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Abstract. In this paper, we study the minimal speed of traveling wave solutions for a
diffusive three species competition system. Our main concern is the linear determinacy
for the minimal speed. We provide some conditions on the parameters of the competition
system such that the linear determinacy is assured. The main idea is by studying the linear
determinacy of the corresponding approximated lattice dynamical systems and using the
discrete Fourier transform.

1. Introduction

To understand the interaction between multiple competing species on population dynamics

is one of the important issue in mathematical biology. One of typical mathematical mod-

els describing such phenomenon is the following so-called Lotka-Volterra type competition

system:

uit = Diu
i
xx + riu

i(1−
N∑
j=1

biju
j), x, t ∈ R, i = 1, ..., N,(1.1)

which describes how N species compete to each other, where Di, ri, bij > 0 for i, j = 1, ..., N .

To investigate the invasion phenomenon for (1.1), it is very nature to look for traveling wave

solutions. Indeed, there have been tremendous works devoted to the existence of traveling

wave solutions for (1.1), see, for example, [1, 6, 8, 13, 17, 18, 19, 21, 22] and the references

cited therein. However, most of them were devoted to two-species case (N = 2).

In this paper, we shall consider (1.1) with three species case (N = 3). We envision that

there are three species u, v and w living together such that each species has the preference

of food resource so that the competition occurs only between species u and v and between

species v and w, respectively. In other words, species u and w have different preferences of

food resource. But, species v has both preferences so that it needs to compete with both

species u and w.

Date: May 4, 2015. Corresponding Author: C.-C. Wu.
This work was partially supported by the National Science Council of the Republic of China under the

grants NSC 102-2115-M-032-003-MY3, NSC 102-2115-M-024-001 and NSC 101-2115-M-005-001. The work
of the second author was partially supported by NSF of China with grant 91130016, 11371338.

Key words and phrases: three species competition system, lattice dynamical system, traveling wave,
minimal speed, linear determinacy.

1



2 JONG-SHENQ GUO, YI WANG, CHANG-HONG WU, AND CHIN-CHIN WU

More precisely, we study the following diffusive three species competition system:

ut = D1uxx + r1u(1− u− b12v), x, t ∈ R,(1.2)

vt = D2vxx + r2v(1− b21u− v − b23w), x, t ∈ R,(1.3)

wt = D3wxx + r3w(1− b32v − w), x, t ∈ R,(1.4)

where Di > 0, ri > 0, bij > 0. Here u, v, w are the population densities of species 1, 2, 3,

respectively, bij is the competition coefficient of species j to species i, ri is the growth rate

of species i and Di is the diffusion coefficient of species i. Also, we have taken the scales

of species so that the carrying capacity of each species is normalized to be 1 and the states

(u, v, w) = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1) are equilibria of the system (1.2)-(1.4).

Throughout this paper, we shall always assume that

(A) b12, b32 > 1, b21 + b23 < 1,

which means that the species u,w are weak competitors to the species v. Therefore, it is

expected that the species v shall win the competition eventually. We thus are interested in

the traveling wave solution of the system (1.2)-(1.4), connecting the equilibria (1, 0, 1) and

(0, 1, 0), in the form

(u, v, w)(x, t) := (ϕ, ψ, θ)(y), y := x+ st,

where s is the wave speed and (ϕ, ψ, θ) is the wave profile. It is easy to see that (ϕ, ψ, θ)

satisfies the following problem:

(1.5)


sϕ′ = D1ϕ

′′ + r1ϕ(1− ϕ− b12ψ), y ∈ R,
sψ′ = D2ψ

′′ + r2ψ(1− b21ϕ− ψ − b23θ), y ∈ R,
sθ′ = D3θ

′′ + r3θ(1− b32ψ − θ), y ∈ R,
(ϕ, ψ, θ)(−∞) = (1, 0, 1), (ϕ, ψ, θ)(+∞) = (0, 1, 0),
0 ≤ ϕ, ψ, θ ≤ 1.

Notice that, by a linearization of the corresponding kinetic systems to (1.2)-(1.4), we can

easily check that near the equilibrium (1, 0, 1) the stable manifold is of dimension 2 and

the unstable manifold is of dimension 1; and the equilibrium (0, 1, 0) is stable such that the

stable manifold is of dimension 3, under the assumption (A).

If we consider the linearization of the second equation of (1.5) around the state (1, 0, 1),

the corresponding characteristic equation is given by

(1.6) D2µ
2 − sµ+ r2(1− b21 − b23) = 0.

We easily obtain that (1.6) has a positive solution if and only if s ≥ s∗, where

s∗ := 2
√
D2r2(1− b21 − b23).

Thus, the minimal speed smin (if it exists) for the diffusive model (1.2)-(1.4) with ϕ′ < 0, ψ′ >

0, θ′ < 0, must satisfy that smin ≥ s∗. Indeed, since the limiting linear equation of the second
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equation in (1.5) as y → −∞ is given by

D2ψ
′′ − sψ′ + r2(1− b21 − b23)ψ = 0

which has a monotone solution near y = −∞ only if s ≥ s∗. Hence we should have smin ≥ s∗.

Our main purpose is to investigate the linear determinacy for the problem (1.5). By linear

determinacy, it means that smin = s∗. In fact, the definition of linear determinacy is first

defined in [19], which means that the minimal speed is determined by the linearization of

the problem at some unstable equilibrium. For the works related to linear determinacy, we

refer to [10, 14, 15, 16, 19] for partial differential equations and [10, 12] for lattice dynamical

systems.

We now state our main theorem of this paper, the linear determinacy theorem for (1.5),

as follows.

Theorem 1. Assume that (A) holds. Also, let D2, r2, b21, b23 > 0 be given. Then smin = s∗

as long as

(1.7) (Dj, rj, bj2) ∈ B1
j ∪B2

j , j = 1, 3,

where

B1
j := {Dj ∈ (0, 2D2], bj2(b21 + b23) ≤ 1, rj > 0},(1.8)

B2
j :=

{
Dj ∈ (0, 2D2), bj2(b21 + b23) > 1, 0 < rj <

(
2− Dj

D2

)
r2(1− b21 − b23)

bj2(b21 + b23)− 1

}
,(1.9)

for j = 1, 3.

To prove this main theorem, following a method developed in [10], we first consider the

corresponding discrete diffusive system of (1.2)-(1.4) in the following form

u′j(t) = d1D[uj](t) + r1uj(t)[1− uj(t)− b12vj(t)], j ∈ Z, t ∈ R,(1.10)

v′j(t) = d2D[vj](t) + r2vj(t)[1− b21uj − vj(t)− b23wj(t)], j ∈ Z, t ∈ R,(1.11)

w′
j(t) = d3D[wj](t) + r3wj(t)[1− b32vj(t)− wj], j ∈ Z, t ∈ R,(1.12)

where dj is the discrete diffusion rate and D[uj] := (uj+1 − uj) + (uj−1 − uj) and so on.

