ON A TWO-POINT FREE BOUNDARY PROBLEM

JONG-SHENQ GUO AND BEI HU

ABSTRACT. We study a two-point free boundary problem for a quasilinear parabolic equation.
This problem arises in the model of flame propagation in combustion theory. It also arises in
the study of the motion of interface moving with curvature in which the studied problem is
confined in the conical region bounded by two straight lines and the interface has prescribed
touching angles with these two straight lines. Depending on these two touching angles, there
are three different cases, namely, area expanding, preserving, and shrinking cases. We first give
a proof of the global existence in the expanding and preserving cases. Then the convergence
to a line in the preserving case is derived. Finally, in the shrinking case, we show the finite
time vanishing and the convergence of the solution to self-similar solution.

1. INTRODUCTION

We consider the following two-point free boundary problem (FBP):

(1.1) = [a(ug)]e,  —&(t) <z < &(t), >0,

(1.2) ( &1(t),t) = tanal, ug(§2(t), 1) = tanag, t >0,

(1.3) &1(t),t) = &1(t) tan By, u(&a(t),t) = &(t) tan [a, t > 0,

(1.4) ( z,0) = uo(z ), —£1(0) < 2 < &(0), 51( ) =¢&o1,  &2(0) = &o2,

where we assume that

(1.5) a € C?(—00,00), a(0) =0, d(s)>0 for se& (—o0,0),
B; and «; are given constants satisfying

(1.6) Giel0,7/2), i=1,2, ay € (—f1,7/2), ag € (—7/2,52),
&o1 and oo are positive constants,

(1.7) ug € O =1, €], wo(—&o1) = &or tan Br,  uo(&o2) = o1 tan Bo,
up(x) >0 for o1 <z < &pa.

In this problem, u, &1, & are unknown functions to be found.
Figure 1 shows the configuration of our problem, where I'(¢) represents the surface z =
u(z,t), and the free boundaries are located at x = —&;(t) and = = & (¢).
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Figure 1: 6, =a1+ 51 >0, 0y =0y —as > 0.

This type of free boundary problem arises in various applications. For example, when
a(s) = s (the case of heat equation), (FBP) arises in the model of flame propagation in
combustion theory (cf. [1, 9, 12] and the references cited therein). When a(s) = arctan(s) (the
case of curvature flow equation), (FBP) arises in the study of the motion of interface moving
with curvature in which the studied problem is confined in the conical region bounded by two
straight lines and the interface has prescribed touching angles with these two straight lines (cf.
[4] and the references cited therein).

There have been many interesting works on the so-called one-point free boundary problem
(when 8 = 0 and (2 = 7/2). For the case with oy = 7/4 and ag = 0, we refer the readers to
[10, 2, 12, 6]. We note that, by a reflection, this case is the symmetric case of our two-point free
boundary problem with 5 = 82 = 0 and —as = a3 = 7/4. For the case with aq, ay € (0,7/2),
we refer the readers to [11].

We now consider the general case (1.1)—(1.4). The local (in time) existence, uniqueness of a
classical solution is proved in [3]:

Proposition 1.1 ([3]). Let the assumptions (1.5)—(1.8) be in force. Then

(i) there exists a T' > 0 such that the classical solution exists and is unique in the interval
[0,T), where T depends on the C**® norm of the initial data u;

(ii) if &1(t) + &(t) >0 > 0 for 0 <t < T, H’U,(',t)”cl-‘ra[,gl(t),éé(t)] <Cfor0<t<T,
and the limit lim_p_o & (t) == &(T) (i = 1,2) exists, then there exists a T" > 0 such that the
classical solution obtained in (i) can be uniquely extended to the interval [0,T +T");

(iii) furthermore, for any cy > 0, the solution obtained in (i) satisfies

(u7€17 52) € 02+a71+a/2{(x7 t)7 _51 (t) S xz S 52(75)7 Co S t < T} X Cl+a/2[607 T) X ClJrCV/Q [CO7 T)

The regularity does not extends to t = 0, because only C''*¢ initial data is assumed in [3].
If we assume initial data to be in the class C?7% then the argument in [3] shows that the
regularity also extends to t = 0.

Notice that if &/(¢) (¢ = 1,2) are bounded on [0,7T), then lim; 7o &;(t) = &(T) exists. It is
also clear that W2 estimates imply C'T% estimates.
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In view of Proposition 1.1 and the discussion above, the following a priori estimates

(1.9) fl(t) —i—fg(t) >¢§ for te€ [O,T), ((5 > 0),
(1.10) )] + 1) < C for  t€ e, T),
(1.11) [uls O)llw2ec—g @),y < € for T € e, T)

will be sufficient for us to derive the existence and uniqueness of a classical solution for the
system (1.1)—(1.4) in the interval [0,T") and extends the solution to [0,7+7") for some T" > 0.

