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Abstract. To understand the spreading and interaction of two-competing species, we
study the dynamics for a two-species competition-diffusion model with two free bound-
aries. Here, the two free boundaries which describe the spreading fronts of two competing
species, respectively, may intersect each other. Our result shows, there exists a critical value
such that the superior competitor always spreads successfully if its territory size is above
this constant at some time. Otherwise, the superior competitor can be wiped out by the
inferior competitor. Moreover, if the inferior competitor spreads not fast enough such that
the superior competitor can catch up with it, the inferior competitor will be wiped out
eventually and then a spreading-vanishing trichotomy is established. We also provide some
characterization of the spreading-vanishing trichotomy via some parameters of the model.
On the other hand, when the superior competitor spreads successfully but with a sufficiently
low speed, the inferior competitor can also spread successfully even the superior species is
much stronger than the weaker one. It means that the inferior competitor can survive if the
superior species cannot catch up with it.

1. Introduction

The spreading or invasion phenomenon of multiple competing species is an important

factor to understand the complexity of ecology. Mathematically, there has been tremendous

studies concerned with the existence of positive traveling wave solutions connecting different

constant equilibria [6, 14, 16, 19, 20, 27, 29] and the asymptotic spreading speed associated

with the Cauchy problem [23, 24, 31]. Recently, a different approach proposed by Du and

Lin [10] models the spreading phenomenon for a single species by assuming the spreading

front as a free boundary, where the key assumption is that the population density vanishes at

the front and the mechanism of spreading is determined by the spatial population gradient

at the front. A mathematical deduction is to consider the population loss near the spreading

front and the Allee effect is taken into account [2]. More results for more general models

have been obtained in, for example, [7, 8, 9, 12, 13, 18, 21, 28] and references cited therein.
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Following such approach, there are different biological considerations to two-species Lotka-

Volterra type competition models. In [11], the authors consider that an invasive species

exists initially in a ball and invades into the environment, while the resident species dis-

tributes in the whole space RN . In [15, 33], the two weak-competition species are assumed

to spread along the same free boundary. Similar works but for two-species Lotka-Volterra

type predator-prey models can be found in [30, 34]. We also refer to much earlier works

[26, 25] in which the environment is assumed to be a bounded domain. For traveling wave

solutions of free boundary problems, see [4, 5, 32] for examples.

Based on these works, we may ask: if two species u, v spread only at the same direction but

with different free boundaries, then what the dynamics can be. More precisely, we envision

that two species initially occupy the intervals [0, s0
1] and [0, s0

2], respectively. Also, they only

move to the right and their territories expand to [0, s1(t)] and [0, s2(t)], respectively, at time

t. We ask: does the superior competitor always wipe out the inferior one if it establishes

persistent populations ? If not, how is it possible for weaker species to survive ? For this, we

shall look for the unknown (u, v, s1, s2) satisfying the following free boundary problem (P):

ut = d1uxx + r1u(1− u− kv), 0 < x < s1(t), t > 0,(1.1)

vt = d2vxx + r2v(1− v − hu), 0 < x < s2(t), t > 0,(1.2)

ux(0, t) = vx(0, t) = 0, t > 0,(1.3)

u ≡ 0 for all x ≥ s1(t) and t > 0; v ≡ 0 for all x ≥ s2(t) and t > 0,(1.4)

s′1(t) = −µ1ux(s1(t), t), t > 0; s′2(t) = −µ2vx(s2(t), t), t > 0,(1.5)

s1(0) = s0
1, s2(0) = s0

2, u(x, 0) = u0(x), v(x, 0) = v0(x) for x ∈ [0,∞),(1.6)

where u(x, t) and v(x, t) represent the population densities of two competing species at the

position x and time t; d1, d2 are diffusion rates of species u, v; r1, r2 are net birth rates

of species u, v; h, k are competition coefficients of species u, v; the parameters µ1 and µ2

measure the intention to spread into new territories of u, v, respectively. All the parameters

are positive and the initial data (u0, v0, s
0
1, s

0
2) satisfy s0

1 > 0, s0
2 > 0, u0 ∈ C2[0, s0

1], v0 ∈ C2[0, s0
2], u′0(0) = v′0(0) = 0,

u0(x) > 0 for x ∈ [0, s0
1), u0(x) = 0 for x ≥ s0

1,
v0(x) > 0 for x ∈ [0, s0

2), v0(x) = 0 for x ≥ s0
2.

(1.7)

Notice that the free boundaries x = s1(t) and x = s2(t) may intersect each other at some

time. Also, the derivatives of u, v at the free boundary will be considered as left derivatives.

We now describe the main results of this paper as follows.
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Theorem 1 (Global existence and uniqueness). The problem (P) admits a unique global in

time solution (u, v, s1, s2) with s1, s2 ∈ C1+α/2([0,∞)) and

u ∈ C2,1(Ω1) ∩ C1+α,(1+α)/2(Ω1), v ∈ C2,1(Ω2) ∩ C1+α,(1+α)/2(Ω2),

where α ∈ (0, 1) is arbitrary and

Ωj := {(x, t) : 0 ≤ x ≤ sj(t), t > 0}, j = 1, 2.

Furthermore,

0 < u(x, t) ≤ K1 := max{1, ‖u0‖L∞}, x ∈ [0, s1(t)), t ≥ 0,(1.8)

0 < v(x, t) ≤ K2 := max{1, ‖v0‖L∞}, x ∈ [0, s2(t)), t ≥ 0,(1.9)

0 < s′1(t) ≤ 2µ1K1 max

{√
r1

2d1

,
4

3
,
−4

3

(
min
x∈[0,s01]

u′0(x)

)}
, t > 0,(1.10)

0 < s′2(t) ≤ 2µ2K2 max

{√
r2

2d2

,
4

3
,
−4

3

(
min
x∈[0,s02]

v′0(x)

)}
, t > 0.(1.11)

Due to (1.10) and (1.11), the limits

s1,∞ := lim
t→∞

s1(t), s2,∞ := lim
t→∞

s2(t)

are well-defined such that si,∞ ≤ ∞, i = 1, 2. As in [11, 15, 30, 34], we see that the dynamics

of (P) strongly depends on their territory sizes. To describe the spreading and vanishing

phenomena, we define

• The species u (resp., v) vanishes eventually if s1,∞ < +∞ (resp., s2,∞ < +∞) and

lim
t→+∞

‖u(·, t)‖C([0,s1(t)]) = 0 (resp., limt→+∞ ‖v(·, t)‖C([0,s2(t)]) = 0);

• The species u (resp., v) spreads successfully if s1,∞ = +∞ (resp., s2,∞ = +∞) and

the species u (resp., v) persists in the sense that there exist ε > 0 and two continuous

curves x = l±(t) such that l+(t) − l−(t) ≥ ε for all large t and u(x, t) ≥ ε (resp.,

v(x, t) ≥ ε) for all x ∈ [l−(t), l+(t)] and for all large t.

In this paper, we always assume

(H) 0 < k < 1 < h (so that u is a superior competitor and v is an inferior competitor).

We introduce the following three quantities:

s∗ :=
π

2

√
d1

r1

, s∗ :=
π

2

√
d1

r1

1√
1− k

, s∗∗ :=
π

2

√
d2

r2

.

Note that s∗ < s∗.

Our next result is to determine the dynamics of (P) via their asymptotical territory sizes

si,∞, i = 1, 2.

Theorem 2. Assume (H). Then the followings hold:
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(i) If s1,∞ ≤ s∗, then the species u vanishes eventually. In this case, if s2,∞ ≤ s∗∗, the

species v vanishes eventually; if s2,∞ > s∗∗, v spreads successfully and

lim
t→∞

v(·, t) = 1 uniformly for any bounded subset of [0,∞).(1.12)

(ii) If s1,∞ ∈ (s∗, s
∗], then u vanishes eventually and v spreads successfully with behavior

(1.12).

(iii) If s1,∞ > s∗, then u spreads successfully. Furthermore,

lim inf
t→∞

u(·, t) ≥ 1− kρ2 uniformly for any bounded subset of [0,∞),

where ρ2 := lim supt→∞ ‖v(·, t)‖C[0,s2(t)] ∈ [0, 1].

Theorem 2 shows that the inferior competitor may win the competition if the the territory

of the superior species does not cross over [0, s∗]. However, u is always unbeatable if its

territory exceeds [0, s∗]. A natural question arises: does the weaker species v always die out

eventually if u spreads successfully?

Intuitively, if the superior competitor spreads faster enough than the inferior competitor,

the inferior competitor would have no chance to survive eventually even its initial populations

and initial habitat sizes are large. In this situation, it is impossible that both two species

spread successfully. Thus, the spreading and vanishing trichotomy is established.

Before stating the trichotomy result, we recall a result of [2] to characterize the trichotomy

region:

Proposition 1 (Propositions 2.1 and 2.2 of [2]). For any given a > 0, b > 0, d > 0 and

c ∈ [0, 2
√
ad ), the problem

cU ′ = dU ′′ + U(aU − b) in (0,∞), U(0) = 0, U(∞) =
b

a
(1.13)

has a unique positive solution U = Uc and U ′c(·) > 0 in [0,∞). Moreover, the followings

hold:

(i) U ′c1(0) > U ′c2(0) and Uc1(x) > Uc2(x) for all x > 0 if 0 ≤ c1 < c2 < 2
√
ad.

(ii) For each µ > 0, there exists a unique c0 = c0(a, b, d, µ) ∈ (0, 2
√
ad) such that

µU ′c0(0) = c0 and

lim
aµ
bd
→0

c0√
ad

bd

aµ
=

1√
3
, lim

aµ
bd
→∞

c0√
ad

= 2.(1.14)

(iii) c0 is strictly increasing in a and µ, respectively, and is strictly decreasing in b.

For every di > 0, ri > 0 (i = 1, 2), 0 < k < 1 < h, define

A := {(µ1, µ2) ∈ (0,∞)× (0,∞) : c0(r1(1− k), r1, d1, µ1) > c0(r2, r2, d2, µ2)}.
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By Proposition 1, A is non-empty. Indeed, by (1.14),

lim
µ1→∞

c0(r1(1− k), r1, d1, µ1) = 2
√
d1r1(1− k), lim

µ2→0
c0(r2, r2, d2, µ2) = 0,

there exist µ∗1 > 0 and µ∗2 > 0 such that [µ∗1,∞)× (0, µ∗2] ⊂ A.