The system (1.10)-(1.12) is a so-called lattice dynamical system. For the study of lattice

dynamical systems, we refer to the book of Fife [7] and survey papers by Chow [5] and

Mallet-Paret [20].

A traveling wave of (1.10)-(1.12) is a solution in the form

(uj(t), vj(t), wj(t)) = (Û(ξ), V̂ (ξ), Ŵ (ξ)), ξ = j + ct,

where c is the wave speed and {Û , V̂ , Ŵ} are the wave profiles. Therefore, the problem of

finding traveling wave of (1.10)-(1.12) is equivalent to find (c, Û , V̂ , Ŵ ) ∈ R× [C1(R)]3 such
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that

(1.13)



cÛ ′ = d1D[Û ] + r1Û(1− Û − b12V̂ ), ξ ∈ R,

cV̂ ′ = d2D[V̂ ] + r2V̂ (1− b21Û − V̂ − b23Ŵ ), ξ ∈ R,

cŴ ′ = d3D[Ŵ ] + r3Ŵ (1− b32V̂ − Ŵ ), ξ ∈ R,

(Û , V̂ , Ŵ )(−∞) = (1, 0, 1), (Û , V̂ , Ŵ )(+∞) = (0, 1, 0),

0 ≤ Û , V̂ , Ŵ ≤ 1,

where D[u](ξ) := u(ξ + 1) + u(ξ − 1)− 2u(ξ) and so on.

Following [3, 12], we first have the following theorem on the existence of traveling waves

and the minimal wave speed for (1.13).

Theorem 2. Assume (A). Then there exists a positive constant cmin such that the problem

(1.13) admits a solution (c, Û , V̂ , Ŵ ) satisfying Û ′(·) < 0, V̂ ′(·) > 0 and Ŵ ′(·) < 0 on R if

and only if c ≥ cmin.

The main idea of proving Theorem 2 is to transform the problem into a monotone system.

Based on the monotone property, a typical method to show the existence of traveling wave

solution is to apply the monotone iteration scheme with the help of super-sub-solutions (cf.

[23, 2]). Our approach here adopts an idea of [3] by truncating the original problem with the

help of a super-solution. Then we are able to obtain the existence of traveling wave solution.

For the 2-component system, we refer to [12]. In fact, the method of [3] (and [12]) works

well to multiple component systems, as long as we can derive that the solutions of truncated

problems can produce a desired solution with correct boundary conditions at ±∞. However,

we were unable to accomplish this by using the definition of super-solution defined in [12]

(or [3]). To overcome this difficulty, we introduce a suitable notion of super-solution (see

Remark 2.1 and Proposition 1 below).

The related works about the minimal speed for lattice dynamical systems can be found

in, for example, [2, 3, 9, 11, 12].

Next, to estimate the minimal speed for (1.13), we define

c∗ := inf
λ>0

{
d2(e

λ + e−λ − 2) + r2(1− b21 − b23)

λ

}
.

It is clear that

(1.14) cλ = d2(e
λ + e−λ − 2) + r2(1− b21 − b23)

has a positive solution if and only if c ≥ c∗. Moreover, there exists λ∗ > 0 such that λ∗ is

the unique solution of (1.14) when c = c∗. For c > c∗, (1.14) has exactly two solutions λi(c),

i = 1, 2, with 0 < λ1(c) < λ2(c).

Then, based on a fundamental theory of [4] (see also [3, 12]), we have
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Theorem 3. Assume (A). Then cmin ≥ c∗.

By applying an idea used in [10, 12], the linear determinacy for (1.13) is given as follows.

Theorem 4. Assume (A). Let r2 > 0, b21 > 0 and b23 > 0 be given. Then there exists a

constant d∗ = d∗(d2) > 2d2 such that cmin = c∗ as long as

(dj, rj, bj2) ∈ A1
j ∪ A2

j , j = 1, 3,(1.15)

where

A1
j := {dj ∈ (0, d∗], bj2(b21 + b23) ≤ 1, rj > 0},(1.16)

A2
j :=

{
dj ∈ (0, d∗], bj2(b21 + b23) > 1, 0 < rj ≤

d∗ − dj
d∗ − d2

· r2(1− b21 − b23)

bj2(b21 + b23)− 1

}
(1.17)

for j = 1, 3.

With this discrete linear determinacy theorem, we can apply the method of discretization

with the help of discrete Fourier transform used in [10] to finish the proof of our main

theorem, Theorem 1. However, to prove Theorem 1, we need a detailed analysis of the

quantity d∗(d2) defined in Theorem 4. See the two key lemmas (Lemmas 4.1 and 4.2) in §4.
The rest of this paper is organized as follows. In §2, we study the existence of minimal

speed for the discrete model (1.13). In §3, we characterize the linear determinacy for the

discrete model (1.13). Finally, in §4, we study the continuous PDE system (1.2)-(1.4) and

prove the linear determinacy theorem for the continuous system (1.5) by using an idea from

[10].

2. Discrete problem: existence of minimal speed

This section is devoted to the proofs of Theorem 2 and Theorem 3.

First, if (c, Û , V̂ , Ŵ ) is a solution of (1.13), then it is easy to see that (cf. [3, 12])

0 < Û(·), V̂ (·), Ŵ (·) < 1 in R, c > 0.(2.1)

For convenience, we introduce the new variable U := 1 − Û , V := V̂ ,W := 1 − Ŵ so that

(1.13) is transformed into a cooperative system as follows:

(2.2)



cU ′ = d1D[U ] + r1(1− U)(−U + b12V ), ξ ∈ R,
cV ′ = d2D[V ] + r2V (1− b21 − b23 − V + b21U + b23W ), ξ ∈ R,
cW ′ = d3D[W ] + r3(1−W )(−W + b32V ), ξ ∈ R,
(U, V,W )(−∞) = (0, 0, 0), (U, V,W )(+∞) = (1, 1, 1),

0 ≤ U, V,W ≤ 1.
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Note that the new problem (2.2) enjoys the monotone property. In fact, for given c, µ > 0,

we let

H1(U, V,W )(ξ) :=

{
µU +

d1
c
D[U ] +

1

c
r1(1− U)(−U + b12V )

}
(ξ),

H2(U, V,W )(ξ) :=

{
µV +

d2
c
D[V ] +

1

c
r2V (1− b21 − b23 − V + b21U + b23W )

}
(ξ),

H3(U, V,W )(ξ) :=

{
µW +

d3
c
D[W ] +

1

c
r3(1−W )(−W + b32V )

}
(ξ).

Then, by choosing a sufficient large constant µ, the operator T := (T1, T2, T3) defined by

T1(U, V,W )(ξ) := e−µξ

∫ ξ

−∞
eµsH1(U, V,W )(s)ds,

T2(U, V,W )(ξ) := e−µξ

∫ ξ

−∞
eµsH2(U, V,W )(s)ds,

T3(U, V,W )(ξ) := e−µξ

∫ ξ

−∞
eµsH3(U, V,W )(s)ds,

is a monotone operator on the space C0(R; [0, 1]) × C0(R; [0, 1]) × C0(R; [0, 1]). It is clear

that (c, U, V,W ) is a solution of (2.2) if and only if (U, V,W ) = T (U, V,W ) and

(U, V,W )(−∞) = (0, 0, 0), (U, V,W )(+∞) = (1, 1, 1).