Set 71 = tanag and 9 = tanag. If &(¢) > 0 and & (t) > 0 for ¢t € [0, 7], then by the
maximum principle u(z,t) > 0 for ¢ € [0, 7]; in this case, we can apply the maximum principle
in the regions {(z,t); —&1(t) < x <0} and {(z,t); 0 < x < & (t)} respectively to obtain

(1.12) u(z,t) > max[(tan fo)z, —(tan B1)x], t € [0, 7].

this is shown in Figure 1. Clearly, the area D(t) of the region enclosed by the interface and
the given two straight lines is given by (see Figure 1):

£2(t) 1 1

(1.13) D)= [ uly.tydy — 56O tan 51 — 363(0)tan
_fl(t) 2 2

A simple computation shows that, for ¢ > 0, (notice that &(t) (i = 1,2) is continuously

differentiable for ¢t > 0, by Proposition 1.1),

(1.14) D'(t) = a(y2) — a(m);

thus the area D(t) is expanding in the case 73 < 79, preserved in the case 73 = 72, and
shrinking in the case y; > vs.

In the case 71 < 72, the area is expanding. In this area expanding case, it is proved in [3]
that

(i) there exists a unique solution to the system (1.1)—(1.4) for all 0 < t < oc;

(ii) under the assumption that (1, 52 € [0,7/2), =1 < a1 < 7/2 and a1 < ay < [, there
exists a unique forward self-similar solution to the system (1.1)—(1.3) of the form

x
1.15 u(x,t) = /20t + 1) p(——);
(1.15) (2:0) = VAT H Do)
(iii) in this expanding case, with appropriate assumptions on the data, the solution of (1.1)—
(1.4) will converge to the forward self-similar solution; this is done in [3] through explicit and
delicate comparison.

If a(s) = s, then we have the heat equation. In this case, various properties of self-similar
solutions are discussed in [9]. In particular,

(i) the exact forward self-similar solutions to the system (1.1)—(1.3) of the form (1.15) is
studied in the expanding case;

(ii) the exact backward self-similar solutions to the system (1.1)—(1.3) of the form

(e t) = VAT = ol =)
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is studied in the shrinking case. For certain range of data, the uniqueness of the backward
self-similar solutions is not valid.

The question of asymptotic behavior of the solution to the system (1.1)—(1.4) in the area-
preserving and shrinking cases is not studied, even for the case of heat equation (a(s) = s).
The goal of this paper is to study these two cases. We begin with the following global existence
of classical solution in the expanding and preserving cases. Note that the global existence for
the expanding case has been established in [3], however, our global existence proof covers both
the area-preserving and expanding cases.

Theorem 1.2. Consider the expanding and preserving cases y1 < 7y2. Let the assumptions
(1.5)~(1.8) be in force. Assume also that ug € C'* for some a > 0. Then there exists a
unique classical solution for 0 <t < oco.

In the case 1 = 79, the area is preserved. We have the following result for the asymptotic
behavior, the result is new even for heat equation case.

Theorem 1.3. Consider the area preserving case 3 = 2. Let the assumptions (1.5)—(1.8) be
in force. Then there exists dy > 0, determined uniquely by the initial data, such that
(1.16) u(z,t) — yr +dy
uniformly in x as t — oo.
In the shrinking case when 71 > 79, the area should vanish in finite time. We shall establish

the asymptotic behavior in this case (Theorems 1.4 and 1.5). The result is new even for the
heat equation case.

Theorem 1.4. Consider the area shrinking cases 71 > 7y5. Let the assumptions (1.5)—(1.8) be
in force. We further assume
(1.17) —01 < as < a; < fs.

Then
(i) there exists a unique classical solution (u(x,t),&1(t),&2(t)) to the system (1.1)—(1.4) for
0<t<T withT given by

(1.18) T = D(0)/[a(m) — a(v2)],
where

520 1 9 1 )
D(O) = / UO((I,')dJ,' — 5510 tanﬁ1 - 5520 tan 51-
—&10

(i) u € C?He1+a/2(Qpy N COTPLY2(Qr) and &, & € C1H/2(0,T) N CY2(0,T), where Qp =
{(2,8); &) < @ < &(1),0 < t < T},

(Z’&Z) limt_,T_O H’U,(-,t)HLoo =0 and fl(T) = gg(T) =0.

