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Abstract. In this paper, we study the traveling front solutions of the Lotka-Volterra
competition-diffusion system with bistable nonlinearity. It is well-known that the wave
speed of traveling front is unique. Although little is known for the sign of the wave speed.
In this paper, we first study the standing wave which gives some criteria when the speed is
zero. Then, by the monotone dependence on parameters, we obtain some criteria about the
sign of the wave speed under some parameter restrictions.

1. Introduction

In this paper, we study the following Lotka-Volterra competition-diffusion system{
ut = uxx + u(1− u− kv),
vt = dvxx + av(1− v − hu),

(1.1)

where u = u(x, t) and v = v(x, t) represent population densities of two competing species,

and a, h, k, d are positive constants with certain ecological meanings. Indeed, a is the intrinsic

growth rate and d is the diffusion coefficient of the species v, h is the inter-specific competition

coefficient of the species u and k is the inter-specific competition coefficient of the species v.

The relations of parameters h and k influence the asymptotic behaviors of (u, v). In fact,

for (1.1) with initial data (u, v)(x, 0) ≥ 0, the asymptotic behaviors of (u, v) can be divided

into the following four cases:

(1) If k < 1 < h, then limt→∞(u, v)(x, t) = (1, 0),

(2) If h < 1 < k, then limt→∞(u, v)(x, t) = (0, 1),

(3) If min{h, k} > 1, then (1, 0) and (0, 1) are locally stable and almost every solution

converges to one of them as t → ∞.

(4) If max{h, k} < 1, then

lim
t→∞

(u, v)(x, t) = (
1− k

1− hk
,
1− h

1− hk
),

The system (1.1) has been studied very extensively with monostable or bistable nonlin-

earity. For instance see [1, 2, 3, 4, 5, 6, 8, 9, 11, 12] and references therein. Throughout this

paper, we only focus on the bistable nonlinearity. In other words, the parameters h and k

satisfy the bistability condition min{h, k} > 1.
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We say that (u, v)(x, t) is a traveling front solution of (1.1) with speed s if (u, v)(x, t) =

(U, V )(ξ), where ξ = x − st for some functions U, V (called wave profiles), such that

(U, V )(±∞) ∈ {(1, 0), (0, 1)} and (U, V )(∞) ̸= (U, V )(−∞). Therefore, the traveling front

problem (P) can be written as the system:

U ′′ + sU ′ + U(1− U − kV ) = 0 < U ′,(1.2)

dV ′′ + sV ′ + aV (1− V − hU) = 0 > V ′,(1.3)

with the boundary condition

(U, V )(−∞) = (0, 1), (U, V )(+∞) = (1, 0),(1.4)

where (a, h, k, d) ∈ P := {(a, h, k, d) | a > 0, h > 1, k > 1, d > 0} and s = s(a, h, k, d). For

the study of traveling front solution of (1.1), we refer to, e.g., [1, 2, 5, 6, 10].

By the change of the variables (Ũ , Ṽ ) = (U, aV ), problem (P) is reduced to the following

problem (P̃):

Ũ ′′ + s̃Ũ ′ + Ũ(1− Ũ − cṼ ) = 0 < Ũ ′,(1.5)

dṼ ′′ + s̃Ṽ ′ + Ṽ (a− bŨ − Ṽ ) = 0 > Ṽ ′,(1.6)

with

(Ũ , Ṽ )(−∞) = (0, a), (Ũ , Ṽ )(+∞) = (1, 0),(1.7)

where (a, b, c, d) ∈ P̃ := {(a, b, c, d) | 0 < 1/c < a < b, d > 0}, s̃ = s̃(a, b, c, d) = s. Here, for

given a and d, we have the following relations between parameters (h, k) and (b, c):

(1.8) (h, k) = (b/a, ac), (b, c) = (ah, k/a).

We now recall some known results as follows. In [1] or [2], they proved the existence of

traveling front solutions. In [10] (or [6]), they studied the existence of traveling front solutions

with s = 0 (i.e. the standing wave). In [5], Kan-on derived the monotone dependence of the

wave speed on the parameters a, b, c. In [11], some exact solutions of (1.5)-(1.7) are given

and the wave speed can also be represented explicitly under some parameter restrictions.