Theorem 3. Assume (H) and di > 0, ri > 0 are given, i = 1, 2. Suppose that (µ1, µ2) ∈ A
and s1,∞ > s∗. Then u spreads successfully and v vanishes eventually. In this case, we have

lim
t→∞

u(·, t) = 1 uniformly for any bounded subset of [0,∞).(1.15)

Theorem 3 together with Theorem 2 imply that we have the spreading and vanishing

trichotomy, namely, both species vanish eventually, u vanishes eventually and v spreads

successfully, or, u spreads successfully and v vanishes eventually, when (µ1, µ2) ∈ A. More

precisely, we have

Corollary 1 (spreading and vanishing trichotomy). Assume (H) and di > 0, ri > 0 are

given, i = 1, 2. If (µ1, µ2) ∈ A, then the dynamics of (P) satisfies the following trichotomy:

(i) both two species vanish eventually: s1,∞ ≤ s∗ and s2,∞ ≤ s∗∗,

(ii) u vanishes eventually and v spreads successfully: s1,∞ ≤ s∗,

(iii) u spreads successfully and v vanishes eventually.

Remark 1. In the vanishing cases in Cor. 1, the upper bounds of s1,∞, s2,∞ can be given as

in Parts (i)(ii). These bounds depend only on the parameters in the system. However, for

Part (iii), there does not exist an upper estimate for s2∞ depending only on the parameters

in the system. It also depends on the initial data.

Next, we characterize the set A as follows.

Theorem 4 (characterization of the set A). Assume (H) and di > 0, ri > 0 are given,

i = 1, 2. Then there exist a strictly increasing C1 function Λ(·) with Λ(0+) = 0 and two

positive constants ν1 and ν2 satisfying

Λ : (0,∞)→ (0, ν1) with Λ(∞) = ν1 if
√
r1d1(1− k) >

√
r2d2;

Λ : (0,∞)→ (0,∞) with Λ(∞) =∞ if
√
r1d1(1− k) =

√
r2d2;

Λ : (0, ν2)→ (0,∞) with Λ(ν−2 ) =∞ if
√
r1d1(1− k) <

√
r2d2

such that the following hold:

• If
√
r1d1(1− k) ≥

√
r2d2, then

(µ1, µ2) ∈ A ⇐⇒ µ1 > Λ(µ2), µ2 ∈ (0,∞);

• If
√
r1d1(1− k) <

√
r2d2, then

(µ1, µ2) ∈ A ⇐⇒ µ1 > Λ(µ2), µ2 ∈ (0, ν2).
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Theorem 4 helps us to understand more about the sufficient condition for which spreading-

vanishing trichotomy (given in Corollary 1) holds via the parameters µ1 and µ2. It shows

that, roughly speaking, the inferior competitor cannot spread successfully if µ2, the intention

of v to spread, is too small.

Our final result provides some conditions for which both species can spread successfully.

Theorem 5. Assume (H). Given d1, µ2, ri, i = 1, 2, u0 and v0 with s0
1 < s0

2 and (v0)′(x) ≤ 0

for all x ∈ [s0
1, s

0
2]. Suppose that s1,∞ > s∗ (e.g., s0

1 > s∗). Then there exists d̄ > 0 depending

on d1, µ2, r1, r2, u0 and v0 such that if d2 > d̄, then both two species spread successfully as

long as

µ1 ≤ µ̄ and s0
2 − s0

1 > 2π

[√
r2

d2

(
1− d̄

d2

)]−1

,(1.16)

for some positive constant µ̄ depending only on d2 and d̄.

Theorem 5 shows that if the superior competitor spreads too slow to catch up with the

inferior competitor, it may leave enough space for the inferior competitor to survive.

The rest of the paper is organized as follows. In Section 2, we prove the global existence

and uniqueness of solution to (P). Although the problem (P) is related to some recent works

(e.g., [5, 11, 15, 25, 30, 34]), it seems that their arguments in the proof of the existence and

uniqueness of solution cannot be applied directly to our problem. In fact, since in our case

the two free boundaries may intersect each other at some time, it leads to that these two free

boundaries may not be straightened locally into two cylindrical domains at the same time.

Thus our proof here becomes more complicated than those of the above-mentioned related

works. In Section 3, we first recall some fundamental results from [2, 10] and give a basic

estimate which shall be used to derive the main results of this paper. Then we determine

the dynamics of (P) via si,∞, i = 1, 2, and give proofs of Theorems 2, 3, 4 and 5. Also, some

sufficient conditions for spreading and vanishing via the initial data are presented. Finally,

in Section 4 we shall give a brief discussion with some future direction of studies.

2. Existence and uniqueness

In this section, we shall deal with global existence and uniqueness of solutions to the free

boundary problem (P). For the local existence, we shall consider the following problem with
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a more general nonlinearity:

ut = d1uxx + f(u, v), 0 < x < s1(t), t > 0,

vt = d2vxx + g(u, v), 0 < x < s2(t), t > 0,

ux(0, t) = vx(0, t) = 0, t > 0,

u ≡ 0 if x ≥ s1(t) and t > 0; v ≡ 0 if x ≥ s2(t) and t > 0,

s′1(t) = −µ1ux(s1(t), t), t > 0; s′2(t) = −µ2vx(s2(t), t), t > 0,

s1(0) = s0
1, s2(0) = s0

2, u(x, 0) = u0(x), v(x, 0) = v0(x) for x ∈ [0,∞),

(2.1)

where the initial data satisfies (1.7), and the nonlinearities satisfy

(A) f and g are locally Lipschitz continuous for u, v ∈ [0,∞) with

f(0, v) = 0 = g(u, 0) for u, v ≥ 0.

Our first goal is to establish the local existence result for (2.1):

Proposition 2 (Local existence). Assume (1.7), (A) and α ∈ (0, 1). Suppose that

‖u0‖C2[0,s01] + ‖v0‖C2[0,s02] + s0
1 + s0

2 ≤M(2.2)

for some M > 0. Then there exists T0 ∈ (0,∞) and M0 > 0 depending only on α, M and

the local Lipschitz constants of f, g such that the problem (2.1) admits a unique solution

(u, v, s1, s2) ∈ C1+α,(1+α)/2(D1
T0

)× C1+α,(1+α)/2(D2
T0

)× C1+α/2[0, T0]× C1+α/2[0, T0]

satisfying

‖u‖C1+α,(1+α)/2(D1
T0

) + ‖v‖C1+α,(1+α)/2(D2
T0

) +
2∑
i=1

‖si‖C1+α/2[0,T0] ≤M0,(2.3)

where Di
T0

:= {(x, t) : 0 ≤ x ≤ si(t), t ∈ [0, T0]} for i = 1, 2.

Our strategy of the proof of Proposition 2 is as follows: for a given small constant T > 0

we introduce the function spaces

Σi := {s ∈ C1[0, T ] : s(0) = s0
i , s

′(0) = s∗i , ‖s′ − s∗i ‖C[0,T ] ≤ 1} i = 1, 2,

where s∗1 := −µ1u
′
0(s0

1) and s∗2 := −µ2v
′
0(s0

2). Given (ŝ1, ŝ2) ∈ Σ1 × Σ2, we consider the

following problem with variable fixed domains:

ut = d1uxx + f(u, v), 0 < x < ŝ1(t), t > 0,

vt = d2vxx + g(u, v), 0 < x < ŝ2(t), t > 0,

ux(0, t) = vx(0, t) = 0, t > 0,

u ≡ 0 if x ≥ ŝ1(t) and t > 0; v ≡ 0 if x ≥ ŝ2(t) and t > 0,

ŝ1(0) = s0
1, ŝ2(0) = s0

2, u(x, 0) = u0(x), v(x, 0) = v0(x) for x ∈ [0,∞).

(2.4)

Then the proof of Proposition 2 can be carried out in two steps:
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• Step 1. For any given (ŝ1, ŝ2) ∈ Σ1×Σ2 there exists small τ1 ∈ (0,∞) such that the

problem (2.4) has a unique solution (û, v̂) for t ∈ [0, τ1].

• Step 2. Define the following two mappings:

Fi(ŝi)(t) := s0
i − µ1

∫ t

0

ϕi,x(ŝi(τ), τ)dτ, i = 1, 2,

where ϕ1 = û and ϕ2 = v̂. Then we show that F := (F1,F2) defined on Σ1 × Σ2

admits a unique fixed point using the contraction mapping theorem.

Combining Step 1 and Step 2, we see the problem (2.1) admits a solution, so does the

problem (P).

We shall divide our discussion into three subsections.

2.1. The local existence and uniqueness for (2.4). In this subsection, we study the

problem (2.4) with given (ŝ1, ŝ2) ∈ Σ1 × Σ2.

Lemma 2.1. Assume (1.7), (2.2) and α ∈ (0, 1). Then there exist M1 > 0 and τ1 ∈ (0,∞)

depending only on M , α and the local Lipschitz constants of f, g such that the problem (2.4)

has a unique solution (û, v̂) for t ∈ [0, τ1] satisfying

‖û‖C1+α,(1+α)/2(D̂1
τ1

) + ‖v̂‖C1+α,(1+α)/2(D̂2
τ1

) ≤M1,(2.5)

where D̂i
τ1

:= {(x, t) : 0 ≤ x ≤ ŝi(t), t ∈ [0, τ1]}, i = 1, 2.

Proof. For any given ŝi(t) ∈ Σi for i = 1, 2, we first straighten the given boundary x = ŝ1(t)

into a flat boundary by the transformation y = x/ŝ1(t). Also, let

U(y, t) := u(x, t), V (y, t) := v(x, t), η(t) :=
ŝ2(t)

ŝ1(t)
.

Then (U, V ) satisfies the following problem:

Ut =
d1

(ŝ1(t))2
Uyy +

ŝ′1(t)y

ŝ1(t)
Uy + f(U, V ), 0 < y < 1, t > 0,

Vt =
d2

(ŝ1(t))2
Vyy +

ŝ′1(t)y

ŝ1(t)
Vy + g(U, V ), 0 < y < η(t), t > 0,

Uy(0, t) = Vy(0, t) = 0, t > 0,

U ≡ 0 if x ≥ 1, t > 0; V ≡ 0 if x ≥ η(t), t > 0,

η(0) = s0
2/s

0
1, (U, V )(y, 0) = (U0, V 0)(y) = (u0, v0)(s0

1y), y ∈ [0,∞).

(2.6)
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Next, we introduce the function spaces

X1
T := {U ∈ C([0,∞)× [0, T ]) : U(y, 0) = U0(y), U ≡ 0 if y ≥ 1, t ∈ [0, T ],

‖U − U0‖C([0,∞)×[0,T ]) ≤ 1};

X2
T := {V ∈ C([0,∞)× [0, T ]) : V (y, 0) = V 0(y), V ≡ 0 if y ≥ η(t), t ∈ [0, T ],

‖V − V 0‖C([0,∞)×[0,T ]) ≤ 1}.

Given (Û , V̂ ) ∈ X1
T ×X2

T . Since there exist T1 ∈ (0, T ), c1 > 0 which depend only on M and

the local Lipschitz constants of f, g such that

1

c1

≤ ŝ1(t) ≤ c1, |ŝ′1(t)/ŝ(t)| ≤ c1, t ∈ [0, T1], ‖f‖L∞([0,∞)×[0,T1]) ≤ c1,

we can apply the standard parabolic Lp theory and the Sobolev embedding theorem (see

[17, 22]) to deduce that the system
Ut =

d1Uyy
(ŝ1(t))2

+
ŝ′1(t)y

ŝ1(t)
Uy + f(Û , V̂ ), 0 < y < 1, t > 0,

Uy(0, t) = 0 = U(1, t), t > 0,
U(y, 0) = U0(y), 0 ≤ y ≤ 1.

