω) +Keλ(−x+p(t))

≤ κ sup{U ′(·)}eĉλt/2 +Keλp(t).

This implies that

lim
t→−∞

sup
x≥0

|u(x, t)− U(x+ ĉt + ω)| = 0.

The case for x ≤ 0 is similar. Hence (1.20) holds and the proof of Theorem 1 is completed.
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3.2. Proof of Theorem 2. Let (c1, V1(x)) and (c2,W2(x)) be solutions of (1.7) and (1.8)

respectively. Set

(3.7) c̄ :=
c1 + c2

2
, c0 :=

c1 − c2
2

.

Note that c0 > 0. We define

f(u(x, t)) :=

m∑
i=−m

J(i)[b(u(x− i, t))− du(x, t)],

f(u(x)) :=
m∑

i=−m

J(i)[b(u(x− i))− du(x)],

f̄(u(x)) :=

m∑
i=−m

J(i)[b(u(x− i))− du(x− i)].

By a simple computation, it is easy to see that u(x, t) = R(x+ c̄t, t) is a solution of (1.1) if

and only if R(x, t) is a solution of

(3.8) F [R](x, t) := Rt(x, t) + c̄Rx(x, t)−D2[R](x, t)− f(R(x, t)) = 0.

Also, V1(x+ c0t) and W2(x− c0t) are solutions of (3.8).

Let p(t), q(t) be solutions of (2.2)-(2.3) with

α = min{λ1, μ2}, c = c0, M > 0 (to be determined later).

Consider {
R(x, t) := H(V1(x+ p(t)),W2(x− q(t))), x ∈ R, t ≤ 0,
R(x, t) := H(V1(x+ q(t)),W2(x− p(t))), x ∈ R, t ≤ 0,

where

H(g, h) :=
(1− a)gh

h(g − a) + a(1− g)
.

We shall claim that (R,R)(x, t) is a pair of supersolution and subsolution of (3.8).

For this, we denote

Hg :=
∂H

∂g
, Hh :=

∂H

∂h
, Hgg :=

∂2H

∂g2
, Hhh :=

∂2H

∂h2
, Hgh :=

∂2H

∂h∂g
,

Ĥ(b, c) := H(V1(y + b),W2(z + c)), Ĥg(b, c) := Hg(V1(y + b),W2(z + c)),

Ĥh(b, c) := Hh(V1(y + b),W2(z + c)), Ĥgg(b, c) := Hgg(V1(y + b),W2(z + c)),

Ĥgh(b, c) := Hgh(V1(y + b),W2(z + c)), Ĥhh(b, c) := Hhh(V1(y + b),W2(z + c))

for b, c ∈ R. Hereafter we denote y := x+ p(t) and z := x− q(t).

By a simple computation, we have

Hg(g, h) =
a(1− a)h(1 − h)

[h(g − a) + a(1− g)]2
, Hh(g, h) =

a(1− a)g(1− g)

[h(g − a) + a(1− g)]2
.
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Also, we have

Hgg(g, h) =
(−2)a(1− a)h(1− h)(h− a)

[h(g − a) + a(1− g)]3
:= h(h− a)H1(g, h),

Hhh(g, h) =
(−2)a(1− a)g(1− g)(g − a)

[h(g − a) + a(1− g)]3
:= (g − 1)(g − a)H2(g, h),

Hgh(g, h) =
a(1− a)[(2a− 1)gh+ a(1− g − h)]

[h(g − a) + a(1 − g)]3
.

Because 0 < W (·) < a < V (·) < 1, we have

Ĥg(b, c) > 0, Ĥh(b, c) > 0, ∀ b, c ∈ R.(3.9)

Now we are in a position to compute F [R]. First, we have

F [R](x, t) = Rt(x, t) + c̄Rx(x, t)−D2[R](x, t)− f(R(x, t))

= Ĥg(0, 0)V
′
1(y)[p

′(t) + c̄] + Ĥh(0, 0)W
′
2(z)[c̄− q′(t)]

−
m∑

i=−m

J̃(i)[H(V1(y − i),W2(z − i))−H(V1(y),W2(z))]