But, little is known about the sign of the wave speed. In fact, the speed sign is an important

matter because it decides which species becomes dominant and eventually occupies the whole

domain. From the biological point of view, when the speed s is positive, the species v is

dominant and the species u goes extinct eventually for those initial distributions which are

close to traveling waves in an appropriate function space (cf. [2, 7]). On the other hand, the

species u wins the competition in the above sense when the speed s is negative.

Now, we list the main theorems of this paper as follows.



THE SIGN OF THE WAVE SPEED 3

Theorem 1. Suppose that a = d. Then we have

s(a, h, k, d) =

 > 0, if k > h > 1;
= 0, if h = k > 1;
< 0, if h > k > 1.

Theorem 2. (i). Suppose that a > d. Then s(a, h, k, d) > 0, if h > 1 and k ≥ (a/d)2h.

(ii). Suppose that a < d. Then s(a, h, k, d) < 0, if k > 1 and h ≥ (d/a)2k.

Theorem 3. For any l > 0, s(a, h, k, d) and s(la, h, k, ld) have the same sign.

Theorem 4. Suppose that a > d. If 1 < h ≤ 1 + d/a and k ≥ 2, then s(a, h, k, d) > 0.

Note that the condition in Theorem 4 is not totally included in the condition in Theorem 2

for a > d, since (1 + d/a)(a/d)2 > 2. More precisely, we have

{(h, k) | 1 < h ≤ 1 + d/a, k ≥ 2} \ {(h, k) | h > 1, k ≥ (a/d)2h} ≠ ∅.

Theorem 5. Suppose that a > d. If h > 1, k ≥ 5a/d and (3ah − d)h ≤ (4a − d)k, then

s(a, h, k, d) > 0.

Rewriting the set {(h, k) | h > 1, k ≥ 5a/d, (3ah− d)h ≤ (4a− d)k} by{
(h, k)

∣∣∣h > 1, k ≥ 5a

d
, k ≥ 3a

4a− d

(
h− d

6a

)2

− d2

12a(4a− d)

}
,

we also see that the condition in Theorem 5 is not totally included in the condition in

Theorem 2, if a > d and (4a− d)a2 > 14d3.

Theorem 6. If a = d/4, then we have

s(a, h, k, d) =

 > 0, if 1 < h ≤ 4/3 and k ≥ 5/4, except (h, k) = (4/3, 5/4);
= 0, if h = 4/3, k = 5/4;
< 0, if h ≥ 4/3 and 1 < k ≤ 5/4, except (h, k) = (4/3, 5/4).

Theorem 6 shows that, when a = d/4, we have s(a, h, k, d) < 0 in the region

{(h, k) | h ∈ [4/3, 16], k ∈ (1, 5/4]} ∪ {(h, k) | 16 < h < 16k, k ∈ (1, 5/4]} \ {(4/3, 5/4)}

which is not contained in the set obtained in Theorem 2 for a < d.

We organize this paper as follows. In Section 2, we give some preliminaries and some

results about the standing wave in terms of parameters. Next, in Section 3, we offer the

proofs of the main Theorems. Our strategy is to derive some useful information about the

standing waves in terms of parameters. Then, by the monotone dependence on parameters,

we can determine the sign of the speed in those special situations. There are still many cases

left open.
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2. Preliminaries

In this section, we recall some known results about the problem (P̃). We say (Ũ , Ṽ )(ξ)

is a monotone pair if Ũ(ξ) is increasing and Ṽ (ξ) is decreasing. In [5], Kan-on derived the

following fact that for any (a, b, c, d) ∈ P̃ , there exists a monotone pair (Ũ , Ṽ )(ξ; a, b, c, d) and

s̃ = s̃(a, b, c, d) satisfy (1.5)-(1.7). Moreover, s̃ = s̃(a, b, c, d) is unique and (Ũ , Ṽ )(ξ; a, b, c, d)

is also unique up to translation. On the other hand, for any d > 0 and for any positive

numbers b, c with bc > 1, there exists a unique positive number ā = ā(b, c, d) ∈ (1/c, b) such

that s̃(ā, b, c, d) = 0.