(2.7)

has a unique solution U ∈ C1+α,(1+α)/2([0, 1]× [0, T1]) with

‖U‖C1+α,(1+α)/2([0,1]×[0,T1]) ≤ C1,(2.8)

where the constant C1 depends only on α, M and the local Lipschitz constants of f, g.

Let us now turn to the following problem:
Vt =

d2Vyy
(ŝ1(t))2

+
ŝ′1(t)y

ŝ1(t)
Vy + g(Û , V̂ ), 0 < y < η(t), t > 0,

Vy(0, t) = 0 = V (η(t), t), t > 0,
V (y, 0) = V 0(y), 0 ≤ y ≤ η(0).

(2.9)

As before, we can straighten the given boundary y = η(t). Then, again, the standard

parabolic Lp theory and the Sobolev embedding theorem (see [17, 22]) give a unique solution

V ∈ C1+α,(1+α)/2(RT2) of the problem (2.9) for some 0 < T2 ≤ T1, satisfying

‖V ‖C1+α,(1+α)/2(RT2
) ≤ C2,(2.10)

where constants T2, C2 depend only on α, M and the local Lipschitz constants of f, g, and

RT2 := {(y, t) : 0 ≤ y ≤ η(t), 0 ≤ t ≤ T2}.

From the above discussions, we are able to define the mapping W on X1
T ×X2

T such that

W (Û , V̂ ) = (U, V ).

Then one can prove that W has a unique fixed point as long as T ∈ (0, 1) small enough using

the contraction mapping theorem. To do so, we first prove that W maps X1
T ×X2

T into itself
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for small T . For this, we set

R̂T := {(y, t) : η(t) ≤ y ≤ η(0), t ∈ [0, T ]} (note that R̂T may be empty).

By setting V
0
(y, t) := V 0(y) on R̂T , we can derive

‖V 0‖C(R̂T ) ≤ TM2 sup
t∈[0,T ]

|η′(t)|(2.11)

where M is given in (2.2). Indeed, using the mean value theorem twice, we have

|V 0(y)| = |v0(s0
1y)| = |v0(s0

1y)− v0(s0
1η(0))| (since v0(s0

1η(0)) = 0)

≤ s0
1‖v0

x‖C[0,s02]|y − η(0)| ≤ s0
1‖v0

x‖C[0,s02]|η(t)− η(0)|

≤ M2T sup
t∈[0,T ]

|η′(t)|

for all η(t) ≤ y ≤ η(0). Hence (2.11) holds.

Using (2.8), (2.10) and (2.11), there exists C3 > 0 depending only on α, M and the local

Lipschitz constants of f, g such that

‖U − U0‖C([0,∞)×[0,T ]) + ‖V − V 0‖C([0,∞)×[0,T ])

= ‖U − U0‖C([0,1]×[0,T ]) + max{‖V − V 0‖C(RT ), ‖V
0‖C(R̂T )}

≤ T
1+α

2 ‖U − U0‖C0,(1+α)/2([0,1]×[0,T ]) + T
α
2 ‖V − V 0‖C0,α/2(RT ) + TM2 sup

t∈[0,T ]

|η′(t)|

≤ C3T
α
2 (choosing T < min{1, T2}).

Thus, W maps X1
T ×X2

T into itself as long as 0 < T < min{1, T2, C
−2/α
3 }.

On the other hand, for any (Ûi, V̂i), we can define Ui and Vi as the solution of (2.7) and

(2.9) respectively, for t ∈ [0, T ], i.e., W (Ûi, V̂i) = (Ui, Vi), i = 1, 2. Note that (U1, V1) and

(U2, V2) are defined in the same domain. Thus, by setting

Ũ := U1 − U2, Ṽ := V1 − V2,

we obtain the following system:

Ũt =
d1

(ŝ1(t))2
Ũyy +

ŝ′1(t)y

ŝ1(t)
Ũy + f(Û1, V̂1)− f(Û2, V̂2), 0 < y < 1, t > 0,

Ṽt =
d2

(ŝ1(t))2
Ṽyy +

ŝ′1(t)y

ŝ1(t)
Ṽy + g(Û1, V̂1)− g(Û2, V̂2), 0 < y < η(t), t > 0,

Ũy(0, t) = Ṽy(0, t) = 0, t > 0,

Ũ ≡ 0 if y ≥ 1, t > 0; Ṽ ≡ 0 if y ≥ η(t), t > 0,

η(0) = s0
2/s

0
1, (Ũ , Ṽ )(y, 0) = (0, 0), y ∈ [0,∞).
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By Lp estimates and the Sobolev embedding theorem we have, for some large p,

‖Ũ‖C1+α,(1+α)/2([0,1]×[0,T2]) ≤ C4‖Ũ‖W 2,1
p ((0,1)×(0,T2))

≤ C5‖f(Û1, V̂1)− f(Û2, V̂2)‖Lp([0,1]×[0,T2])

≤ C6(‖Û1 − Û2‖C([0,∞]×[0,T2]) + ‖V̂1 − V̂2‖C([0,∞)×[0,T2])),

for some C6 depending on α, M and the local Lipschitz constants of f, g. Thus, we obtain

‖U1 − U2‖C([0,∞)×[0,T2]) ≤ C6T
1+α

2
2 (‖Û1 − Û2‖C([0,∞)×[0,T2]) + ‖V̂1 − V̂2‖C([0,∞)×[0,T2])).

Similarly, we have (by straightening the boundary y = η(t)),

‖V1 − V2‖C([0,∞)×[0,T2]) ≤ C7T
1+α

2
2 (‖Û1 − Û2‖C([0,∞)×[0,T2]) + ‖V̂1 − V̂2‖C([0,∞)×[0,T2])).

for some C7 depending on α, M and the local Lipschitz constants of f, g. Combining the

above two estimates, we have

‖U1 − U2‖C([0,∞)×[0,T2]) + ‖V1 − V2‖C([0,∞)×[0,T2])

≤ C8T
1+α

2
2

[
‖Û1 − Û2‖C([0,∞)×[0,T2]) + ‖V̂1 − V̂2‖C([0,∞)×[0,T2])

]
for some C8 depending on α, M and the local Lipschitz constants of f, g. Thus, by choosing

0 < T < min{1, T2, C
− 2
α

3 , C
− 2

1+α

7 },

we see that W forms a contraction mapping. Applying the contraction mapping theorem,

W has a unique fixed point (still denoted by (U, V )). Thus, the problem (2.4) has a unique

solution (û, v̂) for t ∈ [0, τ1] with û(x, t) := U(y, t), v̂(x, t) := V (y, t) and y = x/ŝ1(t).

Moreover, (2.5) follows from (2.8) and (2.10). This completes the proof of Lemma 2.1. �

2.2. Proof of Proposition 2. For any given ŝi ∈ Σi, i = 1, 2, due to Lemma 2.1, one can

introduce the map F : (ŝ1, ŝ2) 7−→ (s̄1, s̄2) satisfying

(2.12) s̄i(t) := s0
i − µi

∫ t

0

ϕi,x(ŝi(τ), τ)dτ, t ∈ [0, τ1], i = 1, 2,

where ϕ1 = û, ϕ2 = v̂ and (û, v̂) is the solution of the problem (2.4) for t ∈ [0, τ1]. Note that

s̄′i(t) = −µiϕi,x(ŝi(t), t) ∈ Cα/2[0, τ1], i = 1, 2.(2.13)

From (2.5), there exists M2 > 0 depending only on M , α and the local Lipschitz constants

of f, g such that
2∑
i=1

‖s̄′i‖Cα/2[0,τ1] ≤M2.(2.14)

It follows from (2.14) that

2∑
i=1

‖s̄′i − s∗i ‖C[0,τ1] ≤M2τ
α/2
1 .
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Hence F maps Σ1 × Σ2 into itself as long as τ1 ∈ (0,M
−2/α
2 ).

To apply the contraction mapping theorem, we define (ûs, v̂s) and (ûσ, v̂σ) as solutions of

(2.4) for t ∈ [0, T ] corresponding to the given boundaries (ŝ1, ŝ2) and (σ̂1, σ̂2) in Σ1 × Σ2,

respectively. For convenience, we set

γi−(t) := min{ŝi(t), σ̂i(t)}, γi+(t) := max{ŝi(t), σ̂i(t)}, i = 1, 2.

Then we have the following estimate.

Lemma 2.2. There holds

‖ûs − ûσ‖C(Γ1
T ) + ‖v̂s − v̂σ‖C(Γ2

T ) ≤ C∗
2∑
i=1

‖ŝi − σ̂i‖C[0,T ], t ∈ [0, T ],(2.15)

where ΓiT := {(x, t) : 0 ≤ x ≤ γi−(t), t ∈ [0, T ]}, i = 1, 2, and C∗ is a positive constant

depending only on M , α and the local Lipschitz constants of f, g.

Proof. We set

U(x, t) := ûs(x, t)− ûσ(x, t), V (x, t) := v̂s(x, t)− v̂σ(x, t).

By direct computations, (U, V ) satisfies

Ut = d1Uxx + f(ûs, v̂s)− f(ûσ, v̂σ), 0 < x < γ1
−(t), t ∈ [0, T ],

Vt = d2Vxx + g(ûs, v̂s)− g(ûσ, v̂σ), 0 < x < γ2
−(t), t ∈ [0, T ],

Ux(0, t) = Vx(0, t) = 0, t ∈ [0, T ],

U ≡ 0 for x ≥ γ1
+(t); V ≡ 0 for x ≥ γ2

+(t), t ∈ [0, T ],

U(x, 0) = 0, x ∈ [0, s0
1], V (x, 0) = 0, x ∈ [0, s0

2].

(2.16)

In order to derive (2.15), we need to estimate U(γ1
−(t), t) and V (γ2

−(t), t) first. To do so,

we observe that

|U(γ1
−(t), t)| =

{
|ûs(σ̂1(t), t)| if γ1

−(t) = σ̂1(t),
|ûσ(ŝ1(t), t)| if γ1

−(t) = ŝ1(t).