We now introduce the notion of super-solution as follows.

Definition 2.1. Given a constant c > 0. A continuous function (U+, V+,W+) from R to

(0, 1]× (0, 1]× (0, 1] is called a super-solution of (2.2), if the followings hold:

(i) There exists some ξ0 ∈ R such that U+(ξ0) < 1 and W+(ξ0) < 1;

(ii) U+(+∞) = V+(+∞) = W+(+∞) = 1;

(iii) U+, V+ and W+ are differentiable a.e. in R such that

c(U+)
′ ≥ d1D[U+] + r1(1− U+)(−U+ + b12V+),(2.3)

c(V+)
′ ≥ d2D[V+] + r2V+(1− b21 − b23 − V+ + b21U+ + b23W+),(2.4)

c(W+)
′ ≥ d3D[W+] + r3(1−W+)(−W+ + b32V+)(2.5)

hold a.e. in R.

Remark 2.1. We note that the definition of super-solution here is a little different from the

one used in [12]. Instead of requiring that U+ and W+ are non-constant in [12], here we take

a little stronger condition as (i).

In order to prove the existence of traveling waves, the following proposition plays an

important role.
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Proposition 1. If there exists a super-solution (U+, V+,W+) satisfying U+(·) = V+(·) =

W+(·) = 1 on [0,+∞), then (2.2) admits a solution (U, V,W ) with U ′(·) > 0, V ′(·) > 0 and

W ′(·) > 0 in R.

To prove Proposition 1, following [3] we introduce the following truncated problem for the

integral system

(2.6) (U, V,W )(ξ) = (T n
1 (U, V,W ), T n

2 (U, V,W ), T n
3 (U, V,W ))(ξ) for all ξ ∈ [−n, 0]

with the boundary conditions:

U(ξ) = 1, V (ξ) = 1,W (ξ) = 1, ∀ ξ ∈ (0,+∞),(2.7)

U(ξ) = V (ξ) = W (ξ) = ε, ∀ ξ ∈ (−∞,−n],(2.8)

where ε ∈ [0, 1), n ∈ N and

T n
1 (U, V,W )(ξ) := e−µξ

∫ −n

−∞
εµeµsds+ e−µξ

∫ ξ

−n

eµsH1(U, V,W )(s)ds,

T n
2 (U, V,W )(ξ) := e−µξ

∫ −n

−∞
εµeµsds+ e−µξ

∫ ξ

−n

eµsH2(U, V,W )(s)ds,

T n
3 (U, V,W )(ξ) := e−µξ

∫ −n

−∞
εµeµsds+ e−µξ

∫ ξ

−n

eµsH3(U, V,W )(s)ds.

Note that (U, V,W ) satisfies the differential equations in (2.2) on (−n, 0) if it satisfies (2.6).
Since T n

i also enjoy the monotone property, we can derive the following lemma by a similar

argument as that for [12, Lemma 2.2]. We shall not repeat the proof here.

Lemma 2.1. For each n ∈ N and ε ∈ [0, 1), there exists a unique function (Un,ε, V n,ε,W n,ε)

from R to [ε, 1]× [ε, 1]× [ε, 1] that satisfies (2.6)-(2.8) and has the following properties:

(1) Un,ε, V n,ε,W n,ε ∈ C1((−n, 0)) ∩ C((−∞, 0]).

(2) (Un,ε)′, (V n,ε)′, (W n,ε)′ > 0 on (−n, 0) for any ε ∈ [0, 1).

(3)
d

dε
Un,ε(ξ),

d

dε
V n,ε(ξ),

d

dε
W n,ε(ξ) ≥ e−µ(ξ+n) for ξ ∈ [−n, 0].

To proceed further, we also recall the following Helly’s Lemma.

Proposition 2 (Helly’s Lemma). Let {Un}n∈N be a sequence of uniformly bounded and

non-decreasing functions defined in R. Then there exist a subsequence {Uni
} of {Un} and a

non-decreasing function U such that Uni
→ U as i→ +∞ point-wise in R.

Based on Lemma 2.1 and Helly’s Lemma, we can modify the proof in [12, Lemma 2.4]

to show Proposition 1 by using the new definition (comparing with that in [12]) of super-

solution. For reader’s convenience, we provide the details of proof as follows.
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Proof of Proposition 1. First, we choose n0 > 0 such that U+(−n0) = ε1 and W+(−n0) = ε2

for some εi ∈ (0, 1) (i = 1, 2). Note that ε1 and ε2 exist because of the definition of super-

solution. Then we shall prove that there exists a subsequence {nk} of {n} such that one of

the followings must hold:

(i) There exists ε = ε(nk) ∈ (0, 1) such that

Unk,ε(nk)(−nk/2) = ε1, W
nk,ε(nk)(−nk/2) ≤ ε2 for all nk > 2n0;

(ii) There exists ε = ε(nk) ∈ (0, 1) such that

Unk,ε(nk)(−nk/2) ≤ ε1, W
nk,ε(nk)(−nk/2) = ε2 for all nk > 2n0.

In order to do this, we consider

η∗ := inf{η > 0|U+(ξ) ≥ Un,0(ξ − η), V+(ξ) ≥ V n,0(ξ − η),

W+(ξ) ≥ W n,0(ξ − η) for all ξ ∈ (−∞, 0] }.

We can see that η∗ is well-defined and η∗ ∈ [0, n] since U+(·) = V+(·) = W+(·) = 1 on

[0,+∞) and Un,0(·) = V n,0(·) = W n,0(·) = 0 on (−∞,−n]. By continuity, we have

U+(ξ) ≥ Un,0(ξ − η∗), V+(ξ) ≥ V n,0(ξ − η∗), W+(ξ) ≥ W n,0(ξ − η∗)

for all ξ ∈ (−∞, 0]. This implies that

Hi(U+, V+,W+)(ξ) ≥ Hi(U
n,0, V n,0,W n,0)(ξ − η∗) for ξ ∈ (−∞, 0], i = 1, 2, 3.

Using this monotone property of Hi and the same process of [11, Lemma 2.4], we have η∗ = 0.

In particular, U+(·) ≥ Un,0(·) and W+(·) ≥ W n,0(·) on (−∞, 0]. Thus, we have

Un,0(−n
2
) < Un,0(−n0) ≤ U+(−n0) = ε1,

W n,0(−n
2
) < W n,0(−n0) ≤ W+(−n0) = ε2

for any n > 2n0.

Consequently, for each n > 2n0, by using Lemma 2.1(3) and the continuity of U ε,n and

W ε,n in ε, there exists a unique ε = ε(n) ∈ (0, 1) such that

Un,ε(n)(−n/2) = ε1, W
n,ε(n)(−n/2) ≤ ε2 or Un,ε(n)(−n/2) ≤ ε1, W

n,ε(n)(−n/2) = ε2

must hold. By choosing a suitable subsequence {nk} of {n}, one of (i) and (ii) must hold.