As for the monotone dependence on parameters about s̃(a, b, c, d), we have

∂

∂a
s̃(a, b, c, d) > 0,

∂

∂b
s̃(a, b, c, d) < 0,

∂

∂c
s̃(a, b, c, d) > 0,(2.1)

if (a, b, c, d) ∈ P̃ . From this, we also have the following property about s = s(a, h, k, d):

∂

∂k
s(a, h, k, d) > 0 >

∂

∂h
s(a, h, k, d),(2.2)

if (a, h, k, d) ∈ P . But, we do not know the monotone dependence on the parameter a for

s(a, h, k, d).

Now, we focus on the case when s(a, h, k, d) = 0. The following lemma can be proved by

the uniqueness of wave speed and a suitable change of variables.

Lemma 2.1. There hold:

(1) s(1, h, h, 1) = 0 for all h > 1,

(2) If s(a, h, k, d) = 0 for some (a, h, k, d) ∈ P, then s(d, k, h, a) = 0 and s(la, h, k, ld) =

0 for all l > 0.

In particular, s(d, h, h, d) = 0 for all d > 0, h > 1.

Proof. (1) Let (s, U(ξ), V (ξ)) be a solution of (P) with a = d = 1 and k = h for some

h > 1. Then, by setting (U1, V1)(ξ) := (V, U)(−ξ), the functions U1 and V1 satisfy the

following system {
0 = U ′′

1 + (−s)U ′
1 + U1(1− U1 − hV1),

0 = V ′′
1 + (−s)V ′

1 + V1(1− V1 − hU1),

with

(U1, V1)(−∞) = (0, 1), (U1, V1)(+∞) = (1, 0).

By the uniqueness of wave speed, we have s(1, h, h, 1) = 0 for all h > 1.

(2) Suppose s(a, h, k, d) = 0 for some (a, h, k, d) ∈ P. That is to say, there exist functions

U2 and V2 satisfy the following system{
0 = U ′′

2 + U2(1− U2 − kV2),
0 = dV ′′

2 + aV2(1− V2 − hU2),
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with

(U2, V2)(−∞) = (0, 1), (U2, V2)(+∞) = (1, 0).

By defining (U3, V3)(ξ) := (V2, U2)(−
√
d/a ξ), the functions U3 and V3 satisfy the following

system {
0 = U ′′

3 + U3(1− U3 − hV3),
0 = aV ′′

3 + dV3(1− V3 − kU3),

with

(U3, V3)(−∞) = (0, 1), (U3, V3)(+∞) = (1, 0).

Again, by the uniqueness of wave speed, we have s(d, k, h, a) = 0.

At the same time, the functions U2 and V2 also satisfy the following system{
0 = U ′′

2 + U2(1− U2 − kV2),
0 = (ld)V ′′

2 + (la)V2(1− V2 − hU2)

for any positive number l. By the uniqueness, we also have s(la, h, k, ld) = 0 for all l > 0.

Finally, it follows from (1) and (2) that s(d, h, h, d) = 0 for all d > 0, h > 1. Therefore,

the lemma follows. �
Next, we study the following problem (P0) when s = 0:

U ′′ + U(1− U − kV ) = 0 < U ′,(2.3)

V ′′ + rV (1− V − hU) = 0 > V ′,(2.4)

with

(U, V )(−∞) = (0, 1), (U, V )(+∞) = (1, 0),

where r ̸= 1, h > 1, k > 1. Note that r = a/d.

Proposition 2.2. If (U, V ) is a solution of (P0), then∫ ∞

−∞
U2V ′ = − 1

3k
,

∫ ∞

−∞
U ′V 2 =

1

3h
,(2.5) (

k

3
− r

)∫ ∞

−∞
U ′V 3 + (1− rh)

∫ ∞

−∞
UU ′V 2 −

∫ ∞

−∞
U ′V ′V ′ =

1− 2r

6h
,(2.6)

2r

3

∫ ∞

−∞
U ′V 3 + 2rh

∫ ∞

−∞
UU ′V 2 −

∫ ∞

−∞
U ′V ′V ′ =

r

3h
.(2.7)

Proof. First, multiplying (2.3) by U ′ and integrating it over (−∞,+∞), we get∫ ∞

−∞
U ′U ′′ +

∫ ∞

−∞
U(1− U)U ′ = k

∫ ∞

−∞
UU ′V.