Also, using ûs(ŝ1(t), t) = 0 = ûσ(σ̂1(t), t), the mean value theorem yields that

|U(γ1
−(t), t)| ≤M1‖ŝ1 − σ̂1‖C[0,T ] for all t ∈ [0, T ],(2.17)

where M1 > 0 is given by (2.5). Similarly, we have

|V (γ2
−(t), t)| ≤M1‖ŝ2 − σ̂2‖C[0,T ] for all t ∈ [0, T ].(2.18)

From (2.16), (2.17) and (2.18), applying the maximum principle we conclude that
|U(x, t)| ≤M1‖ŝ1 − σ̂1‖C[0,T ] +M3

∫ t

0

max
x∈[0,γ1

−(τ)]
{|U |+ |V |}(x, τ)dτ in Γ1

T ,

|V (x, t)| ≤M1‖ŝ2 − σ̂2‖C[0,T ] +M3

∫ t

0

max
x∈[0,γ2

−(τ)]
{|U |+ |V |}(x, τ)dτ in Γ2

T

(2.19)

for some constant M3 > 0 depending on the local Lipschitz constants of f, g.
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Next, let

J(t) := max
x∈[0,γ1

−(t)]
|U(x, t)|+ max

x∈[0,γ2
−(t)]
|V (x, t)|.

Then we can derive the following estimate:

max
x∈[0,γ1

−(t)]
{(|U |+ |V |)(x, t)} ≤M1‖ŝ2 − σ̂2‖C[0,T ] + J(t), t ∈ [0, T ].(2.20)

To obtain (2.20), we observe that for all t ∈ [0, T ],

max
x∈[0,γ1

−(t)]
{(|U |+ |V |)(x, t)} ≤ J(t) + max

x∈[γ2
−(t),γ2

+(t)]
|V (x, t)|.(2.21)

Note that

|V (x, t)| =
{
|v̂s(x, t)| for all x ∈ [γ2

−(t), γ2
+(t)] if γ2

−(t) = σ̂2(t),
|v̂σ(x, t)| for all x ∈ [γ2

−(t), γ2
+(t)] if γ2

−(t) = ŝ2(t),

by the mean value theorem (as in deriving the estimate (2.17)), we have

max
x∈[γ2

−(t),γ2
+(t)]
|V (x, t)| ≤M1‖ŝ2 − σ̂2‖C[0,T ] for all t ∈ [0, T ].(2.22)

Combining (2.21) and (2.22), we arrive at (2.20).

Similarly, one can obtain

max
x∈[0,γ2

−(t)]
{(|U |+ |V |)(x, t)} ≤M1‖ŝ1 − σ̂1‖C[0,T ] + J(t), t ∈ [0, T ].(2.23)

Due to (2.20) and (2.23), the inequalities (2.19) can be reduced into

J(t) ≤M1(1 +M3T )
2∑
i=1

‖ŝi − σ̂i‖C[0,T ] + 2M3

∫ t

0

J(τ)dτ for t ∈ [0, T ].

By the Gronwall’s inequality, (2.15) follows. This completes the proof of Lemma 2.2. �

We are ready to show Proposition 2.

Proof of Proposition 2. To apply the contraction mapping theorem, it suffices to show the

contraction of F . If necessary we choose τ1 smaller such that

‖ŝi‖C[0,τ1], ‖σ̂i‖C[0,τ1] ≥
s0
i

2
, i = 1, 2.(2.24)

We now prove there exists C ′ > 0 depending only on α, M and the local Lipschitz constants

of f, g such that

2∑
i=1

‖s̄′i − σ̄′i‖C[0,T ] ≤ C ′
2∑
i=1

‖ŝi − σ̂i‖C[0,T ](2.25)

as long as T > 0 small enough, where (σ̄1, σ̄2) is defined similarly as in (2.12).

To do so, we set

U s(y, t) := ûs(x, t), V s(y, t) := v̂s(x, t), y =
x

ŝ1(t)
, η(t) :=

ŝ2(t)

ŝ1(t)
,
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we see that (U s, V s) satisfies (2.6). Similarly, by setting

Uσ(y, t) := ûσ(x, t), V σ(y, t) := v̂σ(x, t), y =
x

σ̂1(t)
, ξ(t) :=

σ̂2(t)

σ̂1(t)
,

we obtain that (Uσ, V σ) satisfies (2.6) with ŝ1(t) and η(t) replaced by σ̂1(t) and ξ(t), respec-

tively.

Also, we introduce

γ−(t) := min{η(t), ξ(t)}, γ+(t) := max{η(t), ξ(t)}, i = 1, 2,

P (y, t) := U s(y, t)− Uσ(y, t), Q(y, t) := V s(y, t)− V σ(y, t).

By direct computations, (P,Q) satisfies

Pt =
d1Pyy

(ŝ1(t))2
+
ŝ′1(t)yPy
ŝ1(t)

+ d1B1(t)Uσ
yy + yB2(t)Uσ

y + F (y, t), 0 < y < 1, t ∈ [0, T ],

Qt =
d2Qyy

(ŝ1(t))2
+
ŝ′1(t)yQy

ŝ1(t)
+ d2B1(t)V σ

yy + yB2(t)V σ
y +G(y, t), 0 < y < γ−(t), t ∈ [0, T ],

Py(0, t) = Qy(0, t) = 0, t ∈ [0, T ],

P ≡ 0 for y ≥ 1; Q ≡ 0 for y ≥ γ+(t), t ∈ [0, T ],

P (y, 0) = 0, Q(y, 0) = 0, y ∈ [0,∞),

where T ∈ (0, τ1) is given and

B1(t) :=
1

(ŝ1(t))2
− 1

(σ̂1(t))2
, B2(t) :=

ŝ′1(t)

ŝ1(t)
− σ̂′1(t)

σ̂1(t)
;(2.26)

F (y, t) := f(U s, V s)− f(Uσ, V σ), G(y, t) := g(U s, V s)− g(Uσ, V σ).

In the following we shall estimate ‖P‖C(Γ1T ) + ‖Q‖C(Γ2T ), where

Γ1T := {(y, t) : 0 ≤ y ≤ 1, t ∈ [0, T ]}, Γ2T := {(y, t) : 0 ≤ y ≤ γ−(t), t ∈ [0, T ]}.

By Lemma 2.2 and (2.5), for each (y, t) ∈ Γ1T , without loss of generality, we assume ŝ1(t) ≤
σ̂1(t), then

|P (y, t)| ≤ |ûs(yŝ1(t), t)− ûσ(yŝ1(t), t)|+ |ûσ(yŝ1(t), t)− ûσ(yσ̂1(t), t)|

≤ C∗
2∑
i=1

‖ŝi − σ̂i‖C[0,T ] + sup
t∈[0,T ]

‖ûσx(·, t)‖C[0,1]‖ŝ1 − σ̂1‖C[0,T ]

≤ M ′
2∑
i=1

‖ŝi − σ̂i‖C[0,T ]

for some M ′ > 0. Thus, we have

‖P‖C(Γ1T ) ≤ M ′
2∑
i=1

‖ŝi − σ̂i‖C[0,T ](2.27)
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Similarly,

‖Q‖C(Γ2T ) ≤ M ′′
2∑
i=1

‖ŝi − σ̂i‖C[0,T ](2.28)

for some M ′′ > 0.

We are ready to prove (2.25). From (2.13), we see that

|s̄′1(t)− σ̄′1(t)| ≤ µ1

∣∣∣∣U s
y (1, t)

ŝ1(t)
−
Uσ
y (1, t)

σ̂1(t)

∣∣∣∣
≤ µ1

[
‖Py‖C(Γ1T )

ŝ1(t)
+
‖ŝ1 − σ̂1‖C[0,T ]‖Uσ

y ‖C(Γ1T )

ŝ1(t)σ̂1(t)

]
.

Then using Lp estimate and the Sobolev embedding theorem,

‖Py‖C(Γ1T ) ≤ C6

[
sup
t∈[0,T ]

2∑
i=1

|Bi(t)|+ ‖P‖C(Γ1T ) + ‖Q‖C(Γ2T )

]
,

where Bi(t) is given by (2.26) (i = 1, 2) and the constant C6 > 0 depending only on α, M

and the local Lipschitz constants of f, g. Also, by (2.5) and (2.24),

‖Uσ
y ‖C(Γ1T )

ŝ1(t)σ̂1(t)
≤ C7

for some C7 > 0 depending only on α, M and the local Lipschitz constants of f, g. Thus, we

are led to

|s̄′1(t)− σ̄′1(t)| ≤ C8

[
sup
t∈[0,T ]

2∑
i=1

|Bi(t)|+ ‖P‖C(Γ1T ) + ‖Q‖C(Γ2T ) + ‖ŝ1 − σ̂1‖C[0,T ]

]
From (2.26), (2.27) and (2.28), there exists C8 > 0 depending only on α, M and the local

Lipschitz constants of f, g such that

|s̄′1(t)− σ̄′1(t)| ≤ C8

2∑
i=1

‖ŝi − σ̂i‖C[0,T ].

Similarly, we can derive

|s̄′2(t)− σ̄′2(t)| ≤ C9

2∑
i=1

‖ŝi − σ̂i‖C[0,T ],

where C9 > 0 depending only on α, M and the local Lipschitz constants of f, g. Thus, (2.25)

follows. On the other hand, since ŝi(0) = σ̂i(0) = s0
i , i = 1, 2, it follows that

‖ŝi − σ̂i‖C[0,T ] ≤ T‖ŝ′i − σ̂′i‖C[0,T ], i = 1, 2.

Together with (2.25), we see that F is a contraction mapping as long as T > 0 small enough.

By the contraction mapping theorem, the problem (2.1) admits a unique solution. Moreover,

(2.3) follows from (2.8), (2.10) and (2.14). This completes the proof of Proposition 2. �
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2.3. Proof of Theorem 1. To prove Theorem 1, we first derive some a priori estimates for

solutions of (P).

Lemma 2.3 (A priori estimates). Let (u, v, s1, s2) be a solution of (P) for t ∈ [0, T ] for

some T > 0. Then u > 0 for x ∈ [0, s1(t)), t ∈ [0, T ] and v > 0 for x ∈ [0, s2(t)), t ∈ [0, T ].

Moreover, the estimates (1.8), (1.9), (1.10) and (1.11) hold for t ∈ [0, T ].

Proof. The strong maximum principle yields that u > 0 for x ∈ [0, s1(t)), t ∈ [0, T ] and v > 0

for x ∈ [0, s2(t)), t ∈ [0, T ]. Thus, we see from (1.3) that ux(s1(t), t) < 0 and vx(s2(t), t) < 0

for t ∈ (0, T ]. By (1.5), s′i(t) > 0 for t ∈ (0, T ] and i = 1, 2.

To derive upper bound of u, we consider ū = ū(t), the solution of u′ = r1u(1−u) with the

initial data ū(0) = ‖u0‖L∞ . By the standard comparison principle, we have u(x, t) ≤ ū(t) ≤
K1 for all x ∈ [0, s(t)], t ∈ [0, T ]. Similarly, we can derive the upper bound estimate for v.

Finally, by exactly the same argument of [15, Lemma 2.2], we can prove (1.10) and (1.11).

We omit the detailed proof here. Then Lemma 2.3 follows. �

We are ready to give a proof of Theorem 1 as follows.