−
m∑

i=−m

J(i)[b(H(V1(y − i),W2(z − i)))− dH(V1(y − i),W2(z − i))],

where J̃(i) := dJ(i), if |i| �= 1, J̃(i) := dJ(i) +D, if |i| = 1.
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Recall (1.7), (1.8), (3.7) and that p(t), q(t) are solutions of (2.2)-(2.3) with c = c0. Then

we have

F [R](x, t)

= Ĥg(0, 0)V
′
1(y)[p

′(t)− c0] + Ĥh(0, 0)W
′
2(z)[c0 − q′(t)]

+DĤg(0, 0)[V1(y + 1) + V1(y − 1)− 2V1(y)] + Ĥg(0, 0)f(V1(y))

+DĤh(0, 0)[W2(z + 1) +W2(z − 1)− 2W2(z)] + Ĥh(0, 0)f(W2(z))

−
m∑

i=−m

J̃(i)[H(V1(y − i),W2(z − i))−H(V1(y),W2(z))]

−
m∑

i=−m

J(i)[b(H(V1(y − i),W2(z − i)))− dH(V1(y − i),W2(z − i))]

= MĤg(0, 0)V
′
1(y)e

αp(t) +MĤh(0, 0)W
′
2(z)e

αq(t)

+Ĥg(0, 0)

m∑
i=−m

J̃(i)[V1(y − i)− V1(y)] + Ĥh(0, 0)

m∑
i=−m

J̃(i)[W2(z − i)−W2(z)]

−
m∑

i=−m

J̃(i)[H(V1(y − i),W2(z − i))−H(V1(y),W2(z))]

+Ĥg(0, 0)f̄(V1(y)) + Ĥh(0, 0)f̄(W2(z))

−
m∑

i=−m

J(i)[b(H(V1(y − i),W2(z − i)))− dH(V1(y − i),W2(z − i))].

Recall that V1(·) and W2(·) are strictly increasing. It then follows from (2.6), (3.9) and

the mean-value theorem that

F [R](x, t)

≥ Meαq(t)[Ĥg(0, 0)V
′
1(y) + Ĥh(0, 0)W

′
2(z)]

+Ĥg(0, 0)
m∑

i=−m

J̃(i)[V1(y − i)− V1(y)] + Ĥh(0, 0)
m∑

i=−m

J̃(i)[W2(z − i)−W2(z)]

−
m∑

i=−m

J̃(i){Hg(V1(y + θ1i),W2(z + θ2i))[V1(y − i)− V1(y)]

+Hh(V1(y + θ1i),W2(z + θ2i))[W2(z − i)−W2(z)]}
+Ĥg(0, 0)f̄(V1(y)) + Ĥh(0, 0)f̄(W2(z))

−
m∑

i=−m

J(i)[b(H(V1(y − i),W2(z − i)))− dH(V1(y − i),W2(z − i))]

≥ Meαq(t)A(x, t)− B(x, t)−G(x, t),
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where

A(x, t) := Ĥg(0, 0)V
′
1(y) + Ĥh(0, 0)W

′
2(z),

B(x, t) :=

m∑
i=−m

J̃(i){[Ĥg(θ1i, θ2i)− Ĥg(0, 0)][V1(y − i)− V1(y)]

+[Ĥh(θ1i, θ2i)− Ĥh(0, 0)][W2(z − i)−W2(z)]}

+

m∑
i=−m

J(i){[Ĥg(−i,−i)− Ĥg(0, 0)]l(V1(y − i))

+[Ĥh(−i,−i)− Ĥh(0, 0)]l(W2(z − i))}

:=

m∑
i=−m

J̃(i)B1(x, t, i) +

m∑
i=−m

J(i)B2(x, t, i),

G(x, t) :=
m∑

i=−m

J(i)[l(H(V1(y − i),W2(z − i)))− Ĥg(−i,−i)l(V1(y − i))

−Ĥh(−i,−i)l(W2(z − i))]

:=

m∑
i=−m

J(i)G(x, t, i),

with θ1i, θ2i are between 0 and −i, and l(s) := b(s)− ds.

By (3.9), we have A(x, t) > 0 for all (x, t) ∈ R×(−∞, 0]. So in order to obtain F [R](x, t) ≥
0, we must estimate

B1(x, t, i)/A(x, t), B2(x, t, i)/A(x, t) and G(x, t, i)/A(x, t).

