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Abstract. We study an initial boundary value problem for a heat equation with
strong absorption. We first prove that the solution of this problem stays positive
for any finite time and converges to the unique steady state for a large class of initial
data. This gives an example in which the dead-core is developed in infinite time. Then
some estimates of the dead-core rate(s) are derived. Finally, we provide the uniformly
exponential rate of convergence of the solution to the unique steady state.

1. Introduction

We study the following initial boundary value problem (P) for the heat equation with
strong absorption:

ut = uxx − up, 0 < x < 1, t > 0,(1.1)

ux(0, t) = 0, u(1, t) = kp, t > 0,(1.2)

u(x, 0) = u0(x), 0 ≤ x ≤ 1,(1.3)

where p ∈ (0, 1), kp := [2α(2α − 1)]−α, α := 1/(1 − p), and u0 is a smooth function
defined on [0, 1] such that

(1.4) u′
0(0) = 0, u0(1) = kp, u′

0(x) ≥ 0, U(x) < u0(x) ≤ kp for x ∈ [0, 1).

We note that the constant kp is chosen so that the unique steady state U(x) := kpx
2α

of (1.1)-(1.2) is positive for x 6= 0 and U(0) = 0.
Problem (P) arises in the modelling of an isothermal reaction-diffusion process [1, 10]

and a description of thermal energy transport in plasma [8, 6]. In the first example, the
solution u of (P) represents the concentration of the reactant which is injected with a
fixed amount on the boundary x = ±1 (after a symmetric reflection), and p is the order
of reaction.
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It is trivial that, for any u0 as above, problem (P) admits a unique global classical
solution. Also, it follows from the strong maximum principle that u > U and ux > 0 in
(0, 1) × (0,∞).

The problem (P) with general boundary values (i.e., any k > 0) has been studied
extensively. We refer the reader to a recent work of one of the authors and Souplet
[4] and the references cited therein. Recall that the region where u = 0 is called the
dead-core, the first time when u reaches zero is called the dead-core time and the rate
of convergence to zero in time is called the dead-core rate. In [4], we studied the case
when the dead-core is developed in a finite time. In [4], it is proved that the finite time
dead-core rate is always non-self-similar. Indeed, it is shown in [5] that there can be
infinitely many different finite time dead-core rates depending on the initial data.

By taking the special constant kp, we shall show that the solution of (P) is always
positive for all t > 0 and tends to the unique steady state U uniformly as t → ∞. In
particular, we have u(0, t) → 0 as t → ∞. This means that the dead-core occurs at time
infinity.

A natural question arises, namely, how the solution u tends to U . In particular, we
shall investigate the dead-core rate, i.e., the exact convergence rate of u(0, t) to zero as
t → ∞. For some related works, we refer the reader to [2, 3, 9]. We note that there is
a singularity in the sense that the reaction rate up−1 tends to infinity when u tends to
zero. This causes a certain difficulty in dealing with the problem (P).

This paper is organized as follows. We first study some properties of the solution of
(P) in §2. In particular, we prove that the dead-core is developed at time infinity. In
§3, some properties of the associated steady states to (1.1) are given and some further
properties of the solution of (P) in terms of these steady states are also derived. Section
4 is devoted to the spectrum analysis of the linearized operator around the unique steady
state U and the related approximated operators to this linearized operator. Then, in
§5, we give some estimates for the dead-core rate(s). Unfortunately, we are unable to
derive the exact dead-core rate. We suspect that the dead-core rate might depend on
the initial data. We leave this important question as an open problem. Finally, the
uniformly exponential rate of convergence of u to U over the whole domain as t → ∞ is
given in §6.

2. Dead-core at Time Infinity

In this section, we shall study some basic properties of the solution u of (P). First,
we have the following result of positivity of u. This also implies that the dead-core can
only be developed at time infinity.

Theorem 2.1. We have u > 0 for all 0 ≤ x ≤ 1 and t > 0.

Proof. For contradiction, we may assume that

T := sup{τ > 0 | u(x, t) > 0 ∀(x, t) ∈ [0, 1] × [0, τ ]} < ∞.