Proof of Theorem 1. By Propositions 2, we have the local existence and uniqueness of the

C1+α,(1+α)/2 solution to the problem (P). Furthermore, note that u, v ∈ Cα,α/2 in {(x, t) :

x ∈ [0,∞), t ∈ [0, T0]}. By the Schauder’s estimates, we see that the solution is actually in

classical sense.

Next, we shall prove that the solution can be extended to all t > 0. For this, we define

the maximal existence time of the solution by Tmax > 0. By the same argument of [10], one

can show Tmax = ∞. For reader’s convenience, we repeat the proof here. Indeed, using a

contradiction argument we assume that Tmax < ∞. By Lemma 2.3, we can find a constant

K > 0 independent of Tmax such that 0 ≤ u(x, t), v(x, t), s′1(t), s′2(t) ≤ K for all x ∈ [0, s(t)]

and t ∈ [0, Tmax). In particular,

s0
i ≤ si(t) ≤ s0

i +Kt for all t ∈ [0, Tmax) and i = 1, 2.

Choosing ε ∈ (0, Tmax), from the standard regularity theory we see that there exists M > 0

depending only on ε, K such that

‖u(·, t)‖C2[0,s1(t)], ‖v(·, t)‖C2[0,s2(t)] ≤M ∀ t ∈ [ε, Tmax).

By Proposition 2, there is a τ > 0 depending only on K and M such that the solution of

(P) with any initial time t ∈ [ε, Tmax) can be uniquely extended to the interval [t, t + τ).

Then we reach a contradiction with the definition of Tmax, since the solution with the initial

time Tmax− τ/2 can be uniquely extended to the time Tmax + τ/2. It follows that Tmax =∞.

Thus, we complete the proof of Theorem 1. �
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3. Proofs of main theorems

In this section, we shall give proofs of our main theorems stated in Section 1. First, we

give some known results to be used later. The next two propositions can be found in [10, 13].

Proposition 3 (Theorem 3.3 of [10] and Theorem 1.2 of [13]). Let (w, h) be a solution of
wt = dwxx + w(a− bw), 0 < x < h(t), t > 0,
wx(0, t) = 0, w(h(t), t) = 0, t > 0,
h′(t) = −µwx(h(t), t), t > 0,
h(0) = h0, w(x, 0) = w0(x), 0 < x < h0,

(3.1)

where h0 > 0, w0 ∈ C2[0, h0] and w0(x) > 0 = w′0(0) = 0 = w0(h0) for x ∈ [0, h0). Then the

following hold:

(i) (Spreading-vanishing dichotomy) Either

lim
t→∞

h(t) =∞, lim
t→∞

w(x, t) =
a

b

uniformly in any bounded subset of [0,∞) or

lim
t→∞

h(t) ≤ π

2

√
d

a
, lim

t→∞
‖w(·, t)‖C[0,h(t)] = 0.

(ii) When limt→∞ h(t) =∞, h(t)/t→ c0(a, b, d, µ) as t→∞ and

lim
t→∞

sup
x∈[0,h(t)]

|w(x, t)− Uc0(h(t)− x)| = 0,

where c0 and Uc0 are defined in Proposition 1.

Proposition 4 (Lemma 3.5 of [10]). Assume that σ ∈ C1[0, T ] and w̄ ∈ C(Dσ
T )∩C2,1(Dσ

T ),

where Dσ
T := {(x, t) ∈ R2 : 0 < x < σ(t), 0 < t ≤ T} and w̄t ≥ dw̄xx + w̄(a− bw), 0 < x < σ(t), t > 0,

w̄x(0, t) ≤ 0, w̄(σ(t), t) = 0, t > 0,
σ′(t) ≥ −µw̄x(σ(t), t), t > 0.

If h0 ≤ σ(0) and w0(x) ≤ w̄(x, 0) for all x ∈ [0, h0], then the solution (w, h) of (3.1) satisfies

h(t) ≤ σ(t) for all t ∈ (0, T ] and w(x, t) ≤ w̄(x, t) for 0 ≤ x ≤ h(t), 0 ≤ t ≤ T .

Remark 2. We call (w̄, σ) defined in Proposition 4 a super-solution of (3.1). A sub-solution

can be defined if we reverse all the inequalities in Proposition 4 (also replacing the interval

[0, h0] by [0, σ(0)]).

The strategy of the proof in the following lemma is similar to the one in [12] (see also

[11, 15]). For reader’s convenience, we give a proof here.
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Lemma 3.1. Let (u, v, s1, s2) be a solution of (P). If s1,∞ < +∞ (resp., s2,∞ < +∞), then

there exists C > 0 independent of t such that

‖u‖C1+α,(1+α)/2([0,s1(t)]×[1,∞)) + ‖s′1‖Cα/2[1,∞) ≤ C,(3.2)

(resp., ‖v‖C1+α,(1+α)/2([0,s2(t)]×[1,∞)) + ‖s′2‖Cα/2[1,∞) ≤ C).

In particular, limt→∞ s
′
1(t) = 0 (resp., limt→∞ s

′
2(t) = 0).

Proof. We only deal with the case that s1,∞ < +∞, since the proof of the other case is similar.

To straighten the free boundary x = s1(t), we perform the following transformations

y :=
x

s1(t)
, (U, V )(y, t) := (u, v)(x, t), η(t) :=

s2(t)

s1(t)
.(3.3)

Then (U, V ) satisfies the system (2.6) without hat sign. By using Lp estimate and the

Sobolev’s embedding theorem we can conclude that

‖U‖C1+α,(1+α)/2([0,1]×[1,∞)) ≤ C ′

for some C ′ > 0. Also, by (1.6), there exists a positive constant C ′′ such that

‖s′1‖Cα/2[1,∞) ≤ C ′′.(3.4)

Thus, (3.2) follows. Moreover, since s1,∞ < +∞, by (3.4), we easily obtain limt→∞ s
′
1(t) = 0.

The same argument can apply to the case that s2,∞ < +∞. This completes the proof of

Lemma 3.1. �

In order to prove Theorem 2, we prepare the following lemmas.

Lemma 3.2. Suppose that

lim sup
t→∞

‖u(·, t)‖C[0,s1(t)] := ρ1, lim sup
t→∞

‖v(·, t)‖C[0,s2(t)] := ρ2.

Then ρi ≤ 1 for i = 1, 2. Moreover, the followings hold:

(i) s1,∞ = +∞ and

lim inf
t→∞

u(x, t) ≥ 1− kρ2 uniformly for any bounded subset of [0,∞)(3.5)

as long as

s1,∞ >
π

2

√
d1

r1

1√
1− kρ2

:= s̄1.(3.6)

In particular, s1,∞ = +∞ if s1,∞ > s∗.

(ii) If 1 − hρ1 > 0, then s2,∞ = +∞ and lim inft→∞ v(x, t) ≥ 1 − hρ1 uniformly for any

bounded subset of [0,∞) as long as

s2,∞ >
π

2

√
d2

r2

1√
1− hρ1

:= s̄2.
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Proof. First, we consider w = w(t) as the solution of w′ = rw(1− w) with r := max{r1, r2}
and the initial data w(0) = max{‖u0‖L∞ , ‖v0‖L∞}. By the standard comparison principle,

we see that ρi ≤ 1 for i = 1, 2. In particular, s̄1 is well-defined because kρ2 < 1.

Since the proof of (i) and (ii) are similar, we only deal with (i). By (3.6), there exists a

sufficiently small ε > 0 such that

s1,∞ >
π

2

√
d1

r1

1√
1− k(ρ2 + ε)

:= s̄1,ε.

Since lim supt→∞ ‖v(·, t)‖C[0,s2(t)] := ρ2, there exists T � 1 such that s1(T ) > s̄1,ε and

v ≤ ρ2 + ε for all x ∈ [0,∞) and t ≥ T . This implies that

ut ≥ d1uxx + r1u[1− k(ρ2 + ε)− u], x ∈ [0, s1(t)], t ≥ T.

Hence (u, s1) is a super-solution of
wt = d1wxx + r1w[1− k(ρ2 + ε)− w], 0 < x < σ(t), t > T,
wx(0, t) = 0, w(σ(t), t) = 0, t > T,
σ′(t) = −µ1wx(σ(t), t), t > T,
σ(T ) := s1(T ), w(x, T ) = u(x, T ), x ∈ [0, σ(T )],

Since σ(T ) := s1(T ) > s̄1,ε, Propositions 3 and 4 yield that s1,∞ ≥ σ(∞) =∞ and

lim inf
t→∞

u(x, t) ≥ lim
t→∞

w(x, t) = 1− k(ρ2 + ε)

uniformly for any bounded subset of [0,∞). Note that ε > 0 is arbitrary, (3.5) follows.

Moreover, since s∗ ≥ s̄1, it follows that s1,∞ = +∞ if s1,∞ > s∗. This completes the proof of

Lemma 3.2. �

Note that s̄1 = s∗ if ρ2 = 0 and s̄2 = s∗∗ if ρ1 = 0.

Lemma 3.3. (i) If s1,∞ ≤ s∗, then limt→∞ ‖u(·, t)‖C[0,s1(t)] = 0. (ii) If s2,∞ ≤ s∗∗, then

limt→∞ ‖v(·, t)‖C[0,s1(t)] = 0.

Proof. We now prove (i). Choose l ∈ [s1,∞, s∗]. Let ū be the unique solution for ut =

d1uxx+r1u(1−u), (x, t) ∈ (0, l)× (0,+∞) with the boundary condition ux(0, t) = u(l, t) = 0

for t > 0 and the initial data

u(x, 0) =

{
u0(x) if x ∈ [0, s0],
0 if x ∈ [s0, l].

Then it is well known that limt→+∞ ‖ū(·, t)‖C([0,l]) = 0 since l ≤ s∗ (see, for example, [3,

Proposition 3.3]). By comparing ū with u over {(x, t) : 0 ≤ x ≤ s1(t), t ≥ 0}, we obtain

0 ≤ u ≤ ū and so limt→+∞ ‖u(·, t)‖C([0,s1(t)]) = 0. The same argument applies to (ii). Thus,

we complete the proof of Lemma 3.3. �
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Lemma 3.4. (i) Suppose that s1,∞ <∞. If s1(t) ≤ s2(t) for all large t, then

lim
t→∞
‖u(·, t)‖C[0,s1(t)] = 0.

(ii) Suppose that s2,∞ <∞. If s2(t) ≤ s1(t) for all large t, then

lim
t→∞
‖v(·, t)‖C[0,s2(t)] = 0.