First, we consider A(x, t). Since p(−∞) = q(−∞) = −∞ and W2(∞) = V1(−∞) = a, we

can choose T > 0 such that{
V1(x+ p(t) + l1) ≤ (1 + a)/2, if x ≤ 0, t ≤ −T, |l1| ≤ m.
W2(x− q(t) + l2) ≥ (a/2), if x ≥ 0, t ≤ −T, |l2| ≤ m.

(3.10)

By the form of Hg, Hh and the estimation above, we have{
Ĥg(0, 0) = Hg(V1(x+ p(t)),W2(x− q(t))) ≥ 1/8, if x ≥ 0, t ≤ −T.
Ĥh(0, 0) = Hh(V1(x+ p(t)),W2(x− q(t))) ≥ 1/8, if x ≤ 0, t ≤ −T.(3.11)

Secondly, we consider B1(x, t, i), B2(x, t, i) and G(x, t, i). For this, we define

S(x, t, l1, l2) := W2(x− q(t) + l2)[V1(x+ p(t) + l1)− a] + a[1− V1(x+ p(t) + l1)].

By (3.10), if x ≥ 0, t ≤ −T, |l1| ≤ m, |l2| ≤ m, then

S(x, t, l1, l2) ≥ a

2
[V1(x+ p(t) + l1)− a] + a[1− V1(x+ p(t) + l1)] ≥ a(1− a)

2
.

On the other hand, if x ≤ 0, t ≤ −T, |l1| ≤ m, |l2| ≤ m, then

S(x, t, l1, l2) ≥ 1 + a

2
[W2(x− q(t) + l2)− a] + a[1−W2(x− q(t) + l2)] ≥ a(1− a)

2
.
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Therefore,

S(x, t, l1, l2) ≥ a(1− a)

2
, if x ∈ R, t ≤ −T, |l1| ≤ m, |l2| ≤ m.

This implies that there exists a constant K1 such that

| (H1, H2, Hgh)(V1(x+ p(t) + l1),W2(x− q(t) + l2)) |≤ K1,(3.12)

for all x ∈ R, t ≤ −T, |l1| ≤ m, |l2| ≤ m.

Now, we are ready to estimate B1(x, t, i)/A(x, t). Consider the first term of B1(x, t, i, ),

by the mean-value theorem, we have

[Ĥg(θ1i, θ2i)− Ĥg(0, 0)][V1(y − i)− V1(y)]

= [Hg(V1(y + θ1i),W2(z + θ2i))−Hg(V1(y),W2(z))]V
′
1(y + θ3i)

= [θ1iHgg(V1(y + θ4i),W2(z + θ5i))V
′
1(y + θ6i)

+θ2iHgh(V1(y + θ4i),W2(z + θ5i))W
′
2(z + θ7i)]V

′
1(y + θ3i)

= [θ1iĤgg(θ4i, θ5i)V
′
1(y + θ6i) + θ2iĤgh(θ4i, θ5i)W

′
2(z + θ7i)]V

′
1(y + θ3i),

where θ3i, θ4i, θ5i, θ6i, θ7i are between 0 and −i. Therefore,
B1(x, t, i) = [θ1iĤgg(θ4i, θ5i)V

′
1(y + θ6i) + θ2iĤgh(θ4i, θ5i)W

′
2(z + θ7i)]V

′
1(y + θ3i)

+[θ1iĤhg(τ4i, τ5i)V
′
1(y + θ6i) + θ2iĤhh(τ4i, τ5i)W

′
2(z + θ7i)]W

′
2(z + τ3i),

where τ3i, τ4i, τ5i are between 0 and −i. For x ≤ 0, t ≤ −T , by (3.11), we have

A(x, t) ≥ 1

8
W ′

2(x− q(t)).

Moreover, from (1.14)-(1.19) and (3.12), there exists a constant K2 such that∣∣∣∣∣Ĥgg(s1, s2)V
′
1(y + s3)V

′
1(y + s4)

W ′
2(z)

∣∣∣∣∣ ≤ K2e
λ1p(t)

∣∣∣∣∣Ĥgh(s1, s2)W
′
2(z + s3)V

′
1(y + s4)

W ′
2(z)

∣∣∣∣∣ ≤ K2e
λ1p(t)

∣∣∣∣∣Ĥhh(s1, s2)W
′
2(z + s3)W

′
2(z + s4)

W ′
2(z)

∣∣∣∣∣ ≤ K2e
λ1p(t),

for all |s1|, |s2|, |s3|, |s4| ≤ m. Hence, there exists a constant K3 such that∣∣∣∣B1(x, t, i)

A(x, t)

∣∣∣∣ ≤ K3e
λ1p(t), if x ≤ 0, t ≤ −T, |i| ≤ m.