We now consider the sequence of functions

{Unk,ε(nk)(−nk/2 + ·), V nk,ε(nk)(−nk/2 + ·), W nk,ε(nk)(−nk/2 + ·)}nk>2n0 ,

in R. Then Helly’s Lemma gives

(Unk,ε(nk), V nk,ε(nk), W nk,ε(nk))(−nk/2 + ·) → (U, V,W )(·) in R
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as k → ∞ (up to take a subsequence), where (U, V,W ) is a non-decreasing function from R
to [0, 1]× [0, 1]× [0, 1] and satisfies

U(ξ) = T1(U, V,W )(ξ), V (ξ) = T1(U, V,W )(ξ),W (ξ) = T2(U, V,W )(ξ) for all ξ ∈ R.

Furthermore, by (i) and (ii), one of the following must hold:

U(0) = ε1 and W (0) ≤ ε2,(2.9)

U(0) ≤ ε1 and W (0) = ε2.(2.10)

To prove that (U, V,W ) is a solution of (2.2)-(2.3), it suffices to show that (U, V,W )

satisfies the boundary conditions. Since U , V and W are non-decreasing in R and 0 ≤
U, W ≤ 1 in R, we see that U(±∞), V (±∞) and W (±∞) exist. By using U = T1(U, V,W ),

V = T1(U, V,W ), W = T2(U, V,W ) and L’Hospital’s rule, we have

(1− U)(b12V − U)(±∞) = 0,(2.11)

V { [1− V ] + b21[U − 1] + b23[W − 1] }(±∞) = 0,(2.12)

(1−W )(b32V −W )(±∞) = 0.(2.13)

Hence U(±∞), V (±∞),W (±∞) ∈ {0, 1}.
Recall that we have (2.9) or (2.10). Without loss of generality, we may assume that

(2.9) occurs. The same argument can apply to the other case. When (2.9) occurs, we have

U(−∞) = 0 and U(+∞) = 1 since U is non-decreasing in R. Note that U(−∞) = 0 implies

V (−∞) = 0 because of (2.11). Then we can show that V (+∞) = 1. Otherwise, V (±∞) = 0

implies that V ≡ 0. Integrating the first equation of (2.2) over (−∞,+∞) gives

0 < c = −r1
∫ +∞

−∞
U(s)(1− U(s))ds < 0,

a contradiction. Thus, we must have (V (−∞), V (+∞)) = (0, 1).

Finally, we show that (W (−∞),W (+∞)) = (0, 1). Indeed, by (2.12) and using U(+∞) =

V (+∞) = 1, we haveW (+∞) = 1. Recall thatW (0) ≤ ε2 ∈ (0, 1) because of (2.9), it follows

that W (−∞) = 0 since W is non-decreasing. Thus, we have (W (−∞),W (+∞)) = (0, 1).

Thus, (U, V,W ) is a solution of (2.2).

Finally, it suffices to show that U ′ > 0 V ′ > 0 and W ′ > 0 in R. For this, note that U , V

and W are non-decreasing in R, and µ≫ 1, it follows that

Hi(U, V,W )(s) ≥ Hi(U, V,W )(ξ) for all s ≥ ξ and i = 1, 2, 3.

Differentiating U(ξ) = T1(U,W )(ξ) gives

U ′(ξ) = −µe−µξ

∫ ξ

−∞
eµs {H1(U, V,W )(s)−H1(U, V,W )(ξ)} ds ≥ 0 in R.
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If there exists U ′(ξ0) = 0 for some ξ0 ∈ R, we obtain H1(U, V,W )(s) ≡ H1(U, V,W )(ξ0) for

all s ∈ (−∞, ξ0]. By taking s→ −∞,

µU(ξ0) + U ′(ξ0) = H1(U, V,W )(ξ0) = H1(U, V,W )(−∞) = 0.

Note that U ′(ξ0) = 0 we obtain U(ξ0) = 0, a contradiction with (2.1). Thus U ′(ξ) > 0 for all

ξ ∈ R. Similarly, we also have V ′(·) > 0 and W ′(·) > 0 in R. Then we complete the proof of

Proposition 1. �

As an application of Proposition 1, we have

Corollary 2.2. The problem (2.2) admits a solution (c, U, V,W ) with U ′(·) > 0, V ′(·) > 0

and W ′(·) > 0 in R as long as c ≥ ĉ, where

ĉ := max{d1(e+ e−1 − 2) + r1(b12 − 1), d2(e+ e−1 − 2) + r2,

d3(e+ e−1 − 2) + r3(b32 − 1)}.

Proof. Set

U+(ξ) = V+(ξ) = W+(ξ) = min{eξ, 1}.

Then by some simple computations, it is not hard to check that (U+, V+,W+) forms a super-

solution of (2.2) as long as c ≥ ĉ. Then Corollary 2.2 follows from Proposition 1. �

The proof of the following lemma is similar to that of [12, Lemma 2.5], we omit it here.

Lemma 2.3. If there exists a super-solution (U+, V+,W+) of (2.2) with (U+)
′, (V+)

′, (W+)
′ >

0 for a given c > 0, then (2.2) admits a solution (c, U, V,W ) with U ′ > 0, V ′ > 0,W ′ > 0 in

R.

We are ready to prove Theorem 2.

Proof of Theorem 2. Due to Corollary 2.2, the constant

cmin := inf{c > 0 | (2.2) has a solution (c, U, V,W )

with U ′ > 0, V ′ > 0 and W ′ > 0 in R}

is well-defined and cmin ≥ 0.

Note that the wave profile of a monotone front with wave speed c0 is a super-solution of

(2.2) for any c > c0. Thus, Lemma 2.3 implies that (2.2) admits a solution (c, U, V,W ) with

U ′ > 0, V ′ > 0 and W ′ > 0 in R for any c > cmin. To complete the proof of Theorem 2, it

suffices to show that (2.2) also has a strictly monotone solution (c, U, V,W ) for c = cmin.

To do so, we choose {ci, Ui, Vi,Wi} be a sequence of strictly monotone solutions of (2.2)

such that ci ↓ cmin and one of the following cases occurs:
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(i) Ui(0) = 1/2 and Wi(0) ≤ 1/2 for all i ∈ N;
(ii) Ui(0) ≤ 1/2 and Wi(0) = 1/2 for all i ∈ N.

Note that we can choose Ui and Wi such that either (i) or (ii) holds since the wave profiles

are monotone and if necessary, we take a subsequence.