By the maximum principle, we have u > U in (0, 1) × [0, T ]. In particular,

(2.1) u(1/2, t) > U(1/2) ∀t ∈ [0, T ].

Let {un}n≥1 be a sequence of functions defined on [0, 1] such that

u′′
n = up

n on [0, 1]; un(0) = 0, u′
n(0) = 1/n.
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It is easy to see that un ≥ un+1 ≥ U on [0, 1] for all n ≥ 1. Furthermore, un → U
uniformly on [0, 1] as n → ∞. It follows from (2.1) that u(1/2, t) > UN(1/2) for all
t ∈ [0, T ] for some sufficiently large N . By choosing N larger (if necessary), we also have

u0(x) > UN(x) ∀x ∈ [0, 1/2].

It follows from the maximum principle that u ≥ uN on [0, 1/2]×[0, T ]. Since u(0, T ) = 0,
we obtain that ux(0, T ) ≥ u′

N(0) > 0, a contradiction. Hence the theorem is proved. ¤
The next theorem shows that u converges to the unique steady state U as t → ∞. As

a consequence, the dead-core does occur at time infinity.

Theorem 2.2. There holds u(x, t) → U(x) uniformly for x ∈ [0, 1] as t → ∞.

Proof. First, we show that u, ux, ut are bounded on [0, 1] × [0,∞). Indeed, the bound-
edness of u follows from the maximum principle. Since the function v := ut satisfies

vt = vxx − pup−1v, 0 < x < 1, t > 0,

vx(0, t) = 0, v(1, t) = 0, t > 0,

v(x, 0) = u′′
0(x) − up

0(x), 0 ≤ x ≤ 1.

It follows from the maximum principle that v (and so ut) is bounded on [0, 1] × [0,∞).
Now, from (1.1) we see that uxx is bounded on [0, 1] × [0,∞). Consequently, ux is also
bounded, since ux(0, t) = 0 for all t > 0.

Now, we take any sequence {tj} with tj → ∞ as j → ∞. We define uj(x, t) :=
u(x, t + tj) for any j ∈ N. From the boundedness of u and ux it follows that {uj} is
uniformly bounded and equi-continuous on [0, 1] × [0,∞). It follows from the Arzela-
Ascoli Theorem that there exists a subsequence, still denoted by uj, such that uj → w
uniformly on [0, 1] as j → ∞ for some function w satisfying

wt = wxx − wp, 0 < x < 1, t > 0,

wx(0, t) = 0, w(1, t) = kp, t > 0.

We claim that wt ≡ 0. To do this, we introduce the energy functional

E(t) :=
1

2

∫ 1

0

u2
xdx +

1

p + 1

∫ 1

0

up+1dx.

By a simple computation, we have

E ′(t) = −
∫ 1

0

u2
t dx.

For any fixed T > 0, an integration yields∫ T

0

∫ 1

0

u2
t dxdt = E(0) − E(T ) ≤ E(0) < ∞.

It follows that ∫ ∞

0

∫ 1

0

u2
t dxdt < ∞.

This implies that ∫ ∞

0

∫ 1

0

u2
j,tdxdt =

∫ ∞

tj

∫ 1

0

u2
t dxdt → 0 as j → ∞.
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On the other hand, for any T > 0, since {uj,t}j∈N is uniformly bounded in L2([0, 1] ×
[0, T ]), it follows that uj,t converges weakly to wt in L2([0, 1]× [0, T ]). This implies that∫ T

0

∫ 1

0

w2
t dxdt ≤ lim inf

j→∞

∫ T

0

∫ 1

0

u2
j,tdxdt = 0.

Hence wt ≡ 0 and so w = U .
Since the sequence {tj} is arbitrary, the theorem follows. ¤
The following theorem implies that the convergence of u(0, t) to zero is at least expo-

nentially fast.

Theorem 2.3. There exist positive constants C and β such that

(2.2) 0 < u(0, t) ≤ Ce−βt

for all t > 0.

Proof. First, following an idea from [9], we derive the following estimate

(2.3)

∫ 1

0

[u(x, t) − U(x)]2dx ≤ Ce−γt

for all t > 0 for some positive constants C and γ. To this end, we set w = u− U . Then
w satisfies

wt = wxx + Up − up ≤ wxx, 0 < x < 1, t > 0,

wx(0, t) = 0 = w(1, t), t > 0.