Proof. It suffices to deal with (i) since the same argument can be applied to (ii). To prove (i),

we shall modify a proof of [11]. For contradiction we assume that lim supt→∞ ‖u(·, t)‖C([0,s1(t)]) >

0. Then we can find a sequence {(xn, tn)} with xn ∈ [0, s1(tn)) and limn→∞ tn = ∞ such

that u(xn, tn) → κ as t → ∞ for some κ > 0. Up to a subsequence, we may assume that

limn→∞ xn = x̄. We now show that x̄ 6= s1,∞. For contradiction, if x̄ = s1,∞, then by the

mean value theorem and using that s1,∞ <∞, we have ξn ∈ (xn, s1(tn)) such that

ux(ξn, tn) =
u(xn, tn)− u(s1(tn), tn)

xn − s1(tn)
=

u(xn, tn)

xn − s1(tn)
→∞ as n→∞,

which contradicts Lemma 3.1. Thus, we must have that x̄ ∈ [0, s1,∞).

Since s1,∞ <∞, we can use the same transformation as in (3.3) to obtain the system (2.6)

without hat sign. We now consider

ûn(y, t) := U(y, t+ tn), v̂n(y, t) := V (y, t+ tn) for y ∈ [0, 1] and t ∈ [0, 1].

Since s1(t) ≤ s2(t) for all large t, we have η(t) ≥ 1 for all large t. Similar to the proof of

Lemma 3.1, we have

‖V ‖C1+α,(1+α)/2([0,1]×[1,∞)) ≤M for some positive constant M.

Here we use [0, 1] ⊂ [0, η(t)] for all large t.

Together with (3.2), we obtain

‖U‖C1+α,(1+α)/2([0,1]×[1,∞)) + ‖V ‖C1+α,(1+α)/2([0,1]×[1,∞)) ≤M ′(3.7)

for some positive constant M ′.

By (3.7) and limn→∞ s
′
1(tn) = 0 (Lemma 3.1), we have (up to a subsequence)

(ûn, ûn)(y, t)→ (u∗, v∗)(y, t) in C1,1/2([0, 1]× [0, 1]) as n→∞,(3.8)

where u∗(x̄/s1,∞, 0) = κ > 0 and{
u∗t = d1[s1,∞]−2u∗yy + r1u

∗(1− u∗ − kv∗), y ∈ (0, 1), t ∈ (0, 1),
u∗y(0, t) = u∗(1, t) = 0, t ∈ (0, 1).

(3.9)

Then the strong maximum principle implies that u∗ > 0 over {(y, t) : y ∈ (0, 1), t ∈ (0, 1)}.
By Hopf’s Lemma, there exists θ > 0 such that u∗y(1, t) ≤ −θ for all t ∈ (1/4, 1). Combining

(3.8) and (1.5),

s′1(tn +
1

2
) = −µ1ux(s1(tn +

1

2
), tn +

1

2
) = −µ1

ûn,y(1, 1/2)

s1(tn + 1/2)
≥ θµ1

2s1,∞
for all large n.
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This contradicts Lemma 3.1. Hence we must have lim supt→∞ ‖u(·, t)‖C([0,s1(t)]) = 0 and then

the proof of Lemma 3.4 is completed. �

Lemma 3.5. Suppose that s1,∞ ∈ (s∗, s
∗]. Then s1(t)−s2(t) changes sign only finitely many

times. Furthermore, s2,∞ =∞ and

lim
t→∞
‖u(·, t)‖C[0,s1(t)] = 0, lim

t→∞
v(·, t) = 1 locally uniformly for x ∈ [0,∞).

Proof. We first show that

s2,∞ > s∗∗.(3.10)

If (3.10) does not hold, then Lemma 3.3(ii) implies that limt→∞ ‖v(·, t)‖C[0,s2(t)] = 0. Apply-

ing Lemma 3.2(i) with ρ2 = 0, we have s1,∞ =∞, a contradiction to that s1,∞ ≤ s∗. Thus,

we obtain (3.10).

We next use a contradiction argument to prove that s1(t)−s2(t) changes sign only finitely

many times. Assume that it changes sign infinitely many times, then we have s1,∞ = s2,∞ <

∞. If we can prove that limt→∞ ‖u(·, t)‖C[0,s1(t)] = 0, then using (3.10) and Lemma 3.2(ii)

with ρ1 = 0 we obtain s2,∞ = ∞. This leads a contradiction to that s2,∞ < ∞. Hence

s1(t)− s2(t) must change sign only finitely many times.

To prove that limt→∞ ‖u(·, t)‖C[0,s1(t)] = 0, we shall modify the proof of Lemma 3.4. For

contradiction we assume that lim supt→∞ ‖u(·, t)‖C([0,s1(t)]) > 0. Then we can choose a se-

quence {(xn, tn)} with xn ∈ [0, s1(tn)) and limn→∞ tn =∞ such that u(xn, tn)→ β as t→∞
for some β > 0 and limn→∞ xn = x̄ (up to a subsequence). As in the proof of Lemma 3.4,

we have that x̄ ∈ [0, s1,∞).

Again, using the transformation as in (3.3) we have the system (2.6) without hat sign. We

now consider

ûn(y, t) := U(y, t+ tn), v̂n(y, t) := V (y, t+ tn) for y ∈ [0, γn] and t ∈ [0, 1],

where γn := min{1,mint∈[tn,tn+1] η(t)} and η(t) is defined in (3.3). Note that s1,∞ = s2,∞, we

see that limn→∞ γn = 1.

Since s1,∞ = s2,∞ <∞, by Lemma 3.1,

‖ûn‖C1+α,(1+α)/2([0,γn]×[0,1]) + ‖v̂n‖C1+α,(1+α)/2([0,γn]×[0,1]) ≤M ′(3.11)

for some positive constant M ′ independent of n.

Using (3.11), limn→∞ γn = 1 and limn→∞ s
′
1(tn) = 0, we have (up to a subsequence)

(ûn, ûn)(y, t)→ (u∗, v∗)(y, t) in C1,1/2([0, 1]× [0, 1]) as n→∞,
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where u∗(x̄/s1,∞, 0) = β > 0 and (u∗, v∗) satisfies the same system (3.9). Again, as in the

proof of Lemma 3.4, using the strong maximum principle and Hopf’s Lemma we can derive

s′1(tn +
1

2
) ≥ δ for some δ > 0 and for all large n.

This contradicts Lemma 3.1. Hence lim supt→∞ ‖u(·, t)‖C([0,s1(t)]) = 0.

Therefore, s1(t) − s2(t) changes sign only finitely many times. Then we see that either

s1(t) ≤ s2(t) for all large t or s1(t) ≥ s2(t) for all large t. In fact, the latter case cannot

happen. Otherwise, by Lemma 3.4(ii) and Lemma 3.2(i) (with ρ2 = 0), we see that s1,∞ =∞,

a contradiction. Thus, we have s1(t) ≤ s2(t) for all large t. Consequently, Lemma 3.5 follows

from Lemma 3.4(i) and Lemma 3.2(ii) (with ρ1 = 0). �

Now, we are ready to give a proof of Theorem 2.

Proof of Theorem 2. For (i), the vanishing of u follows from Lemma 3.3(i). Moreover, by

Lemma 3.2(ii) with ρ1 = 0, we see that v spreads successfully and satisfies (1.12) if s2,∞ > s∗∗.

When s2,∞ ≤ s∗∗, the vanishing of v follows from Lemma 3.3(ii). Part (ii) follows from

Lemma 3.5 immediately. By Lemma 3.2(i), part (iii) holds. Hence we complete the proof of

Theorem 2. �

To prove Theorem 3, we need the following lemma.

Lemma 3.6. Suppose that s1,∞ =∞ and c0 is defined in Proposition 1. Then

c0(r1(1− k), r1, d1, µ1) ≤ lim inf
t→∞

s1(t)

t
≤ lim sup

t→∞

s1(t)

t
≤ c0(r1, r1, d1, µ1).(3.12)

Moreover, for each 0 < ĉ < c0(r1(1− k), r1, d1, µ1),

lim inf
t→∞

[
min
x∈[0,ĉt]

u(x, t)

]
≥ 1− k.(3.13)

Proof. It is easy to check that (u, s1) forms a subsolution of
w̄t = d1w̄xx + r1w̄(1− w̄), 0 < x < h̄(t), t > 0,
w̄x(0, t) = 0, w̄(h̄(t), t) = 0, t > 0,
h̄′(t) = −µ1w̄x(h̄(t), t), t > 0,
h̄(0) = s0, w̄(x, 0) = u0(x), 0 < x < s0,

By Proposition 4, h̄(t) ≥ s1(t) for all t, which implies that h̄(∞) =∞. Thus, from Proposi-

tion 3(ii) we see that h̄(t)/t→ c0(r1, r1, d1, µ1) as t→∞. Consequently, we have

lim sup
t→∞

s1(t)

t
≤ c0(r1, r1, d1, µ1).
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To derive the lower bound estimate in (3.12), we choose any small ε > 0 and T (ε) � 1

such that

v(x, t) ≤ 1 + ε for all x ∈ [0,∞) and t ≥ T (ε);(3.14)

s1(T (ε)) >
π

2

√
d1

r1[1− k(1 + ε)]
.(3.15)

Then from (3.14) it is easy to check that (u, s1) forms a supersolution of
wt = d1wxx + r1w[1− k(1 + ε)− w], 0 < x < h(t), t > T (ε),
wx(0, t) = 0, w(h(t), t) = 0, t > T (ε),
h′(t) = −µ1wx(h(t), t), t > T (ε),
w(x, T (ε)) = u(x, T (ε)), 0 < x < h(T (ε)) := s1(T (ε)),

Using (3.15), we see that h(∞) =∞. From Proposition 3(ii) it follows that

h(t)

t
→ c∗(ε) := c0(r1[1− k(1 + ε)], r1, d1, µ1) as t→∞,

w(x, t) ≥ Uc∗(ε)(h(t)− x)− ε for all x ∈ [0, h(t)] and t� 1,

By Proposition 4, we have lim inft→∞[s1(t)/t] ≥ c∗(ε) and for each 0 < ĉ < c∗(ε),

min
x∈[0, ĉ t]

u(x, t) ≥ Uc∗(ε)(h(t)− ĉt)− ε for all t� 1

Note that Uc∗(ε)(h(t) − ĉt) → 1 − k(1 + ε) as t → ∞ since 0 < ĉ < c∗(ε). Thus, by taking

ε → 0, we obtain the lower bound estimates in (3.12) and (3.13). This completes the proof

of Lemma 3.6. �

Similarly, we have the following result.

Lemma 3.7. It holds that

lim sup
t→∞

s2(t)

t
≤ c0(r2, r2, d2, µ2),

where c0 is defined in Proposition 1.

We are ready to prove Theorem 3.

Proof of Theorem 3. We shall divide our proof into two parts:

(a) s1,∞ =∞ and s2,∞ <∞;

(b) limt→+∞ ‖v(·, t)‖C([0,s2(t)]) = 0 and limt→∞ u(·, t) = 1 uniformly for any bounded

subset of [0,∞).