By Helly’s Lemma, there exists a subsequence {cij , Uij , Vij ,Wij} and a monotone non-

decreasing function (Umin, Vmin,Wmin) such that

(cij , Uij , Vij ,Wij) → (cmin, Umin, Vmin,Wmin)

pointwise in R as j → ∞. Since one of (i) and (ii) holds, we have either Umin(0) = 1/2

and Wmin(0) ≤ 1/2; or Umin(0) ≤ 1/2 and Wmin(0) = 1/2. Thus, we can apply the same

argument in the proof of Proposition 1 to derive that

(Umin, Vmin,Wmin)(−∞) = (0, 0, 0), (Umin, Vmin,Wmin)(+∞) = (1, 1, 1)

and U ′
min > 0, V ′

min > 0 and W ′
min > 0 in R. Consequently, (2.2) also has a strictly monotone

solution for c = cmin. Hence cmin > 0 and so we have completed the proof of Theorem 2. �

In order to prove Theorem 3, we study the asymptotic behavior of wave profile as ξ → −∞
based on the following fundamental theory developed in [3, 4].

Proposition 3. Let a > 0 be a constant and B(·) be a continuous function having finite

B(±∞) := limξ→±∞B(ξ). Let W (·) be a measurable function satisfying

(2.14) az(ξ) = e
∫ ξ+1
ξ z(s)ds + e

∫ ξ−1
ξ z(s)ds +B(ξ), ∀ξ ∈ R.

Then z is uniformly continuous and bounded. In addition, ω± = limξ→±∞ z(ξ) exist and are

real roots of the characteristic equation

aω = eω + e−ω +B(±∞).

Proof of Theorem 3. The theorem can be easily proved by applying Proposition 3 to z =

V ′/V . Indeed, it follows from (2.2) that the function z = V ′/V satisfies the equation (2.14)

with

B(ξ) = −2d2 + r2[1− b21 − b23 − V (ξ) + b21U(ξ) + b23W (ξ)].

Since B(−∞) = −2d2 + r2(1− b21 − b23), we have

cλ = d2(e
λ + e−λ − 2) + r2(1− b21 − b23)

for some λ > 0. It follows that c ≥ c∗. Hence Theorem 3 follows. �
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3. Characterization of linear determinacy for discrete model

This section is devoted to the proof of Theorem 4.

To begin with, recall that λ1 = λ1(c) be the smallest root of (1.14) for any given c ≥ c∗.

Then we consider the function

(3.1) g(c, d) := cλ1(c)− d(eλ1(c) + e−λ1(c) − 2).

Note that g(c, d) is strictly decreasing in d for any fixed c. Also, we have

g(c, d2) = r2(1− b21 − b23) > 0.

This implies that, for c = c∗, there exists a unique constant d∗ = d∗(d2) > d2 such that

g(c∗, d∗) = 0. Furthermore, we can have d∗ > 2d2. Indeed, following the same process in [10,

Lemma 2.2], we have

Lemma 3.1. Let r2, b21 and b23 be fixed and let the function g be given in (3.1). Then there

exists a unique d∗ = d∗(d2) > 2d2 such that

g(c∗, d∗) = 0 < g(c∗, d) for all d ∈ (0, d∗).

Furthermore, for each c > c∗, there exists a unique dc > d∗ such that

g(c, dc) = 0 < g(c, d) for all d ∈ (0, dc).

We are ready to prove Theorem 4.

Proof of Theorem 4. Thanks to Theorem 3, it suffices to show that cmin ≤ c∗ as long as

(1.15) holds. Furthermore, by Proposition 1, it suffices to show that a super-solution exists

for each c ≥ c∗. For this, given c ≥ c∗. We introduce the functions

U+(ξ) = W+(ξ) := min

{
1,

eλ1ξ

b21 + b23

}
, V+(ξ) := min{1, eλ1ξ}.

Then it is easy to check that (2.4) holds a.e. in R, using (3.1). Moreover, (2.3) and (2.5)

hold for all ξ > [ln(b21 + b23)]/λ1 := ξ1, since U+(ξ) = W+(ξ) = 1 for all ξ > ξ1.

It remains to check (2.3) and (2.5) for ξ < ξ1. Indeed, for ξ < ξ1, we have

U+(ξ) = W+(ξ) =
eλ1ξ

b21 + b23
, V+(ξ) = eλ1ξ.

Let us focus on the U -equation first. Direct calculations yield

c(U+)
′(ξ)− d1D[U+](ξ)− r1[(1− U+)(−U+ + b12V+)](ξ)(3.2)

≥ eλ1ξ

b21 + b23

{
cλ1 − d1(e

λ1 + e−λ1 − 2) + r1

(
1− eλ1ξ

b21 + b23

)
[1− b12(b21 + b23)]

}
=:

eλ1ξ

b21 + b23
Q(ξ) for ξ < ξ1.
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If b12(b21 + b23) ≤ 1, using eλ1ξ/(b21 + b23) < 1 and Lemma 3.1 give us

Q(ξ) ≥ cλ1 − d1(e
λ1 + e−λ1 − 2) ≥ 0 in (−∞, ξ1)

for all d1 ∈ (0, d∗] and for all r1 > 0. Hence (2.3) is verified whenever (d1, r1, b12) ∈ A1
1,

where A1
1 is given by (1.16).

Now, we shall consider the case that b12(b21 + b23) > 1. For ξ < ξ1, we see from (3.2) that

Q(ξ) ≥ cλ1 − d1(e
λ1 + e−λ1 − 2)− r1[b12(b21 + b23)− 1]

:= g(c, d1)− r1[b12(b21 + b23)− 1].

We shall use an idea from the proof of [10, Theorem 1]. By Lemma 3.1, there is a unique dc

such that

cλ1(c)

dc
= eλ1(c) + e−λ1(c) − 2.(3.3)

Together with (1.14), we obtain

cλ1(c) = r2(1− b21 − b23)
dc

dc − d2
.(3.4)

Combining (3.3) and (3.4) give

g(c, d1) = r2(1− b21 − b23)
dc − d1
dc − d2

.

Thus, Q(ξ) ≥ 0 for ξ < ξ1 as long as

b12(b21 + b23) > 1, 0 < r1 <
r2(1− b21 − b23)

b12(b21 + b23)− 1
· dc − d1
dc − d2

.

Recall that we have dc > d∗ > 2d2 (Lemma 3.1). Hence we have

d∗ − d1
d∗ − d2

≤ dc − d1
dc − d2

.

Then Q(ξ) ≥ 0 for ξ < ξ1 as long as (d1, r1, b12) ∈ A2
1, where A

2
1 is given by (1.17).

Next, we turn to the W -equation. Direct computations give

c(W+)
′(ξ)− d3D[W+](ξ)− r3[(1−W+)(−W+ + b32V+)](ξ)(3.5)

≥ eλ1ξ

b21 + b23

{
cλ1 − d3(e

λ1 + e−λ1 − 2) + r3

(
1− eλ1ξ

b21 + b23

)
[1− b32(b21 + b23)]

}
.

The same process as above, we can derive (3.5) is non-negative for ξ < ξ1 as long as

(d3, r3, b32) ∈ A1
3 ∪ A2

3.