Using the same method to consider the case that x ≥ 0, t ≤ −T , we have∣∣∣∣B1(x, t, i)

A(x, t)

∣∣∣∣ ≤ K4e
μ2q(t), if x ≥ 0, t ≤ −T, |i| ≤ m.
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for some constant K4. Using the fact that l′(·) is bounded over [0, 1], we can choose a

constant K6 such that

|l(V1(·))| ≤ K6V
′
1(·), |l(W2(·))| ≤ K6W

′
2(·).

By the same estimation of B1(x, t, i) for B2(x, t, i), we have∣∣∣∣B(x, t, i)

A(x, t)

∣∣∣∣ ≤ Keλ1p(t), if x ≤ 0, t ≤ −T, |i| ≤ m,∣∣∣∣B(x, t, i)

A(x, t)

∣∣∣∣ ≤ Keμ2q(t), if x ≥ 0, t ≤ −T, |i| ≤ m,

for some constant K.

Next, we estimate G(x, t, i)/A(x, t). We define

Ĝ(g, h) := l(H(g, h))−Hg(g, h)l(g)−Hh(g, h)l(h).

By a simple computation, we get

Ĝ(g, 0) = Ĝ(g, a) = Ĝ(a, h) = Ĝ(1, h) = 0, ∀ g ∈ (a, 1), h ∈ (0, a).(3.13)

For x ≤ q(t), t ≤ 0, by (3.13), we may write

G(x, t, i) = Ĝ(V1(x+ p(t)− i),W2(x− q(t)− i))

= W2(x− q(t)− i)[V1(x+ p(t)− i)− a]G1(x, t, i).

for some bounded function G1(x, t, i). When x ≤ q(t), t ≤ −T, |i| ≤ m, by (3.11), we have

|G(x, t, i)/A(x, t)| ≤ 8|G1(x, t, i)|W2(x− q(t)− i)[V1(x+ p(t)− i)− a]

W ′
2(x− q(t))

≤ M1e
λ1p(t),

for some constant M1 (independent of x, t and i). Similarly, for q(t) ≤ x ≤ −p(t), we may

write

G(x, t, i) = [a−W2(x− q(t)− i)][V1(x+ p(t)− i)− a]G2(x, t, i),

for some bounded function G2(x, t, i). When q(t) ≤ x ≤ 0, t ≤ −T, |i| ≤ m, we have

|G(x, t, i)/A(x, t)| ≤ 8|G2(x, t, i)| [a−W2(x− q(t)− i)][V1(x+ p(t)− i)− a]

W ′
2(x− q(t))

≤M2e
λ1p(t),

for some constant M2 (independent of x, t and i). When 0 ≤ x ≤ −p(t), t ≤ −T, |i| ≤ m,

we have

|G(x, t, i)/A(x, t)| ≤ 8|G2(x, t, i)| [a−W2(x− q(t)− i)][V1(x+ p(t)− i)− a]

V ′
1(x+ p(t))

≤M3e
μ2q(t),

for some constant M3 (independent of x, t and i). For x ≥ −p(t), t ≤ 0, we may write

G(x, t, i) = [a−W2(x− q(t)− i)][1− V1(x+ p(t)− i)]G3(x, t, i),

for some bounded function G3(x, t, i). When x ≥ −p(t), t ≤ −T, |i| ≤ m, we have

|G(x, t, i)/A(x, t)| ≤ 8|G3(x, t, i)| [a−W2(x− q(t)− i)][1− V1(x+ p(t)− i)]

V ′
1(x+ p(t))

≤M4e
μ2q(t),
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for some constant M4 (independent of x, t and i).

Because α = min{λ1, μ2} and (2.6), we may choose

M ≥ max{Keακ,M1e
ακ,M2e

ακ,M3,M4}.
And then we obtain F [R̄] ≥ 0. Similarly, we can obtain F [R] ≤ 0.