To study the asymptotic behavior at the vanishing time 7', we make a change of variables
and define (u(y, s), p(s), q(s)) by

u(z,t) = /2(T —t)v(y,s), y=————, T —t=c 2%,

§(t) = V2T —1) p(s),  &(t) = V2T —1t) q(s).
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Then

(1.19) vs = [a(vy)ly —yvy +v, —p(s) <y <q(s), s> sg:=—1In(T)/2,
(1.20) vy(—p(s),s) =7, vy(q(s),s) =72, $ > So,

(1.21) v(—p(s),s) = p(s)tan B, v(q(s),s) = q(s)tan P2, s > so.

The steady-state solutions (¢, p, q) of (1.19)—(1.21) are give by

(1.22) la(@)] =y’ + =0, —p<y<gq, p>0,g>0,
(1.23) ¢'(=p) =7, ¢'(q) =,
(1.24) o(—p) =ptan B, ¢(q) = qtan fo.

Theorem 1.5. Let the assumptions (1.5)—(1.8) be in force. We further assume
(1.25) —51 <oy <o < ﬁg.

Let T be given as in (1.18) and (v,p,q) be defined as above. Then

(i) for any initial data in CY**, the corresponding w-limit set is not empty;

(i) any w-limit is a solution to (1.22)—(1.24);

(ii) if we further assume a(s) to be analytic, then v(y,s) will converge to one of the w-limit
as s — oo.

Remark 1.1. The backward self-similar solutions in the case a(s) = s were extensively studied
in [9], where existence, non-uniqueness as well as the properties of solutions were discussed. In
the case of general a(s), Theorem 1.5 establishes the existence of such a backward self-similar
solution under the additional assumption (1.25).

This paper is organized as follows. In section 2, we derive some a priori estimates for
solutions of (FBP). Also, we give a proof of the global existence of solutions of (FBP) in the
area-preserving and expanding cases (Theorem 1.2). We then give a proof for the convergence
of the solution to a line in the area-preserving case in section 3 (Theorem 1.3). In section 4, we
turn to the shrinking case and give some preliminary results, where we also prove the existence
result as well as finite time vanishing result (Theorem 1.4). Finally, we study in section 5
the asymptotic behavior of solution of (FBP) in the shrinking case and prove Theorem 1.5.
The convergence result in section 5 depends also on the properties of the backward self-similar
solutions derived in section 6.

2. SOME A PRIORI ESTIMATES

In this section we derive some a priori estimates for solutions of (FBP). For the estimates in
this section, we shall always assume (1.5)—(1.8). Note that under these assumptions, the free
boundary = = &(t) (i = 1,2) and their first order derivatives are Holder continuous for ¢t > 0
(Proposition 1.1). These regularity properties of the free boundary should be used throughout
this paper.

We first get the L°° bounds on u,, which is a simple application of the comparison principle.
We assume that the classical solution exists on [0, 7), for some 0 < 7 < +o0.
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Lemma 2.1.

(2.1) lug(z,t)] < C1 for 0<t<rT,
where
(2.2) C1 = max(|v1/, |72/, [|(wo)z | o= )-

Note that Lemma 2.1 implies that @’ (uy(z, t)) is uniformly bounded from above, and bounded
from below by a positive constant. Thus the equation (1.1) becomes uniformly parabolic.
We next derive half-sided estimates for .

Lemma 2.2. For any cg > 0, there exists a constant C' such that

(2.3) Upe <O for &)<z <&D), o<t <T.
Proof. Differentiating boundary conditions (1.2), (1.3) at x = & () in ¢, we obtain
(2.4) Uaa (§2(£), )€0(t) + uat (2(1),1) = 0, ua(a2(t), 1)€5(t) + ue(€2(t), 1) = &5(t) tan fs.

Using the equation (1.1) and the boundary condition (1.2), we now get

utx(@(t)vt) = _uzz(@(t)vt)fé(t)
o w(&®),t)
= T dwen, )
w0 w)
P (&0).0) \tan By — uy (E2(0).1)

_ 1 )
T (tanfh —12)d/ () (&2(1),t) <0

Similarly,

1
—u(—61(1).1) = — s (60,0 <0

It is clear that wu; satisfies

up = @' (Ug) Utgg + @ (Ug) Uty
It is proved in [3] that uy.(z,t) is bounded for ¢ = ¢o for small ¢y > 0, provided we assume
up € C1 for some o € (0,1). It follows that u; = a’(uy)ug, is bounded for ¢t = ¢o. Thus
we can apply the maximum principle to u; to conclude that u; is bounded from above. This
implies that u,, = u¢/a’(u;) is bounded from above. 0

Remark 2.1. If ug € C? and satisfies the 2nd order compatibility condition at the boundary,
then we can take c¢og = 0 in the above lemma.