For (a), since s1,∞ > s∗, by Theorem 2 we have s1,∞ =∞. To prove s2,∞ <∞, we argue

by contradiction and assume that s2,∞ = ∞. Since (µ1, µ2) ∈ A, by Lemmas 3.6 and 3.7,

there exists T � 1 and a constant ĉ such that

c∗ =: c0(r2, r2, d2, µ2) < ĉ < c0(r1(1− k), r1, d1, µ1) := c∗,

s2(t) < ĉt < s1(t) for all t ≥ T .
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As in [15], we shall apply an iteration scheme. For this, we define two sequences {an}n∈N
and {bn}n∈N as follows:

a1 = 1− k, b1 = 1, bn+1 := 1− han, an+1 := 1− kbn+1, n ∈ N.

Since h > 1 > k > 0, it is not hard to see that there exists N ∈ N such that aN ∈ [1/h, 1).

We shall prove that

lim inf
t→∞

[
min
x∈[0,ĉt]

u(x, t)

]
≥ aN ∈ [1/h, 1).(3.16)

First, by Lemma 3.6, we have

lim inf
t→∞

[
min
x∈[0,ĉt]

u(x, t)

]
≥ a1.

Thus, if N = 1, then (3.16) follows.

Assume that N > 1, i.e., a1 < 1/h. Then for each small ε > 0, there exists T1 � 1 such

that u ≥ a1 − ε for x ∈ [0, ĉt] and t ≥ T1. Without loss of generality, we may also assume

that ĉt > s2(t) for all t ≥ T1. Then we have

vt = d2vxx + r2v(1− v − hu) ≤ d2vxx + r2v[1− v − h(a1 − ε)]

for x ∈ [0, s2(t)] and t ≥ T1. Let V be the solution of

dV

dt
= r2V [1− h(a1 − ε)− V ], t ≥ T1, V (T1) = ‖v(·, T1)‖L∞([0,∞)).

Thus, by comparing v and V , we conclude that (using that ε > 0 is arbitrary small)

lim sup
t→∞

‖v(·, t)‖C[0,∞) ≤ b2.(3.17)

We now use the same argument in the proof of Lemma 3.6 to derive

lim inf
t→∞

[
min
x∈[0,ĉt]

u(x, t)

]
≥ a2.(3.18)

Using s1,∞ =∞ and (3.17), there exists T2 > T1 such that

s1(T2) >
π

2

√
d1

r1[1− k(b2 + ε)]
,(3.19)

v(x, t) ≤ b2 + ε for all x ∈ [0,∞) and t ≥ T2.(3.20)

It follows from (3.20) that (u, s1) forms a supersolution of
wt = d1wxx + r1w[1− k(b2 + ε)− w], 0 < x < γ(t), t > T2,
wx(0, t) = 0, w(γ(t), t) = 0, t > T2,
γ′(t) = −µ1wx(γ(t), t), t > T2,
w(x, T2) = u(x, T2), 0 < x < γ(T2) := s1(T2),

Thus, Proposition 4 gives us

γ(t) ≤ s1(t) and w(x, t) ≤ u(x, t) for x ∈ [0, γ(t)], t ≥ T2.
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On the other hand, because of (3.19), Proposition 3 implies that

γ(t)/t→ c0(r1[1− k(b2 + ε)], r1, d1, µ1) as t→∞.

Moreover, by the monotonicity of c0, we have (if necessary, we choose ε smaller)

c0(r1[1− k(b2 + ε)], r1, d1, µ1) > c0(r1(1− k), r1, d1, µ1) > ĉ,

which implies that

max
x∈[0,ĉt]

∣∣w(x, t)− [1− k(b2 + ε)]
∣∣ = max

x∈[0,ĉt]

∣∣w(x, t)− (a2 − kε)
∣∣→ 0 as t→∞.

Note that that u(x, t) ≥ w(x, t) for all x ∈ [0, ĉt] and t ≥ T2. Hence (3.18) follows since ε

can be arbitrary small.

By repeating the above process, we obtain (3.16). Without loss of generality we may

assume that aN > 1/h. Otherwise, we can replace a1 = 1 − k by a1 = 1 − k − ε for

sufficiently small ε > 0 such that an 6= 1/h for all n. Hence it follows from (3.16) that there

exists T � 1 such that

vt = d2vxx + r2v(1− v − hu) ≤ d2vxx

over {(x, t) : x ∈ [0, s2(t)], t ≥ T}. By comparing (v, s2) and (φ, σ), where
φt = d2φxx, x ∈ (0, σ(t)), t ≥ T,
φx(0, t) = 0 = φ(σ(t), t), t ≥ T,
σ′(t) = −µ2φx(σ(t), t), t ≥ T,
φ(x, T ) = v(x, T ), x ∈ [0, σ(T )], σ(T ) = s2(T ),

we have s2(t) ≤ σ(t) for all t ≥ T . It is well known that σ(∞) < ∞. Hence we obtain

s2,∞ <∞, a contradiction. Consequently, (a) follows.

Also, since s1,∞ =∞, we can apply Lemma 3.4(ii) to conclude that

lim
t→+∞

‖v(·, t)‖C([0,s2(t)]) = 0.

Finally, Lemma 3.2(i) with ρ2 = 0 implies (b). Hence the proof of Theorem 3 is complete. �

Before proving Theorem 4, we establish the following lemma.

Lemma 3.8. Let Uc0 be the positive solution of (1.13). Suppose that c0 is thought of as the

function of µ (other parameters are fixed). Then c0 is C1 in µ and

∂c0(µ)

∂µ
=

U ′c0(µ)(0)

1− µ
∂U ′

c0(µ)
(0)

∂c0

> 0.

Proof. Recall Proposition 1,

c0(µ) = µU ′c0(µ)(0),(3.21)
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where U ′c0(0) is strictly decreasing in c0 and c0 is strictly increasing in µ. By the standard

ODE theory, we see that U ′c0(0) is C1 in c0. Thus, by differentiating (3.21) with respect to

µ, we obtain that c0 is C1 in µ and

∂c0

∂µ
= U ′c0(0) + µ

∂U ′c0(0)

∂c0

∂c0

∂µ
.

Since
∂U ′c0 (0)

∂c0
< 0, we have

∂c0(µ)

∂µ
=

U ′c0(µ)(0)

1− µ
∂U ′

c0(µ)
(0)

∂c0

> 0.

This completes the proof of Lemma 3.8. �

Proof of Theorem 4. We shall apply the Implicit Function Theorem to show the existence of

Λ(·). Also, using Proposition 1 we can complete the proof of Theorem 4.

For convenience, we set

c∗(µ1) := c0(r1(1− k), r1, d1, µ1), c∗(µ2) := c0(r2, r2, d2, µ2),

F (µ1, µ2) := c∗(µ1)− c∗(µ2).

Due to Lemma 3.8, we have F ∈ C1((0,∞)× (0,∞)) and ∂F
∂µ1

= ∂c∗

∂µ1
> 0 for µ1 ∈ (0,∞).

For
√
r1d1(1− k) >

√
r2d2, by Proposition 1, we have

0 = c∗(0+) < c∗(·) < c∗(∞) = 2
√
r1d1(1− k),

0 = c∗(0
+) < c∗(·) < c∗(∞) = 2

√
r2d2.

It follows that for each µ̂2 > 0, there exists a unique µ̂1 > 0 such that F (µ̂1, µ̂2) = 0.

Moreover, there exists a unique ν1 such that c∗(ν1) = 2
√
r2d2. By the monotonicity of c∗(·),

we have c∗(·) > 2
√
r2d2 on (ν1,∞). It follows that

{(µ1, µ2) ∈ (0,∞)× (0,∞) : F (µ1, µ2) = 0} ⊂ (0, ν1)× (0,∞).

By the Implicit Function Theorem, there exists a C1 function Λ defined for µ2 ∈ (0,∞) such

that F (Λ(µ2), µ2) = 0. Moreover, by Lemma 3.8,

Λ′(·) = − ∂F
∂µ2

/ ∂F
∂µ1

=
∂c∗
∂µ2

/ ∂c∗
∂µ1

> 0.

It follows that Λ(∞) exists. We now prove that Λ(∞) = ν1. Note that c∗(µ2) ↑ 2
√
r2d2 as

µ2 ↑ ∞. It follows that

0 = F (Λ(∞),∞) = c∗(Λ(∞))− 2
√
r2d2.

By the definition of ν1, we obtain Λ(∞) = ν1. Hence we have proved the existence of Λ.

Also, using ∂F
∂µ1

> 0 for µ1 ∈ (0,∞) and

A = {(µ1, µ2) ∈ (0,∞)× (0,∞) : F (µ1, µ2) > 0},
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we see that

(µ1, µ2) ∈ A ⇐⇒ µ1 > Λ(µ2), µ2 ∈ (0,∞).

The same argument as above can be applied to the case that
√
r1d1(1− k) ≤

√
r2d2. We

omit the detailed proof here and then Theorem 4 follows. �

Corollary 2. Assume (H). Let (u, v, s1, s2) be a solution of (P). Then the followings hold.

(a) If s0
1 < s∗ and ‖u0‖L∞ is small enough, then u vanishes eventually. When u vanishes

eventually, the following hold:

(a-1) if s0
2 < s∗∗, then v also vanishes eventually as long as ‖v0‖L∞ is small enough;

(a-2) if s0
2 < s∗∗, then v spreads successfully as long as ‖v0‖L∞ is large enough;

(a-3) if s0
2 ≥ s∗∗, then v always spreads successfully regardless of its initial population.

(b) Given di, ri, i = 1, 2. Suppose that s0
1 > s∗. Then u spreads successfully and v

vanishes eventually as long as

µ1 > Λ(µ2), µ2 ∈ (0,∞) if
√
r1d1(1− k) ≥

√
r2d2.

µ1 > Λ(µ2), µ2 ∈ (0, ν2) if
√
r1d1(1− k) <

√
r2d2,

regardless of their initial population size, where ν2 and Λ are defined in Theorem 4.

Proof. The proof of (a) can be done by the similar argument of [10, Lemma 3.7, Lemma 3.8].

We do not repeat it here again. For (b), note that s0
1 > s∗ implies that u spreads successfully.

Then by Theorem 3 and Theorem 4, we obtain (b). This completes the proof of Corollary 2.

�

To prove Theorem 5, we need show the monotonicity of the profile v(·, t) nearby the free

boundary x = s2(t). The idea is to apply a reflection argument as follows.

Lemma 3.9. Suppose that s1(t) < s2(t) for t ∈ [0, τ1] and η(t) := [s1(t) + s2(t)]/2. Then

vx(x, t) < 0 for all x ∈ [η(t), s2(t)] and for all t ∈ (0, τ1] as long as (v0)′(x) ≤ 0 for all

x ∈ [s0
1, s

0
2].

Proof. For given τ ∈ (0, τ1] and L ∈ [η(τ), s2(τ)), we consider

Dτ := {(x, t) : 2L− s2(t) < x < s2(t), t ∈ (τ ∗, τ ]},

where τ ∗ := 0 if L ≤ s0
2; while τ ∗ := s−1

2 (L) if L > s0
2.