It then follows that ∫ 1

0

wwtdx ≤
∫ 1

0

wwxxdx.

Using an integration by parts and applying the Poincaré Inequality, we get

1

2

d

dt

∫ 1

0

w2dx ≤ −
∫ 1

0

w2
xdx ≤ −π2

4

∫ 1

0

w2dx.

Hence (2.3) follows with γ = π2/2.
By a comparison, it suffices to consider the case when u0(x) ≡ kp. Recall that ux > 0

on (0, 1) × (0,∞). It implies that

(2.4) u(x, t) ≥ u(0, t) ≥ U(x) = kpx
2α ∀x ∈ [0, h(t)],

where h(t) := [u(0, t)/kp]
1/(2α) ≤ 1 for t > 0. Then it follows from (2.3) and (2.4) that

Ce−γt ≥
∫ 1

0

[u(x, t) − U(x)]2dx

≥
∫ h(t)

0

[u(0, t) − U(x)]2dx

=

∫ h(t)

0

k2
p[h(t)2α − x2α]2dx

= k2
ph(t)4α+1

∫ 1

0

(1 − s2α)2ds,

by a change of variable s := x/h(t).
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Hence the theorem follows by taking β = 2αγ/(4α + 1). ¤

3. Relations of the Solution to Steady States

Now, for any η ≥ 0, let Uη be the solution of

(3.1) u′′ = up, u > 0 ∀y > 0; u(0) = η, u′(0) = 0.

In particular, U0(y) = U(y) = kpy
2α for y ≥ 0. Note that, by a re-scaling, we have

(3.2) Uη(y) = ηU1(η
(p−1)/2y) ∀η > 0.

Also, by a simple comparison, we have Uη1 > Uη2 if η1 > η2 ≥ 0. Moreover, Uη → U0 as
η → 0+.

Concerning the asymptotic behavior of Uη as η → 0+, we recall from [5] that

Lemma 3.1. As η → 0+,

Uη(x) = U0(x) + aη(1−p)/2x2α−1(1 + o(1))

for any x > 0, where a is a positive constant.

In the sequel, for convenience we denote σ(t) := u(0, t). The proof of the following
lemma is based on a zero number argument (see also Theorem 4.1 of [9]).

Lemma 3.2. For all t sufficiently large, σ(t) is strictly decreasing and

(3.3) u(x, t) < Uσ(t)(x) in (0, 1].

Proof. Define zη(x, t) := u(x, t) − Uη(x). Then zη satisfies

(zη)t = (zη)xx + cη(x, t)zη

for some function cη. Since zη(1, t) < 0 and (zη)x(0, t) = 0 for all t > 0, we see that the
zero number Jη(t) of zη defined by Jη(t) := #{x ∈ [0, 1] | zη(x, t) = 0} is non-increasing
in t.

We first claim that there exists η∗ > 0 such that Jη(1) = 1 for all η ∈ (0, η∗]. Indeed,
since z0,x(1, 1) < 0, there exists δ > 0 such that z0,x(x, 1) < 0 for all x ∈ [1− δ, 1]. Since
zη,x(x, 1) → z0,x(x, 1) uniformly on [0, 1] as η → 0+, there is η0 > 0 such that

(3.4) zη,x(x, 1) < 0 ∀x ∈ [1 − δ, 1] ∀η ∈ (0, η0].

On the other hand, since u(x, 1) > U(x) on [0, 1− δ] and Uη → U uniformly on [0, 1− δ]
as η → 0+, there exists an η∗ ∈ (0, η0) such that

(3.5) zη(x, 1) > 0 ∀x ∈ [0, 1 − δ] ∀η ∈ (0, η∗].

Recall that zη(1, 1) < 0 for all η > 0. We conclude from (3.4) and (3.5) that Jη(1) = 1
for all η ∈ (0, η∗].