We next derive the lower bound for u,,.
Lemma 2.3. If
(2.5) u(0,t) >m  for 0<t<T,

for some m > 0, then for any co > 0, there exists C' independent of m such that

(2.6) Ugg > —% for =&)<z <&(t), co<t<T.
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Proof. By changing the value of a(p) outside |p| > C (where C} is from (2.2) in Lemma 2.1)
if necessary, we may assume without loss of generality that [ < a’(p) < 1/1 for all p € (—o0, 00)
for some [ > 0 and @ € C2. This implies that the inverse function of a~(-) is well defined on
(—00,00).

We choose w such that

31Q

a(w) = —(u — xtan F2) + a(y2).

If we take C such that C'+a(y2) > a(Cy), then u,(0,t) < w(0,t), uy(§2(t),t) = v2 = w(&a(t), t)
for 0 < t < 7. Since u,, is bounded for t = ¢y and tan By — u,(€2(co), co) = tan fFy — v2 > 0,
there exists ¢ > 0 such that tan 2 — ugz(x,cp) > (tan B2 — 72)/2 for x € [£2(co) — €, &2(co)].
Using the bounds on u,, and u,, we can choose C' large enough so that

Uge (T, c0) > —QC—ﬂi(tan B2 — ¥2)
> —W(tan B2 — uz(x, o))

= wy(w,c9) for € [Ea(co) —e,&2(c0)]

Integrating this inequality over the interval [z,£2(cp)], using also the boundary condition
Uz (&2(co), co) = w(&a(co), co) = 2 we find that

uz(z,c0) < w(w,co) for  &a(co) —e < a < o)

Since u — xtan (2 is positive on the interval z € [0,&2(co) — €], it is clear that the above
inequality is valid for 0 < x < &a(cp) — € if we choose the constant C' in the definition of w to
be large enough.

Now that the constant C'in w is fixed. We can finally define the uniformly parabolic operator
L (in the definition we fix on u,, uy, and w) by

£lel = 1 = [a()ler = st (12) /()]
Clearly
E[uz] = Ugt — [a(um)]zz - %(w)uwz [a/(ux) - a,(um)] = 07
and
L) = = o)) = st (1) — ()
= %(ﬁut - um) - %(w)um[a'(ux) —d (w)]
= %(ﬁa’(ugﬁ)um — um) - %(w)um[a’(ux) —a'(w)]

= 0.

Thus by comparison

uy <w for 0<x<&t),cp<t<T.
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Thus

Uz (&2(1), 1) > we(§2(t),t) > —%(tanﬁz —ny)  for o <t<T.

One can similarly show that

C
Uy > afl< — E(u—i—xtanﬁl) —|—a(fyl)) for —&({t)<z<0,cp<t<T.

and obtain

Cl v1+tanfBy) for cp<t<T.

u:m:(_gl(t)’ t) > _E(

These estimates imply that (by using the equation)

(2.7) ug(x,t) > —% for x=-&(t), z==E((), co<t<T

Differentiating the equation (1.1) in ¢ and applying the maximum principle to u;, we obtain

*

C
'UJtZ—E for =& (t) <z <&(t), co<t<T.

Using the equation (1.1) again, we conclude the lemma. O

These estimates imply the classical global existence in the area-preserving and expanding
cases as claimed in Theorem 1.2.

Proof of Theorem 1.2. We can choose any 7y € [y1,72] and d > 0 such that ug(z) > yr+d
for x € [—£1(0),&2(0)]. Then by comparison, we immediately get

(2.8) u(z,t) >y +d for =& (1) <z <&(t).