Consequently, for each c ≥ c∗, we see that (U+, V+,W+) is a super-solution of (1.13) and

satisfies U+(·) = V+(·) = W+(·) = 1 on [0,+∞) if (1.15) holds. By Proposition 1, the

problem (1.13) has a solution for c ≥ c∗ if (1.15) holds. Thus, we have cmin = c∗. This

completes the proof of Theorem 4. �
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4. Linear determinacy for continuous model (1.2)-(1.4)

In this section, we study the monotone traveling waves and linear determinacy for the

continuous system (1.2)-(1.4). Our approach is based on the method used in [10] by approx-

imating the continuous system with the following discrete system:

(uτj )
′(t) = D1D[uτj ](t)/τ

2 + r1u
τ
j (t)[1− uτj (t)− b12v

τ
j (t)], j ∈ Z, t ∈ R,(4.1)

(vτj )
′(t) = D2D[vτj ](t)/τ

2 + r2v
τ
j (t)[1− b21u

τ
j − vτj (t)− b23w

τ
j (t)], j ∈ Z, t ∈ R,(4.2)

(wτ
j )

′(t) = D3D[wτ
j ](t)/τ

2 + r3w
τ
j (t)[1− b32v

τ
j (t)− wτ

j ], j ∈ Z, t ∈ R,(4.3)

for any τ > 0 small.

Let

c∗(τ
−2D2) := min

λ>0

{
τ−2D2(e

λ + e−λ − 2) + r2(1− b21 − b23)

λ

}
.(4.4)

Then, using the same argument as in [12, Section 5], we can easily show that

τc∗(τ
−2D2) → 2

√
D2r2(1− b21 − b23) := s∗ as τ → 0+.(4.5)

To prove Theorem 1, we first prepare two key lemmas as follows.

Lemma 4.1. d∗(d2)/d2 is decreasing in d2, where d∗(d2) is given by Lemma 3.1.

Proof. From Lemma 3.1, we have g(c∗, d∗) = 0, which implies

c∗(d2)λ∗(d2) = d∗(d2)(e
λ∗(d2) + e−λ∗(d2) − 2).

Also, recall from (1.14) that

(4.6) c∗(d2)λ∗(d2) = d2(e
λ∗(d2) + e−λ∗(d2) − 2) + r2(1− b21 − b23).

It follows that

d∗(d2)

d2
= 1 +

r2(1− b21 − b23)

d2(eλ∗(d2) + e−λ∗(d2) − 2)
.(4.7)

Thus, to prove Lemma 4.1, it suffices to show

d2(e
λ∗(d2) + e−λ∗(d2) − 2) is increasing in d2.(4.8)

For this, recall that

c∗(d2) = min
λ>0

Φ(λ, d2), Φ(λ, d2) :=
d2(e

λ + e−λ − 2) + r2(1− b21 − b23)

λ
,

c∗(d2)λ∗(d2) = Ψ(d2), Ψ(d2) := d2(e
λ∗(d2) + e−λ∗(d2) − 2) + r2(1− b21 − b23).

For a given d2 > 0, since Φ is strictly convex and Φ(0+, d2) = Φ(∞, d2) = ∞, there exists

a unique λ∗(d2) satisfying

∂

∂λ
Φ(λ, d2)

∣∣
λ=λ∗(d2)

= 0.
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It follows that

d2(e
λ∗(d2) − e−λ∗(d2))λ∗(d2) = Ψ(d2).(4.9)

By differentiating (4.9) with respect to d2, we arrive at

λ′∗(d2) =
eλ∗(d2) + e−λ∗(d2) − 2− λ∗(d2)(e

λ∗(d2) − e−λ∗(d2))

d2λ∗(d2)(eλ∗(d2) + e−λ∗(d2))
.(4.10)

By differentiating Ψ(d2) with respect to d2, we arrive at

Ψ′(d2) = eλ∗(d2) + e−λ∗(d2) − 2 + λ′∗(d2)d2(e
λ∗(d2) − e−λ∗(d2)).(4.11)

Putting (4.10) into (4.11), we have

Ψ′(d2) = (eλ∗(d2) + e−λ∗(d2) − 2)

+
(eλ∗(d2) − e−λ∗(d2))

λ∗(d2)(eλ∗(d2) + e−λ∗(d2))
[eλ∗(d2) + e−λ∗(d2) − 2− λ∗(d2)(e

λ∗(d2) − e−λ∗(d2))].

In order to determine the sign of Ψ′(d2), we consider

G(x) := (ex + e−x − 2) +
(ex − e−x)

x(ex + e−x)
[ex + e−x − 2− x(ex − e−x)] =

Q(x)

x(ex + e−x)
,

where

Q(x) := e2x − e−2x − 2(ex − e−x)− 2x(ex + e−x) + 4x.

Note that if G(x) > 0 for all x > 0, then Ψ′(d2) for all d2 > 0 since λ∗(d2) > 0 for given any

d2 > 0.

To show G(x) > 0 for all x > 0, it suffices to show that

Q(x) > 0 for all x > 0.(4.12)

However, to show (4.12), we shall show that

(i) there exists small δ > 0 such that Q(x) > 0 for all x ∈ (0, δ), and

(ii) any positive critical point of Q must be a minimal point.

Combining (i) and (ii), we obtain (4.12) since Q(0) = 0.

We now set y(x) := ex + e−x. Then it is easy to see that y(0) = 2, y(x) > 2 and y′(x) > 0

for all x > 0. Also, note that

ex − e−x =
√
y2 − 4 = y′, y′′ = y.(4.13)

By (4.13), we can easily derive

Q(y) = yy′ − 2y′ − 2xy + 4x, Q′(x) = 2[y2 − 2y − xy′],

Q′′(x) = 2[2yy′ − 3y′ − xy], Q(3)(x) = 2[2(y′)2 + 2y2 − 4y − xy′],

Q(4)(x) = 2[8yy′ − 5y′ − xy], Q(5)(x) = 2[8(y′)2 + 8y2 − 6y − xy′].
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Then we have Q(5)(0) = 40 > 0 using y(0) = 2 and y′(0) = 0. Together with the fact that

Q(n)(0) = 0 for n = 0, . . . , 4, we obtain that Q(·) > 0 in (0, δ) for some δ > 0. So we have

proved (i).

For (ii), let x0 > 0 such that Q′(x0) = 0. The above equality of Q′ gives us

x0 =
y2(x0)− 2y(x0)

y′(x0)
.

Putting this into the above equality of Q′′ and using (4.13), we obtain

Q′′(x0) =
2

y′(x0)
[y3(x0)− y2(x0)− 8y(x0) + 12] :=

2

y′(x0)
R(y(x0)).

It is easy to see that R(y) > 0 for all y > 2, since

R′(y) = (y − 2)(3y + 4).

Recall that x0 > 0 implies y(x0) > 2 and y′(x0) > 0, we have R(y(x0)) > 0, which gives

Q′′(x0) > 0. Thus, (ii) holds. Combining (i) and (ii), we have proved (4.12) and then

Ψ′(d2) > 0 for all d2 > 0. Hence (4.8) holds. This completes the proof of Lemma 4.1. �

Moreover, we have

Lemma 4.2. There holds

inf
d2>0

d∗(d2)

d2
= lim

d2→∞

d∗(d2)

d2
= 2.

