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Abstract. We study a nonlocal parabolic problem airing in the modeling of lin-

ear friction welding. Using some a priori estimates, we derive the global in time

existence of solution of this nonlocal problem.

1. Introduction

In this paper, we study the following nonlocal parabolic problem:


ut = uxx − g(t)u−p(x, t), 0 < x < 1, t > 0,

ux(0, t) = 0, u(1, t) = 1, t > 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1.

(1.1)

where λ > 0, p > 1, u0(x) is a smooth function such that 0 < u0(x) ≤ 1 for all

x ∈ [0, 1], u′
0(x) > 0 for all x ∈ (0, 1], u′

0(0) = 0, u0(1) = 1, and

g(t) := λ

(∫ 1

0

u−p(x, t)dx

)−1−1/p

.

Under the above assumption it is clear that ux(x, t) > 0 for x ∈ (0, 1]. Also, it is clear

that the solution exists and is unique as long as u(0, t) remains positive. Assuming

[0, T ) is the maximal existence interval, then either lim inft→T− u(0, t) = 0, or T = ∞.
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The problem (1.1) arises in the study of linear friction welding for a hard material.

The physical model is given by

ut = uxx −
(∫ ∞

0

u−p(x, t)dx

)−1−1/p

u−p, 0 < x < ∞, t > 0,(1.2)

ux(0, t) = 0, ux(∞, t) = 1, t > 0,(1.3)

u(x, 0) = u0(x), x ≥ 0.(1.4)

In the physical model, the parameter p is close to 4 (cf. [6] and references therein).

For some related works on nonlocal parabolic problems, we also refer the reader to

[2, 1, 3, 4, 5, 6].

In order to understand the model (1.2)-(1.4), it is proposed in [6] the following

approximated problem:

ut = uxx −
(∫ K

0

u−p(x, t)dx

)−1−1/p

u−p, 0 < x < K, t > 0,(1.5)

ux(0, t) = 0, u(K, t) = K, t > 0,(1.6)

u(x, 0) = u0(x), 0 ≤ x ≤ K,(1.7)

where K is any positive constant. Then, by a suitable re-scaling, (1.5)-(1.7) is reduced

to the problem (1.1) with λ := λ(K) := K1−1/p.

The steady states of (1.1) has been studied in [5]. The main purpose of this paper

is to answer the question raised in [5], namely, whether the solution of (1.1) exists

globally (in time). In [6], numerical simulations indicate that the solution of (1.1)

exists globally. The main purpose of this paper is to prove this result rigorously as

follows.

Theorem 1. The solution of (1.1) exists for all time 0 < t < ∞, and there exists a

positive constant c2 such that c2 ≤ u(x, t) ≤ 1 for all 0 ≤ x ≤ 1, 0 < t < ∞.

The details of proof of Theorem 1 is given in the next section.

2. Proof of Main Theorem

The proof of Theorem 1 is divided into the following lemmas. In this section, we

shall let u be the solution of (1.1) with the maximal existence time interval [0, T ) for

some T ≤ ∞.
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Lemma 2.1. There exist positive constants η and C∗, independent of T , such that

(2.1) g(t) < C∗up+η(0, t) for 0 < t < T.

Proof. Since p > 1, we can choose α ∈ (0, 1) such that

(2.2)
p + 1

(1 + α)p
< 1.

We take

η = 1 − p + 1

(1 + α)p
.

By parabolic estimates, for any T1 < T ,

(2.3) ‖u‖C1+α,(1+α)/2([0,1]×[0,T1]) ≤ Cα sup
0≤x≤1, 0≤t≤T1

g(t)u−p(x, t),

where the constant Cα is independent of T1 and T . In view of (2.2), we can choose

C∗ to be large enough so that

λ · 21+1/p
[CαC∗

1 + α

] p+1
(1+α)p

< C∗, g(0) < C∗up+η
0 (0).

With our choice of C∗, (2.1) is clearly valid for t = 0. If (2.1) is not valid, then

there must be a T1 < T such that

(2.4) g(t) < C∗up+η(0, t) for 0 < t < T1, g(T1) = C∗up+η(0, T1).

Using this in (2.3) we find that

‖u‖C1+α,(1+α)/2([0,1]×[0,T1]) ≤ CαC∗.

In particular,

0 ≤ ux(x, t) = ux(x, t) − ux(x, 0) ≤ CαC∗xα, 0 ≤ x ≤ 1, 0 ≤ t ≤ T1.

It follows that, for 0 ≤ x ≤ 1, 0 ≤ t ≤ T1,

u(x, t) ≤ u(0, t) +
CαC∗

1 + α
x1+α ≤ 2u(0, t) for 0 ≤ x ≤ x̄ :=

[(1 + α)u(0, t)

CαC∗

]1/(1+α)

.

Thus, for 0 ≤ t ≤ T1,∫ 1

0

u−p(x, t)dx ≥
∫ x̄

0

2−pu−p(0, t)dx = 2−p
[(1 + α)

CαC∗

]1/(1+α)

[u(0, t)]−p+1/(1+α),

which implies that, for 0 ≤ t ≤ T1,

g(t) ≤ λ21+1/p
[ CαC∗

(1 + α)

](p+1)/[p(1+α)]

up+η(0, t) < C∗up+η(0, t).
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This is a contradiction to (2.4). Hence the lemma follows.