Next, we fix any η ∈ (0, η∗]. Note that Jη(t) ≤ 1 for all t > 1. We claim that
σ(t0) > η, if Jη(t0) = 1 for some t0 > 1. For contradiction, we suppose that σ(t0) ≤ η,
i.e., u(0, t0) ≤ Uη(0). Note that u(1, t) < Uη(1) for all t > 0. If u(0, t0) = Uη(0),
then u(x, t0) < Uη(x) for all x ∈ (0, 1], since Jη(t0) = 1. Since Jη(t) = 1 for all
t ∈ [1, t0], there exists x(t) ∈ [0, 1) such that u(x(t), t) = Uη(x(t)) and u(x, t) < Uη(x)
for x ∈ (x(t), 1] for each t ∈ [1, t0]. By Hopf’s Lemma, ux(0, t0) < U ′

η(0) = 0, a
contradiction. On the other hand, if u(0, t0) < Uη(0), then there exists t∗ ∈ (1, t0) such
that u(0, s) < Uη(0) for all s ∈ [t∗, t0]. Since u(1, s) < Uη(1), we can find x(s) ∈ (0, 1)
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such that u(x(s), s) = Uη(x(s)) and u(x, s) < Uη(x) for x 6= x(s) for all s ∈ [t∗, t0]. This
is a contradiction to the maximum principle. This proves that σ(t0) > η, if Jη(t0) = 1
for some t0 > 1.

Now, since σ(t) → 0 as t → ∞, there is t1 sufficiently large such that σ(t) ≤ η∗ for all
t ≥ t1. Hence Jσ(t)(t) = 0 for all t ≥ t1. This implies that

u(x, t) < Uσ(t)(x) on [0, 1]

for all t ≥ t1. Therefore, (3.3) follows. Moreover, Jσ(t)(s) = 0 for all s > t ≥ t1. Then
u(x, s) < Uσ(t)(x) for x ∈ [0, 1]. In particular,

σ(s) = u(0, s) < Uσ(t)(0) = σ(t)

and the lemma is proved. ¤

Indeed, we have the convergence of u(x, t) to Uσ(t)(x) near x = 0 as t → ∞. To prove
this, we make the following transformations:

(3.6) u(x, t) := σ(t)θ(ξ, τ), ξ := σ(t)(p−1)/2x, τ :=

∫ t

0

σ(s)p−1ds.

Then it is easy to check that θ satisfies the equation

(3.7) θτ = θξξ − θp − g(τ)

(
θ − 1 − p

2
ξθξ

)
,

where g(τ) := σ′(t)σ(t)−p. Also, θ(0, τ) = 1 and θξ(0, τ) = 0 for all τ > 0. Moreover, it
follows from Lemma 3.2 and (3.2) that θ(ξ, τ) < U1(ξ).

We shall study the stabilization of the solution θ of (3.7). First, by considering the
function

J(x, t) :=
1

2
u2

x − Cup+1

for some positive constant C and applying a maximum principle (cf. p. 660 of [4]), we
can also derive the following estimate

(3.8) 0 ≤ ux ≤ Cu(p+1)/2 ∀x ∈ [0, 1], t > 0,

where C is a positive constant. Consequently, by an integration, we deduce from (3.8)
that

(3.9) u(x, t) ≤ [σ(t)(1−p)/2 + cx]2α ∀x ∈ [0, 1], t > 0,

for some positive constant c.
Using (3.9), (3.6), and ux = σ(1+p)/2θξ, we obtain the following estimate for the solution

θ of (3.7):

(3.10) 0 ≤ ξθξ(ξ, τ), θ(ξ, τ) ≤ C(1 + ξ)2α ∀ ξ ∈ [0, σ(p−1)/2(t)], τ > 0,

for some positive constant C.
Next, it follows from the Hopf Lemma that uxx(0, t) > 0 and so ut(0, t) > −up(0, t) by

(1.1). Hence g(τ) > −1 for all τ > 0. We conclude from Lemma 3.2 that −1 < g(τ) < 0
for all τ À 1. Note that ∫ ∞

0

g(τ)dτ = −∞.

Nevertheless, we have the following lemma.