Hence, by (2.6) and the identity

R(x, t)− R(x, t)

= r(t)

∫ 1

0

[Hg(V1(x+ q(t) + sr(t)),W2(x− p(t) + sr(t)))V ′
1(x+ q(t) + sr(t))

+ Hh(V1(x+ q(t) + sr(t)),W2(x− p(t) + sr(t)))W ′
2(x− p(t) + sr(t))]ds,

where r(t) := p(t)− q(t), we obtain that

0 < R(x, t)− R(x, t) ≤M5e
c0αt, ∀ (x, t) ∈ R× (−∞, 0],

for some constant M5.

Define {
u(x, t) := R(x+ c̄t, t), x ∈ R, t ≤ 0,
u(x, t) := R(x+ c̄t, t), x ∈ R, t ≤ 0.

Because F [R] ≥ 0 and F [R] ≤ 0, u(x, t) and u(x, t) are a supersolution and a subsolution of

(1.1) for (x, t) ∈ R× (−∞,−T ] respectively and

0 < u(x, t)− u(x, t) ≤M5e
c0αt, ∀ (x, t) ∈ R× (−∞, 0],(3.14)

By Lemma 2.2, there exists an entire solution u(x, t) of (1.1) such that

u(x, t) ≤ u(x, t) ≤ u(x, t), ∀(x, t) ∈ R× (−∞,−T ].
Next, we consider (1.21) and recall w is defined on (2.5). If x ≥ −c̄t and t ≤ −T , then

|u(x, t)− V1(x+ c1t + ω)|
≤ |u(x, t)− u(x, t)| + |u(x, t)− V1(x+ c1t+ ω)|
≤ [u(x, t)− u(x, t)] + |g(x, t)− V1(x+ c1t+ ω)|

+|(a− h(x, t))(g(x, t)− 1)g(x, t)/[h(x, t)(g(x, t)− a) + a(1− g(x, t))]|,
where g(x, t) := V1(x+ c̄t + q(t)), h(x, t) := W2(x+ c̄t− p(t)).

By the mean-value theorem and (2.4),

|g(x, t)− V1(x+ c1t+ ω)| ≤ sup V ′
1(·)|q(t)− c0t− ω| → 0 as t→ −∞.

This implies

lim
t→−∞

[ sup
x≥−c̄t

|g(x, t)− V1(x+ c1t + ω)|] = 0.(3.15)
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On the other hand, because x ≥ −c̄t, we have

a > h(x, t) = W2(x+ c̄t− p(t)) ≥W2(−p(t)) → a as t→ −∞.

This implies

lim
t→−∞

[ sup
x≥−c̄t

|a− h(x, t)|] = 0.

and

h(x, t)(g(x, t)− a) + a(1− g(x, t))

has a positive low-bound if x ≥ −c̄t, −t >> 1. So

lim
t→−∞

{
sup
x≥−c̄t

∣∣∣∣ (a− h(x, t))(g(x, t)− 1)g(x, t)

h(x, t)(g(x, t)− a) + a(1 − g(x, t))

∣∣∣∣} = 0.(3.16)

By (3.14), (3.15) and (3.16), we have

lim
t→−∞

sup
x≥−c̄t

|u(x, t)− V1(x+ c1t+ ω)| = 0.

Similarly, we get

lim
t→−∞

sup
x≤−c̄t

|u(x, t)−W2(x+ c2t− ω)| = 0.

So (1.21) holds. Finally, from Zinner [14], the asymptotic behavior (1.22) follows. We have

thus completed the proof of Theorem 2.

3.3. Proof of Theorem 3. Following the methods of [6, 12]), we consider the functions{
u(x, t) := H(U(x+ c̄t + p(t)),W2(−x− c̄t− q(t))),
u(x, t) := H(U(x+ c̄t + q(t)),W2(−x− c̄t− p(t))),

where c̄ := (ĉ−c2)/2, p(t) and q(t) are the solutions of (2.2) and (2.3) with c = c0 := (ĉ+c2)/2

and suitable α,M , and

H(g, h) :=
a(g + h)− (1 + a)gh

a− gh
.

Then, by using a similar process as that of the proof of Theorem 2, we obtain the conclusion

of Theorem 3. We safely omit the details here (see also [12, 6]).
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