Using s′i(t) > 0 for i = 1, 2, we have

2L− s2(t) ≥ 2η(τ)− s2(t) = s1(τ) + s2(τ)− s2(t) ≥ s1(τ) ≥ s1(t), t ∈ (τ ∗, τ ].

Thus, u = 0 over Dτ and so v satisfies

vt = d2vxx + r2v(1− v), (x, t) ∈ Dτ .(3.22)
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We now set

V (x, t) := v(x, t)− v(2L− x, t)(3.23)

defined on D′τ := {(x, t) : L < x < s2(t), t ∈ (τ ∗, τ ]}. Note that (x, t) ∈ D′τ implies that

(x, t), (2L− x, t) ∈ Dτ . Hence, using (3.22) it gives us

Vt = d2Vxx + c(x, t)V, (x, t) ∈ D′τ ,

for some function c which is bounded in D′τ . Note that V (L, t) = 0 and V (s2(t), t) =

−v(s1(t), t) < 0 for t ∈ (τ ∗, τ ]. Note that, when τ ∗ = 0, we have V (x, 0) ≤ 0 for x ∈ [L, s0
2],

since (v0)′(x) ≤ 0 for x ∈ [s0
1, s

0
2]. On the other hand, when τ ∗ > 0, we have L = s2(τ ∗). Then

we can apply the strong maximum principle to conclude that V < 0 over D′τ . Furthermore,

due to V (L, τ) = 0 and Hopf’s Lemma, Vx(L, τ) < 0. It follows from (3.23) that vx(L, τ) =

Vx(L, τ)/2 < 0. Note that vx(s2(τ), τ) < 0 for all τ ∈ (0, τ1]. Thus the proof is complete. �

Before we start to prove Theorem 5, we explain the idea behind the proof and how

Lemma 3.9 is applied here. To prove the persistence of v, our strategy is to construct a

suitable subsolution defined on some suitable region D. Note that we have vx(η(t), t) < 0

(Lemma 3.9), where η(t) := [s1(t)+s2(t)]/2. It is natural to consider the region D := {(x, t) :

η(t) ≤ x ≤ η(t)+L, t ≥ 0} for some L > 0 and choose a subsolution with spatial population

gradient attaining zero at the left boundary x = η(t), which allow us to compare u with the

subsolution on D.

Proof of Theorem 5. Given µ2, d1, r1, r2, u0 and v0, we choose

µ1 ≤ µ2 and d2 ≥ min

{
9r2

32
,
d1r2

r1

}
:= d̂.(3.24)

Also, set

Λ := 2µ2 max{K1, K2}max

{√
r1

2d1

,
4

3
,
−4

3

(
min
x∈[0,s01]

u′0(x)

)
,
−4

3

(
min
x∈[0,s02]

v′0(x)

)}
,

where K1 and K2 are defined in (1.8) and (1.9), respectively. Using (3.24), (1.10) and (1.11),

we easily obtain

Λ ≥ η′(t) :=
s′1(t) + s′2(t)

2
, t > 0.(3.25)

We now introduce the variable y = x− η(t) and v̂(y, t) = v(x, t). Then

η(t) ≤ x ≤ s2(t) ⇐⇒ 0 ≤ y ≤ σ(t) :=
s2(t)− s1(t)

2
.

Note that v̂ satisfies

v̂t = d2v̂yy + η′(t)v̂y + r2(1− v̂)v̂, y ∈ (0, σ(t)), t > 0,

v̂(σ(t), t) = 0, v̂(0, t) = v(η(t), t) > 0, t > 0,
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as long as σ(t) > 0.

Set d̄ := max{Λ2/(4r2), d̂}. Then for any d2 > d̄, we set

l∗ :=
π

2

[√
r2

d2

(
1− d̄

d2

)]−1

> 0.

For each d2 > d̄, by the condition s0
2 − s0

1 > 4l∗ (see (1.16)) we can choose

l ∈ (l∗,
s0

2 − s0
1

4
)(3.26)

and consider the function

w(y) := e
− Λ

2d2
y

cos
πy

2l
.

It is easy to check that w satisfies

w′′ +
Λ

d2

w′ + λw = 0, y ∈ (−l, l), w(±l) = 0,

where

λ = (
π

2l
)2 + (

Λ

2d2

)2 <
r2

d2

(using l > l∗ and the definition of d̄).(3.27)

Moreover, there exists l0 ∈ (0, l) such that w′(−l0) = 0, w′(y) > 0 if y ∈ (−l,−l0) and

w′(y) < 0 if y ∈ (−l0, l). Let w∗(y) := w(y − l0). Then we have

(w∗)′(0) = 0, (w∗)′(y) < 0 for y ∈ (0, l + l0).(3.28)

To finish the proof of Theorem 5, it suffices to show

σ(t) ≥ l + l0, ∀ t ≥ 0, v̂ ≥ δw∗, ∀ y ∈ [0, l + l0], t ≥ 0,(3.29)

for some small δ > 0 under the condition

σ(0) > 2l, d2 > d̄, µ1 ≤ µ̄,

where µ̄ > 0 depending on d2 and d̄ will be determined later.

To do so, we first choose δ > 0 small enough such that

v̂(y, 0) > δw∗(y) for all y ∈ [0, l + l0].(3.30)

Note that it can be done because σ(0) > 2l > l+ l0 (using (3.26)). Due to (3.25), (3.28) and

(3.27) (if necessary we choose δ smaller), we have

d2(w∗)′′ + η′(t)(w∗)′ + r2(1− δw∗)w∗(3.31)

= −[Λ− η′(t)](w∗)′ + w∗(r2 − d2λ− r2δw
∗) ≥ 0, y ∈ (0, l + l0).

For such fixed δ > 0, we choose

µ̄ := min

{
µ2δπ

4M∗l
exp

{
− Λl

2d2

}
, µ2

}
,
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where

M∗ := K1 max

{√
r1

2d1

,
4

3
,
−4

3

(
min
x∈[0,s01]

u′0(x)

)}
We now prove (3.29). From (3.30), we see that v̂(y, t) > δw∗(y) for y ∈ [0, l + l0] and

σ(t) > l + l0 for all small t > 0. For contradiction, we assume that there exists T ∗ > 0 such

that σ(T ∗) = l + l0 and σ(t) > l + l0 for t ∈ [0, T ∗). Then we have σ′(T ∗) ≤ 0 and so

−µ2v̂y(σ(T ∗), T ∗) = s′2(T ∗) ≤ s′1(T ∗) ≤ 2µ1M
∗,(3.32)

where the last inequality follows from (1.10). Next, we introduce

Q(y, t) := v̂(y, t)− δw∗(y).

From (3.31), it follows that

Qt − d2Qyy + η′(t)Qy + γ(x, t)w ≤ 0 for y ∈ (0, l + l0), t ∈ (0, T ∗),

for some bounded function γ. Also, we have

Q(y, 0) > 0, y ∈ [0, l + l0] (by (3.30)),

Qy(0, t) = v̂y(0, t)− δ(w∗)′(0) = vy(η(t), t) < 0, t ∈ [0, T ∗] (by Lemma 3.9),

Q(l + l0, t) = v̂(l + l0, t)− δ(w∗)(l + l0) = v̂(l + l0, t) ≥ 0, t ∈ [0, T ∗].

Thus, we can apply the strong maximum principle and Hopf’s Lemma to conclude that

Qy(σ(T ∗), T ∗) < 0. This implies

−µ2v̂y(σ(T ∗), T ∗) > −µ2δ(w
∗)′(l + l0) =

µ2δπ

2l
exp

{
− Λl

2d2

}
.

Together with (3.32), it leads to a contradiction to µ1 ≤ µ̄. Hence (3.29) follows and then

the proof of Theorem 5 is completed. �

4. Discussion

In this paper, we consider a free boundary problem which describe the spreading of two

competing species in a one-dimensional habitat. We assume that u is a superior competitor

occupying the interval [0, s1(t)], while v is an inferior competitor with the territory [0, s2(t)]

at time t. Here, the two free boundaries x = si(t), i = 1, 2, differently from the previous

works, may intersect each other. They are used to describe the spreading fronts of two

competing species, respectively. Our goal is to investigate its dynamics. Due to the fact

that two free boundaries may intersect each other, it seems very difficult to understand the

whole dynamics of this model.

In comparing to the Cauchy problem, our model shows that (under (H)) the superior

competitor is not always the winner. If the superior competitor’s territory size cannot cross
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some critical value, it can lose the competition, while if its territory is above this critical

value, then spreading occurs. This result is consistent with the one in [11]. An interesting

phenomenon appearing in our model is that when spreading of the superior competitor

occurs, our model shows the weaker species does not necessarily die out eventually over their

territory. In fact, if the superior competitor spreads too slow to catch up with the inferior

competitor, it may leave enough space for the inferior competitor to establish persistent

population.

From the modeling point of view, the real case should be the case of two-dimensional

habitat. Mathematically, the 1d case is the simplest case to do the analysis (for example,

the existence and uniqueness issue). For the higher dimensional case, our approach still

works in a radially symmetric setting, i.e., the habitat and the solution are assumed to be

radially symmetric. Then (1.5) becomes

s′1(t) = −µ1ur(s1(t), t), t > 0; s′2(t) = −µ2vr(s2(t), t), t > 0,

where r := |x| and u = u(r, t), v = v(r, t). For general non-symmetric case, the Stefan

condition (1.5) can be replaced by the condition (cf. [8])

Φt = µ∇xu · ∇xΦ

if the free boundary is represented by Γ(t) = {x ∈ RN : Φ(x, t) = 0} for some suitable

function Φ. We leave this general higher dimensional case as a future study.

On the other hand, the condition (1.3) means that no flux can across the left boundary.

This condition is equivalent to the (radial) symmetric case in 1d, if we consider the following

general setting:

ut = d1uxx + r1u(1− u− kv), s−1 (t) < x < s+
1 (t), t > 0,

vt = d2vxx + r2v(1− v − hu), s−2 (t) < x < s+
2 (t), t > 0,

u ≡ 0 for x 6∈ (s−1 (t), s+
1 (t)), t > 0; v ≡ 0 for x 6∈ (s−2 (t), s+

2 (t)), t > 0,

(s±1 )′(t) = −µ1ux(s
±
1 (t), t), t > 0; (s±2 )′(t) = −µ2vx(s

±
2 (t), t), t > 0.

Indeed, our analysis works for this general case. However, it would increase the complexity

of our presentation. For simplicity, we only treat the symmetric case in this paper. We leave

the general case to the reader.

For the issue of spreading speed, if one species vanishing eventually, the model can be

thought of as the single species model of Du and Lin [10]. Thus, the spreading speed of the

species that spreads successfully can be understood as in [10]. If both two species spread

successfully, it would be interesting to characterize their spreading speed (we only have some

rough estimates). We leave this issue for the future study. We also refer to [1] for the

asymptotic behaviour of moving interfaces for some free boundary problems.
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