Lemma 3.3. There holds limτ→∞ g(τ) = 0.
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Proof. Otherwise, there is a sequence {τn} → ∞ such that g(τn) → −γ as n → ∞ for
some constant γ > 0. By using (3.10) and the standard regularity theory, we can show
that there is a subsequence, still denote it by {τn}, such that

θ(ξ, τ + τn) → θ̃(ξ, τ) as n → ∞

uniformly on any compact subsets, where θ̃ solves the equation

(3.11) θ̃τ = θ̃ξξ − θ̃p + γ(θ̃ − 1 − p

2
ξθ̃ξ), ξ > 0, τ > 0,

with θ̃(0, τ) = 1 and θ̃ξ(0, τ) = 0. Moreover, it is easily to check that θ̃ ≤ U1 and θ̃ξ ≥ 0.
Furthermore, it follows from the so-called energy argument (cf. the proof of Proposi-

tion 3.1 in [4]) that θ̃(ξ, τ) → V (ξ) as τ → ∞ for some V satisfying

V ′′ − V p + γ(V − 1 − p

2
ξV ′) = 0, ξ > 0,

V ′(0) = 0, V (0) = 1.

Note that V ≤ U1 and V ′ ≥ 0. Set

W (y) :=
(γ

α

)α

V (

√
α

γ
y).

Then W satisfies

W ′′ − W p + α(W − 1 − p

2
yW ′) = 0, y > 0,

W ′(0) = 0, W (0) = (γ/α)α.

Since W > 0, W ′ ≥ 0 for y > 0, and V ≤ U1 gives the polynomial boundedness of W ,
it follows from Proposition 3.3 of [4] that either W = U or W ≡ α−α. The first case is
impossible, since U(0) = 0. The second case is also impossible, since θ is unbounded by
Theorem 2.2. Hence the lemma follows. ¤

Again, by the standard limiting process with the estimate (3.10) and Lemma 3.3, for

any given sequence {τn} → ∞, we can show that there is a limit θ̃ satisfying

θ̃τ = θ̃ξξ − θ̃p, ξ > 0, τ > 0,

θ̃(0, τ) = 1, θ̃ξ(0, τ) = 0,

such that θ(ξ, τ + τn) → θ̃(ξ, τ) as n → ∞ uniformly on compact subsets. Since we also
have

θ̃(ξ, τ) ≤ U1(ξ), θ̃(0, τ) = U1(0), θ̃ξ(0, τ) = (U1)ξ(0),

the Hopf Lemma implies that θ̃ ≡ U1. Since this limit is independent of the given
sequence {τn}, we see that θ(ξ, τ) → U1(ξ) as τ → ∞ uniformly on any compact
subsets. Returning to the original variables and using the relation (3.2), we thus have
proved the following so-called inner expansion.

Theorem 3.4. As t → ∞, we have

u(x, t) = Uσ(t)(x)(1 + o(1))

uniformly in {0 ≤ σ(p−1)/2(t)x ≤ C} for any positive constant C.
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4. Spectrum Analysis

In this section, we shall study the following linearized operator

Lv := −v′′ +
b

x2
v, b := (2α − 1)(2α − 2)

which is from the linearization of (1.1) around the steady state U .
Consider the eigenvalue problem

(4.1) Lφ = λφ, 0 < x < 1; φ′(0) = 0, φ(1) = 0.

We introduce the following Hilbert space and quantities:

H := {φ ∈ H1([0, 1]) |
∫ 1

0

φ2(x)

x2
dx < ∞, φ(1) = 0},

J(φ) :=

∫ 1

0

φ2
x(x)dx + b

∫ 1

0

φ2(x)

x2
dx, I(φ) :=

∫ 1

0

φ2(x)dx.

Then the principal eigenvalue λ∗ of (4.1) can be characterized by

(4.2) λ∗ := inf{J(φ)/I(φ) | φ ∈ H, I(φ) > 0}.
It is easy to see that λ∗ > b > 0. Also, by taking a minimization sequence, we can show
that this λ∗ can be attained by a function φ∗ ∈ H which is the eigen-function of (4.1)
such that

φ∗ > 0 in (0, 1),

∫ 1

0

(φ∗(x))2dx = 1.