Then, by the boundary condition and the integration by parts, we can easily obtain∫ ∞

−∞
U2V ′ = − 1

3k
.
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The case for the value of
∫∞
−∞ U ′V 2 is similar. This proves (2.5).

Next, multiplying (2.3) by V V ′ and integrating this equation over (−∞,∞), we have∫ ∞

−∞
U ′′V V ′ +

∫ ∞

−∞
UV V ′ −

∫ ∞

−∞
U2V V ′ − k

∫ ∞

−∞
UV 2V ′ = 0.

By (2.4) and the integration by parts, we get

−
∫ ∞

−∞
U ′V ′V ′ + r

∫ ∞

−∞
U ′V 2(1− V − hU)

+

∫ ∞

−∞
UV V ′ +

∫ ∞

−∞
UU ′V 2 +

k

3

∫ ∞

−∞
U ′V 3 = 0.

Hence (2.6) follows from (2.5) and a direct computation.

Finally, multiplying (2.4) by UV ′ and integrating this equation over (−∞,∞), it follows

from (2.5) and the integration by parts that (2.7) holds. This completes the proof. �

3. Proofs of Main Theorems

In this section, we give the proofs of the main theorems stated in Section 1. The main

idea is to apply the information of standing wave with the help of the monotone dependence

on parameters.

3.1. Proof of Theorem 1. The theorem follows from Lemma 2.1 and (2.2). �

3.2. Proof of Theorem 2. First, recall from Lemma 2.1(2) that s(d, h, h, d) = 0 for all

h > 1, d > 0. It follows from (1.8) that s̃(d, dh, h/d, d) = 0 for all h > 1, d > 0. Now, using

(2.1) in P̃ , we have

s̃(a, dĥ, ĥ/d, d) > 0,

if a > d > 0 and ĥ > a/d. This is equivalent to

s(a, h, k, d) > 0, h = dĥ/a, k = aĥ/d,

if a > d > 0 and ĥ > a/d, due to (1.8).

Next, for a > d > 0 and h > 1, we choose ĥ = ah/d so that ĥ > a/d. Then s(a, h, k, d) > 0

when k = aĥ/d = (a/d)2h. It follows from (2.2) that s(a, h, k, d) > 0, if a > d > 0 and

h > 1, k ≥ (a/d)2h.

Similarly, we can prove that s(a, h, k, d) < 0, if 0 < a < d, k > 1 and h ≥ (d/a)2k. This

proves Theorem 2. �
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3.3. Proof of Theorem 3. When a = d, the conclusion follows from Theorem 1. With-

out loss of generality, we may assume a > d > 0. Suppose the conclusion is false. By

Lemma 2.1(2), there exist a1 > d1 > 0, h1 > 1, k1 > 1, l1 > 0 such that s(a1, h1, k1, d1) >

0 > s(l1a1, h1, k1, l1d1). By (2.2), we have s(a1, h, k, d1) > 0 if h = h1, k ≥ k1 or

1 < h ≤ h1, k = k1. Similarly, we also have s(l1a1, h, k, l1d1) < 0 if h = h1, 1 < k ≤ k1 or

h ≥ h1, k = k1. Combining these facts with Lemma 2.1(2) and the continuous dependence

on h and k, we have

(3.1) s(a1, h, k, d1) > 0 > s(l1a1, h, k, l1d1),

if (h, k) ∈ {h = h1, k > 1} ∪ {h > 1, k = k1}. Indeed, this can be proved by a contradiction

argument. Otherwise, there exists k ∈ (1, k1) such that s(a1, h1, k, d1) = 0. Then, by

Lemma 2.1(2), we have s(l1a1, h1, k, l1d1) = 0, a contradiction. The other cases are similar.

Hence (3.1) follows.

Next, we choose two positive numbers h̃ and k2 with h̃ > h1 and k2 > k1 such that

d2k2 ≥ a2h̃. By Theorem 2, we have s(l1a1, h̃, k2, l1d1) > 0. But, by (3.1), we have

s(l1a1, h1, k2, l1d1) < 0. Since s(a, h, k, d) is continuous on h, there exists h2 ∈ (h1, h̃)

such that s(l1a1, h2, k2, l1d1) = 0. This implies that s(a1, h2, k2, d1) = 0, by Lemma 2.1(2).