Lemma 2.2. There exists a positive constant c0, independent of T , such that

(2.5) u(0, t) < 1 − c0 for 0 ≤ t < T.

Proof. We take positive constants c1 and c2 such that

u0(0) < c1 < c2 < 1.

In view of (2.3), if u(0, t1) = c1 and u(0, t2) ≥ c2, then

(2.6) |t1 − t2| ≥ γ :=
[c2 − c1

CαC∗

]2/(1+α)

.

Let ϕ be the solution of
ϕt = ϕxx − λcp+1

1 , 0 < x < 1, t > 0,

ϕx(0, t) = 0, ϕ(1, t) = 1, t > 0,

ϕ(x, 0) ≡ 1, 0 ≤ x ≤ 1.

We then take c0 such that

0 < c0 < min
(
1 − c2, inf

γ<t<∞
{1 − ϕ(0, t)}

)
.

It is clear that (2.5) is true for small t. If (2.5) is not always true, then there exists

t1 and t2 such that

u(0, t1) = c1, c1 < u(0, t) < 1 − c0 for t1 < t < t2, u(0, t2) = 1 − c0.

Note that we always have

g(t)u−p(x, t) ≥ g(t) ≥ λup+1(0, t) > λcp+1
1 for t1 < t ≤ t2,

so that, by comparison principle,

u(x, t) ≤ ϕ(x, t − t1) for t1 < t ≤ t2.

In particular, recalling (2.6) (t2 − t1 ≥ γ) and the definition of c0, we conclude

u(0, t2) ≤ ϕ(0, t2 − t1) < 1 − c0,

which is a contradiction.

Lemma 2.3. There exists a positive constant c∗0, independent of T , such that

(2.7) ux(x, t) ≥ c∗0x for 0 ≤ x ≤ 1, 0 ≤ t < T.
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Proof. We take c∗0 = c0 in (2.5) so that (2.5) holds. Take a smaller c∗0 if necessary so

that 1 − c∗0 + c∗0x ≥ u0(x). Then the comparison principle implies that

u(x, t) ≤ 1 − c∗0 + c∗0x for 0 < t < T.

In particular, this implies that

ux(1, t) ≥ c∗0 for 0 < t < T.

Take a smaller c∗0 if necessary so that u′
0(x) ≥ c∗0x. Differentiate the equation for u

with respect to x and apply comparison principle, we derive (2.7).

Lemma 2.4. There exists a positive constant c̄0, independent of T , such that

u(0, t) > c̄0 for 0 ≤ t < T.

Proof. Let c∗0 be given by the above lemma. Take c̄0 and c̄1 such that

C∗c̄η
1 < c∗0, c̄0 < c̄1 < u0(0).

If the conclusion is not true, then there exist t2 > t1 > 0 such that

u(0, t1) = c̄1, c̄0 < u(0, t) < c̄1 for t1 < t < t2, u(0, t2) = c̄0.

Using Lemma 2.1 we find that

g(t)u−p(x, t) ≤ C∗uη(0, t) < c∗0 for 0 < x < 1, t1 < t < t2.

Using Lemma 2.3 we find that

u(x, t1) ≥ c̄1 +
c∗0
2

x2.

Therefore by comparison principle

u(x, t) ≥ c̄1 +
c∗0
2

x2 for 0 < x < 1, t1 < t < t2,

which implies that u(0, t2) ≥ c̄1 > c̄0, which is a contradiction.

Combining these lemmas, we conclude the proof of Theorem 1.



6 JONG-SHENQ GUO, YUNG-JEN LIN GUO, AND BEI HU

References

[1] K. Deng, Dynamical behavior of solutions of a semilinear heat equation with nonlocal singularity,

SIAM J. Math. Anal. 26 (1995), 98–111.

[2] K. Deng, M.K. Kwong, and H.A. Levine, The influence of nonlocal nonlinearities on the long

time behavior of solutions of Burgers’ equation, Quart. Appl. Math. 50 (1992), 173–200.

[3] J.-S. Guo, Quenching behavior for the solution of a nonlocal semilinear heat equation, Differen-

tial and Integral Equations 13 (2000), 1139–1148.

[4] J.-S. Guo, B. Hu and C.-J. Wang, A nonlocal quenching problem arising in micro-electro me-

chanical system, Quart. Appl. Math. 67 (2009), 725–734.

[5] Y.-J. Guo, A nonlocal parabolic problem arising in linear friction welding, Osaka J. Math, 47

(2010), 33–40.

[6] N.I. Kavallaris, A.A. Lacey, C.V. Nikolopoulos, and C. Voong, Behaviour of a non-local equation

modelling linear friction welding, IMA J. Appl. Math. 72 (2007), 597–616.

Department of Mathematics, Tamkang University, 151, Ying-Chuan Road, Tamsui,

Taipei County 25137, Taiwan

E-mail address: jsguo@mail.tku.edu.tw

Department of Mathematics, National Taiwan Normal University, 88, S-4 Ting

Chou Road, Taipei 11677, Taiwan

E-mail address: yjguo@math.ntnu.edu.tw

Department of Mathematics, University of Notre Dame, Notre Dame, Indiana

46556, USA

E-mail address: b1hu@nd.edu