Note that φ∗(0) = 0. It is also easy to see that

(4.3) φ∗(x) = dx2α−1(1 + o(1)) as x → 0

for some positive constant d.
On the other hand, it is easily seen that for any ε ∈ (0, 1) there exists the principal

eigen-pair (λε, φε) of the following eigenvalue problem1:

(4.4) Lεφε = λεφε, 0 < x < 1; φ′
ε(0) = φε(1) = 0 < φε(x) ∀x ∈ (0, 1),

where

Lεv := −v′′ +
b(1 − ε)

x2
χ[ε,1](x)v

and χ is the indicator function. Note that φε is only a C1 function on [0, 1] and φ′′
ε has

a jump discontinuity at x = ε.

Lemma 4.1. There holds λε → λ∗ as ε → 0+.

Proof. By the characterization of the principal eigenvalue λε of (4.4) and I(φ∗) = 1, we
have

λε ≤ Jε(φ
∗),

where

Jε(φ) :=

∫ 1

0

φ2
x(x)dx + b(1 − ε)

∫ 1

ε

φ2(x)

x2
dx.

1This approximated eigenvalue problem was suggested by an anonymous referee which we would like
to acknowledge here
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It is clear that Jε(φ
∗) < J(φ∗). Hence λε < λ∗ for all ε > 0 and so

(4.5) lim sup
ε→0+

λε ≤ λ∗.

On the other hand, we introduce a C∞-function θ by θ(s) = 0 for s ≤ 1/2, θ(s) = 1

for s ≥ 1, and θ′ ≥ 0 in [1/2, 1]. Let θε(x) := θ(x/ε) for any ε ∈ (0, 1). Set φ̃ε = φε in

[ε, 1] and φ̃ε = ε in [0, ε]. Then for ψε := θεφ̃ε we have

J(ψε) ≤ Jε(φε) + bε

∫ 1

ε

φ2
ε(x)

x2
dx + ε

(∫ 1

1/2

(θ′)2(s)ds + b

∫ 1

1/2

θ2(s)

s2
ds

)
,

I(ψε) =

∫ 1

ε

φ2
ε(x)dx + ε3

∫ 1

1/2

θ2(s)ds.

Since λ∗ ≤ J(ψε)/I(ψε) for all ε ∈ (0, 1), we conclude that

(4.6) λ∗ ≤ lim inf
ε→0+

λε.

Therefore, the lemma follows by combining (4.5) and (4.6). ¤

5. Dead-core Rate Estimates

In this section, we shall give some estimates of the dead-core rate. First, the upper
bound of dead-core rate can be derived from Theorem 2.3 that

lim sup
t→∞

ln σ(t)

t
≤ −2α · π2

2(4α + 1)
.

Next, we derive the following lower bound estimate for u − U .

Lemma 5.1. There exists a small positive constant δ such that

(5.1) u(x, t) − U(x) ≥ δe−λ∗tφ∗(x), x ∈ [0, 1], t > 1.

Proof. Write w = u − U . Then w(0, t) > 0, w(1, t) = 0, and w satisfies the equation

(5.2) wt = wxx −
b

x2
w + F (x,w),

where

(5.3) F (x, w) := Up − (w + U)p +
b

x2
w =

1

2
p(1 − p)Ũp−2w2,

for some Ũ ∈ (U,U + w). Note that F ≥ 0. Set ŵ(x, t) := δe−λ∗tφ∗(x), where δ is a
positive constant to be determined later. Then

ŵt = ŵxx −
b

x2
ŵ, x ∈ (0, 1), t > 0,

ŵ(0, t) = 0, ŵ(1, t) = 0, t > 0.

Recall that (φ∗)′(1) < 0. Also, note that ux(1, 1) − U ′(1) < 0, by the Hopf Lemma. By
the continuity, there exist positive constants δ and η such that

(5.4) ux(x, 1) − U ′(x) − δe−λ∗
(φ∗)′(x) < 0

for all x ∈ [1 − η, 1]. It follows from (5.4) that w(x, 1) ≥ ŵ(x, 1) for all x ∈ [1 − η, 1].
Using u(·, 1) > U(·) in [0, 1 − η] and by choosing smaller positive δ (if necessary), we
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obtain that w(x, 1) ≥ ŵ(x, 1) for all x ∈ [0, 1]. Therefore, by the comparison principle,
the estimate (5.1) follows. ¤

For the lower bound of dead-core rate, we recall from Lemmas 3.1 and 3.2 that for
any x > 0:

(5.5) u(x, t) ≤ Uσ(t)(x) = U(x) + aσ(1−p)/2(t)x2α−1(1 + o(1)) as t → ∞.