On the other hand, (3.1) implies that s(a1, h2, k1, d1) > 0. It follows from (2.2) that

s(a1, h2, k2, d1) > 0, a contradiction. So the theorem follows. �

3.4. Proof of Theorem 4. First, we define m := (a/d) − 1 > 0. Then, multiplying (1.2)

by UmV ′ and (1.3) by (1/d)UmU ′, respectively, and integrating it over (−∞,∞), we obtain

0 =

∫ ∞

−∞
(U ′V ′)′Um +

(
1 +

1

d

)
s

∫ ∞

−∞
UmU ′V ′ +

(∫ ∞

−∞
Um+1V ′ +

a

d

∫ ∞

−∞
UmU ′V

)
+

(
−
∫ ∞

−∞
Um+2V ′ − ah

d

∫ ∞

−∞
Um+1U ′V

)
+

(
−k

∫ ∞

−∞
Um+1V V ′ − a

d

∫ ∞

−∞
UmU ′V 2

)
= −m

∫ ∞

−∞
Um−1U ′U ′V ′ +

(
1 +

1

d

)
s

∫ ∞

−∞
UmU ′V ′ +

(
m+ 2− ah

d

)∫ ∞

−∞
Um+1U ′V

+

(
(m+ 1)k

2
− a

d

)∫ ∞

−∞
UmU ′V 2

= −m

∫ ∞

−∞
Um−1U ′U ′V ′ +

(
1 +

1

d

)
s

∫ ∞

−∞
UmU ′V ′ +

(
a+ d− ah

d

)∫ ∞

−∞
Um+1U ′V

+
a(k − 2)

2d

∫ ∞

−∞
UmU ′V 2.

Using the fact U ′ > 0 > V ′, the theorem follows. �
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3.5. Proof of Theorem 5. Suppose that (U, V ) is a solution of (P0) and that r = a/d > 1.

Then, by (2.6) and (2.7), we have

(3.2)

∫ ∞

−∞
UU ′V 2 =

4r − 1

6h(3rh− 1)
+

k − 5r

3(3rh− 1)

∫ ∞

−∞
U ′V 3.

Using 0 < V < 1 and the integration by parts, it follows from (2.5) that

(3.3)

∫ ∞

−∞
UU ′V 2 <

∫ ∞

−∞
UU ′V = −1

2

∫ ∞

−∞
U2V ′ =

1

6k
.

If we assume that k ≥ 5r, then, by (3.2) and (3.3), we obtain

(3rh− 1)h > (4r − 1)k.

Hence we see that

(3.4) s(a, h, k, d) ̸= 0 if a > d > 0, h > 1, k ≥ 5a/d, (3ah− d)h ≤ (4a− d)k.

Suppose that s(a1, h1, k1, d1) < 0 for some (a1, h1, k1, d1) such that

a1 > d1 > 0, h1 > 1, k1 ≥ 5a1/d1, (3a1h1 − d1)h1 ≤ (4a1 − d1)k1.

Then, by Theorem 4, we can choose a positive number h2 with 1 < h2 < min{h1, 1 + d1/a1}
such that s(a1, h2, k1, d1) > 0. Since s(a, h, k, d) is continuous on h, there exists a positive

number h̃ ∈ (h2, h1) such that s(a1, h̃, k1, d1) = 0. This contradicts (3.4), since (3a1h̃−d1)h̃ ≤
(4a1 − d1)k1. Hence the theorem follows. �

3.6. Proof of Theorem 6. When h = 1/(3r) and k = 5r, it follows from (2.6) and (2.7)

that r = 1/4. Let d > 0 be given. Since r = a/d, we have

s(a,
d

3a
,
5a

d
, d) ̸= 0 if a ∈ (d/5, d/3) \ {d/4}.

By the relation (1.8), we obtain

s̃(a,
d

3
,
5

d
, d) ̸= 0 if a ∈ (d/5, d/3) \ {d/4}.

However, for any positive numbers b, c with bc > 1, there exists a unique positive number

ā = ā(b, c, d) ∈ (1/c, b) such that s̃(ā, b, c, d) = 0. So s̃(d/4, d/3, 5/d, d) = 0 for all d > 0.

In other words, s(d/4, 4/3, 5/4, d) = 0 for all d > 0. Hence the theorem follows from the

monotone dependence on parameters (2.2). �
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