Proof. By Lemma 3.1 and Lemma 4.1, we see

inf
d2>0

d∗(d2)

d2
= lim

d2→∞

d∗(d2)

d2
≥ 2.(4.14)

Putting τ =
√
D2/

√
d2 into (4.5), we have

c∗(d2)√
d2

→ 2
√
r2(1− b21 − b23) as d2 → ∞.(4.15)

Recall from the proof of Lemma 4.1 that c∗(d2)λ∗(d2) is increasing in d2. On the other

hand, it follows from (4.7) and (4.14) that d2(e
λ∗(d2) + e−λ∗(d2) − 2) must have a positive

upper bound for all d2 ∈ (0,∞). Thus, (4.6) implies that limd2→∞ c∗(d2)λ∗(d2) exists and is

finite. Together with (4.15), there exists a constant γ ∈ (0,∞) such that

lim
d2→∞

√
d2λ∗(d2) = γ.(4.16)

Now, the fact that limλ→0[e
λ + e−λ − 2]/λ2 = 1 and λ∗(d2) → 0 as d2 → ∞ gives

lim
d2→∞

d2(e
λ∗(d2) + e−λ∗(d2) − 2)

d2[λ∗(d2)]2
= 1.

It then follows from (4.16) that

lim
d2→∞

d2(e
λ∗(d2) + e−λ∗(d2) − 2) = γ2(4.17)
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Using (4.15), (4.16) and (4.17) and taking d2 → ∞ in

c∗(d2)λ∗(d2) = d2(e
λ∗(d2) + e−λ∗(d2) − 2) + r2(1− b21 − b23)

yield that

[2
√
r2(1− b21 − b23) ]γ = γ2 + r2(1− b21 − b23).

Hence we have γ =
√
r2(1− b21 − b23). By (4.7) and (4.17), we have

lim
d2→∞

d∗(d2)

d2
= 2.

This completes the proof of Lemma 4.2. �

Consequently, we obtain the following result.

Corollary 4.3. Suppose that (Dj, rj, bj2) ∈ B1
j ∪ B2

j for j = 1, 3. Let dj(τ) := Dj/τ
2 and

d∗(τ) := d∗(d2(τ)) for τ > 0. Then (dj(τ), rj, bj2) ∈ A1
j ∪A2

j for j = 1, 3, for all small τ > 0.

Proof. It is easy to see that (Dj, rj, bj2) ∈ B1
j implies that (dj(τ), rj, bj2) ∈ A1

j for all τ > 0

and j = 1, 3, since d∗ > 2d2.

For (Dj, rj, bj2) ∈ B2
j , it follows from Lemma 4.2 that

d∗(τ)− dj(τ)

d∗(τ)− d2(τ)
=

[d∗(τ)/d2(τ)]−Dj/D2

[d∗(τ)/d2(τ)]− 1
→ 2− Dj

D2

as τ → 0+.

Thus, (dj(τ), rj, bj2) ∈ A2
j for all small τ > 0, if (Dj, rj, bj2) ∈ B2

j , for j = 1, 3. Then

Corollary 4.3 follows. �

Since the system (1.5) has no solution when s < s∗, to prove Theorem 1 it suffices to prove

the existence of monotone traveling front with speed s for any s > s∗ under the conditions

(1.8)-(1.9), where

s∗ := 2
√
D2r2(1− b21 − b23).

Hereafter, for convenience, we write c∗(τ
−2D2) in (4.4) as c∗(τ) without any confusion. For

any given s > s∗, we can choose small η > 0 such that s∗ + η < s. Then from (4.5) there

exists τ0 > 0 sufficiently small such that

τc∗(τ) < s∗ + η < s ∀ τ ∈ (0, τ0].

For any τ ∈ (0, τ0], since s/τ > c∗(τ), it follows from Corollary 4.3 (if necessary, we

choose τ0 smaller) and Theorem 4 that there exists a traveling front of the system (4.1)-

(4.3) connecting (1, 0, 1) to (0, 1, 0) with speed s/τ and profile (Û τ,s, V̂ τ,s, Ŵ τ,s) under the
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assumption (1.7). Namely, we have

s
τ
(Û τ,s)′ = D1D[Û τ,s]/τ 2 + r1Û

τ,s(1− Û τ,s − b12V̂
τ,s), y ∈ R,

s
τ
(V̂ τ,s)′ = D2D[V̂ τ,s]/τ 2 + r2V̂

τ,s(1− b21Û
τ,s − V̂ τ,s − b23Ŵ

τ,s), y ∈ R,
s
τ
(Ŵ τ,s)′ = D3D[Ŵ τ,s]/τ 2 + r3Ŵ

τ,s(1− b32V̂
τ,s − Ŵ τ,s), y ∈ R,

(Û τ,s, V̂ τ,s, Ŵ τ,s)(−∞) = (1, 0, 1), (Û τ,s, V̂ τ,s, Ŵ τ,s)(+∞) = (0, 1, 0),

0 ≤ Û τ,s, V̂ τ,s, Ŵ τ,s ≤ 1 in R.

Next, we define

(ϕτ,s, ψτ,s, θτ,s)(y) := (Û τ,s, V̂ τ,s, Ŵ τ,s)(y/τ),

(uτ,s, vτ,s, wτ,s)(x, t) := (ϕτ,s, ψτ,s, θτ,s)(x+ st).

Then it is easy to check that

uτ,s(x, t+ 1/s) = uτ,s(x+ 1, t), vτ,s(x, t+ 1/s) = vτ,s(x+ 1, t),

wτ,s(x, t+ 1/s) = wτ,s(x+ 1, t), x, t ∈ R,

uτ,sx = uτ,st /s, vτ,sx = vτ,st /s, wτ,s
x = wτ,s

t /s.

It follows that

uτ,st =
D1[u

τ,s(·+ τ, t) + uτ,s(· − τ, t)− 2uτ,s]

τ 2
+ r1u

τ,s(1− uτ,s − b12v
τ,s),

vτ,st =
D2[v

τ,s(·+ τ, t) + vτ,s(· − τ, t)− 2vτ,s]

τ 2
+ r2v

τ,s(1− vτ,s − b21u
τ,s − b23w

τ,s),

wτ,s
t =

D3[w
τ,s(·+ τ, t) + wτ,s(· − τ, t)− 2wτ,s]

τ 2
+ r3w

τ,s(1− wτ,s − b32v
τ,s).