On the other hand, by (5.1) and (4.3), we have

(5.6) u(x(t), t) ≥ U(x(t)) + dδe−2αλ∗t(1 + o(1)) as t → ∞,

where x(t) := e−λ∗t. Consequently, there exists a positive constants d1 such that

e−λ∗t ≤ d1σ
(1−p)/2(t)(1 + o(1)) as t → ∞.

Hence we obtain that

(5.7) σ(t) ≥ d2e
−2αλ∗t(1 + o(1)) as t → ∞

for some positive constant d2. This implies that

lim inf
t→∞

ln σ(t)

t
≥ −2αλ∗.

6. Rate of Convergence

Recall the principal eigen-pair (λε, φε) of (4.4) for any ε ∈ (0, 1). Hereafter we shall
fix the eigenfunction φε so that

φε > 0 in (0, 1),

∫ 1

0

φ2
ε(x)dx = 1.

Then it is clear that φε → φ∗ in C0([0, 1]) as ε → 0+. Then we have the following lemma
for the upper bound of u − U .

Lemma 6.1. For each ε ∈ (0, 1), there exist positive constants cε and tε such that

(6.1) u(x, t) − U(x) ≤ cεe
−λεtφε(x), x ∈ [0, 1], t ≥ tε.

Proof. Again, we set w = u − U . We first estimate F as follows. Since Ũ ∈ (U,U + w),
we compute from (5.3) that

F (x,w) ≤ 1 − p

2
[U−1w][pUp−1w] =

1 − p

2
[U−1w]

(
b

x2
w

)
.

By Theorem 2.2, there is tε sufficiently large such that

1 − p

2
[U−1(x)w(x, t)] ≤ ε ∀x ∈ [ε, 1], t ≥ tε.

Consequently, we obtain from (5.2) that w satisfies the following inequality

(6.2) wt ≤ wxx −
b(1 − ε)

x2
w ∀x ∈ [ε, 1), t ≥ tε.

Note that wx(0, t) = w(1, t) = 0 for all t > 0. Since u > U , we have wt −wxx ≤ 0 for all
x ∈ [0, 1].
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Now, set ŵ(x, t) := cεe
−λεtφε(x), where cε is a positive constant to be determined.

Then

ŵt = ŵxx −
b(1 − ε)

x2
χ[ε,1](x)ŵ, x ∈ (0, 1), t > 0,

ŵx(0, t) = 0, ŵ(1, t) = 0, t > 0.

Recall that (φε)
′(1) < 0. Then by the continuity there exist a small positive constant η

and a large positive constant cε such that

(6.3) ux(x, tε) − U ′(x) − cεe
−λεtε(φε)

′(x) > 0 ∀x ∈ [1 − η, 1].

It follows from (6.3) that w(x, tε) ≤ ŵ(x, tε) for x ∈ [1 − η, 1]. Then, by choosing cε

larger (if necessary), we obtain that w(x, tε) ≤ ŵ(x, tε) for x ∈ [0, 1]. Therefore, the
lemma follows by applying the comparison principle for weak solutions (cf. [7]). ¤

Since u > U , we have the following uniformly exponential rate of convergence of u to
U over the whole domain by using (5.1) and (6.1).

Theorem 6.2. For each ε > 0, there exist positive constants d and dε such that

‖u(·, t) − U‖C0([0,1]) ≥ de−λ∗t for all t > 1,(6.4)

‖u(·, t) − U‖C0([0,1]) ≤ dεe
−λεt for all t > tε.(6.5)

Indeed, the constants d and dε in Theorem 6.2 can be taken as d = δφ∗(1/2) and
dε = cε‖φε‖C0([0,1]). Notice that λε < λ∗ for all ε > 0 and λε → λ∗ as ε → 0+.
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