Also, we have

s(ϕτ,s)′ =
D1[ϕ

τ,s(·+ τ) + ϕτ,s(· − τ)− 2ϕτ,s]

τ 2
+ r1ϕ

τ,s(1− ϕτ,s − b12ψ
τ,s),(4.18)

s(ψτ,s)′ =
D2[ψ

τ,s(·+ τ) + ψτ,s(· − τ)− 2ψτ,s]

τ 2
+ r2ψ

τ,s(1− ψτ,s − b21ϕ
τ,s − b23θ

τ,s),(4.19)

s(θτ,s)′ =
D3[θ

τ,s(·+ τ) + θτ,s(· − τ)− 2θτ,s]

τ 2
+ r3θ

τ,s(1− θτ,s − b32ψ
τ,s).(4.20)

To proceed further, we consider the initial value problem for the system (4.1)-(4.3) for

t ≥ 0 such that 0 ≤ uτj (0), v
τ
j (0), w

τ
j (0) ≤ 1 for all j. For simplicity, we use the notation

(un, vn, wn) := {(unj , vnj , wn
j )}j∈Z, (unj , v

n
j , w

n
j ) := (u

1/n
j , v

1/n
j , w

1/n
j )

to represent the solution of the initial value problem for (4.1)-(4.3) for t ≥ 0 with τ = 1/n,

n ∈ N.
Applying the discrete Fourier transform, the solution of the following linear lattice equation

(znj )
′(t) = n2d[znj+1(t) + znj−1(t)− 2znj (t)], j ∈ Z,
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with the initial data {znj (0)}j∈Z is given by

znj (t) =
1

2π

∞∑
k=−∞

(∫ π

−π

ei(j−k)ω+2n2dt(cosω−1)dω

)
znk (0), i :=

√
−1.

Then we have the following estimate which can be found in [10, Lemma 3.1].

Lemma 4.4. For any α,M > 0, there is a constant L = L(α,M) such that if |znk (0)| ≤ M

for all k ∈ Z, then |znj (t)− znj+2(t)| ≤ L/n for any j ∈ Z and t ≥ α/d.

Based on Lemma 4.4, the following estimate can be derived similarly as [10, Lemma 3.2].

Lemma 4.5. Suppose that 0 ≤ unj (0), v
n
j (0), w

n
j (0) ≤ 1 for all j ∈ Z. Then, for any ϵ > 0,

there is a constant δ > 0 such that for any n ∈ N

|unj1(1)− unj2(1)|, |v
n
j1
(1)− vnj2(1)|, |w

n
j1
(1)− wn

j2
(1)| < ϵ,

if |j1 − j2| < nδ and (j1 − j2) is even.

Now, we consider the sequence

(Un, Vn,Wn) := (Û τn,sn , V̂ τn,sn , Ŵ τn,sn), (ϕn, ψn, θn) := (ϕτn,sn , ψτn,sn , θτn,sn)

with τn = 1/n and sn ↓ s as n→ ∞. Then from (4.18)-(4.20) we see that (ϕn, ψn, θn) satisfies

sn(ϕn)
′(ξ) = n2D1[ϕn(ξ +

1

n
) + ϕn(ξ −

1

n
)− 2ϕn(ξ)] + r1{ϕn[1− ϕn − b12ψn]}(ξ),

sn(ψn)
′(ξ) = n2D2[ψn(ξ +

1

n
) + ψn(ξ −

1

n
)− 2ψn(ξ)] + r2{ψn[1− ψn − b21ϕn − b23θn]}(ξ),

sn(θn)
′(ξ) = n2D3[θn(ξ +

1

n
) + θn(ξ −

1

n
)− 2θn(ξ)] + r3{θn[1− θn − b32ψn]}(ξ)

for ξ ∈ R. Also, the following lemma about the equicontinuity of (ϕn, ψn, θn) follows from

Lemma 4.5.

Lemma 4.6. The families {ϕn}n∈N, {ψn}n∈N and {θn}n∈N are equicontinuous functions.

Proof. We only consider {ϕn}n∈N, because the cases for {ψn}n∈N and {θn}n∈N are similar.

Given ϵ > 0. Since (Un, Vn,Wn)(j + nsnt) is a traveling wave solution of (4.1)-(4.3), by

Lemma 4.5, there is δ > 0 such that |Un(j1 + nsn)−Un(j2 + nsn)| < ϵ for any |j1 − j2| < nδ

and even j1, j2. This implies that

(4.21) |ϕn(j1/n+ sn)− ϕn(j2/n+ sn)| < ϵ

for any |j1 − j2| < nδ and even j1, j2.

Now given any x, y ∈ R with |x− y| < δ/2. We can choose n large enough and two even

integers j1, j2 with |j1 − j2| < nδ such that j1/n + sn ≤ x, y ≤ j2/n + sn. Since ϕn is a

monotone continuous function, it follows from (4.21) that |ϕn(x) − ϕn(y)| < ϵ. This proves

the lemma. �
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We are ready to give a proof of Theorem 1.

Proof of Theorem 1. First, Lemma 4.6 implies that (up to taking a subsequence) ϕn →
ϕ, ψn → ψ, θn → θ as n → ∞ uniformly in any bounded interval in R for some continuous

functions ϕ, ψ, θ. Furthermore, it is easy to see that (ϕ, ψ, θ) satisfies (1.5) in the distribution

sense except the boundary conditions. Indeed, the boundedness and continuity of (ϕ, ψ, θ)

implies that (ϕ, ψ, θ) solves (1.5) in the classical sense except the boundary conditions.

It remains to show that (ϕ, ψ, θ) connects (1, 0, 1) and (0, 1, 0). In fact, the proof is

similar to the one for Proposition 1. Without loss of generality, if necessary, we may take a

subsequence such that one of the followings must occur:

(i) ϕn(0) = 1/2 and θn(0) ≥ 1/2 for all n ∈ N;
(ii) ϕn(0) ≥ 1/2 and θn(0) = 1/2 for all n ∈ N.

Note that we can obtain such a dichotomy due to the monotonicity of the profiles of ϕn(·)
and θn(·) for all n.

If (i) holds, then ϕ(0) = 1/2 and θ(0) ≥ 1/2. Since (ϕ, ψ, θ)(±∞) are constant steady

states for (1.2)-(1.3), a direct calculation of

[ϕ(1− ϕ− b12ψ)](±∞) = 0,(4.22)

[ψ(1− b21ϕ− ψ − b23θ)](±∞) = 0,(4.23)

[θ(1− b32ψ − θ)](±∞) = 0,(4.24)

yields that (ϕ, ψ, θ)(±∞) can only take values in {(1, 0, 1), (1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 0, 1)}.
Since ϕ(+∞) ≤ ϕ(0) ≤ ϕ(−∞), we must have ϕ(−∞) = 1 and ϕ(+∞) = 0. By

(4.22), ψ(−∞) = 0. Then it follows that ψ(+∞) = 1. Otherwise, ψ ≡ 0. Then, by in-

tegrating the ϕ-equation in (1.5) over (−∞,+∞) gives s < 0, a contradiction. Thus, we

have (ψ(−∞), ψ(+∞)) = (0, 1). Next, from (4.23) we see that θ(+∞) = 0. Due to that

θ(0) ≥ 1/2, we see that θ(−∞) = 1. Hence (ϕ, ψ, θ)(x + st) is a monotone traveling front

connecting (1, 0, 1) and (0, 1, 0) with speed s. The proof for the case (ii) is similar. This

completes the proof of Theorem 1. �
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