By Lemma 2.1, u, is uniformly bounded by C;. By (2.8), w(0,¢) > d. Thus if we choose m = d
in Lemma 2.3, then u,, is also uniformly bounded for ¢ > ¢y, which in term implies that wu; is
bounded for ¢ > ¢y by using the equation (1.1). The estimate (2.8) also implies

(2.9) min[¢ (t), §2(t)] > 6

for some 0 > 0. From (2.4), (1.2) and the uniform bound on u; , we conclude
ut(é.?(t)v t)

2.10 o(t) = ————=

210 (t) = pac2 07

is uniformly bounded for ¢ > ¢y. Similarly, &(¢) is also bounded for ¢t > ¢y. Therefore &;(t)
(1 = 1,2) are bounded by Ct+ C and u(x,t) is therefore also bounded by C't+ C'. Using these
bounds in Proposition 1.1, we find that the solution can be extended to all t. O

Remark 2.2. We proved that for the case v1 < 2, the solution is global, and

(2.11) sup (-, ) lw2oo - 1) 600 Nwe () Looj—ey 1),20 0+ €10 + E5(1)]} < C.
co oo

This estimate is useful in the asymptotic study for the area-preserving case.
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3. ASYMPTOTIC LIMIT FOR THE AREA-PRESERVING CASE

For the case 71 > 72, we can choose any v € [y2,71] and D > 0 such that up(x) < vz + D
for € [-£1(0),£&2(0)]. Then by comparison, we immediately get

(3.1) u(z,t) <yz+D for —&(t) <z <&(t).
Choosing v = 71 and v = 7 respectively, using also (1.3), we obtain

D D
S 3 SQ(t) <
tan 81 + 11

3.2 t _—.
(32 A0 R
In particular, if 73 = 2 := 7, then we can combine (2.8) and (3.1):

(3.3) vz +d <u(z,t) <yr+ D for —&(t) <z <&(t), 0<t<oo.

By (2.11), we also have uniform bounds on uy, ug,, £/(t) (i = 1,2) for t € [cp, 00).
S

Proof of Theorem 1.3. For A(s) := / a(y)dy and
0

&a(t)
J(t) = / Al (2,1))da,

—&1(t)
we have (using the boundary conditions)
! gQ(t) !/ !/
70 = [ atude £ AGE0) + A
—&1(t

&(1) &2(t)
= = [ e +aw)u] ]+ ARG+ ADEO
—&1(t) —&i(t)
£2(t)
= e a0 tn =) + AC

+[—a(v)(tan B1 4 ) + A(7))& (¢).
Thus

t fg(t)
J(t) + / / e T+ Ol + 162l )
co —Gq1

The right-hand of the above equality is uniformly bounded. Thus

oo réa(t)
(3.4) / / urdr < oo.
co J—&i(t)

This estimate, together with the compactness of the solution as ¢ — oo (subsequence of u(z,t+
t;) converges in C1T® in z up to the boundary and C? in the interior, &;(¢;) — &ioo (i = 1,2)), we
immediately obtain the convergence on the subsequence. By following the standard argument
as in [7], we find that the subsequential limit function must be a solution to the steady state
equation [a(uy)], = 0 with the boundary conditions (1.2), (1.3). It is clear that the only
solutions to the steady state are lines of the type yx + di for some d;.
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With the D(t) defined in (1.6), it is clear that D’(¢t) = 0 in the area preserving case. In
particular, D(t) = D(0) for all ¢t > 0. If we pass the limit along the convergent subsequence,
we find

S200 L. L.
(35) / (’Y{E + dl)dx - 55100 tan 51 - 55200 tan ﬁQ = D(O)

*5100

From (1.3), we also have

(3.6) —¥€100 + di = 100 tan fy, V€200 + d1 = {200 tan Fa.

It is clear that (3.5) and (3.6) uniquely determine di, {j0 and &as. As in [7], the uniqueness
of the limit (dy,&100,&200) implies that u(x,t), &(t) (i = 1,2) all converge uniformly as ¢ —
00. 0

Remark 3.1. Let b = lim;_.[&1(t) + &2(t)]. The convergence theorem of the standard par-
abolic theory gives the exponential convergence rate up to the first eigenvalue (see [5] for the
convergence rate for the linearized problem, the uniform convergence of the nonlinear problem,
together with the convergence rate for the linearized problem, imply the convergence rate for the
nonlinear problem). More precisely, for any A € (0,a’(v)7?/b?), limy_ e |u(z,t) —yz —d1| =
0.

4. PRELIMINARY FOR THE SHRINKING CASE

The assumption y; > 72 means that there is a negative total heat flux through the boundary
and therefore u should decrease overall.

Notice that the estimates (3.1) and (3.2) were proved for both the area preserving and
shrinking cases. These bounds are valid as long as the solution exists:

u(x,t) < yr + D, fl(t) < C, fg(t) < C.

In this section we assume that [0,7") is the maximal existence interval for a classical solution.
In the Lemmas 4.1-4.3 in this section, we only need to assume that the initial data ug is C*+
and we do not need the condition (1.17).

We first prove the Holder estimates for w(z,t) in t direction. We extend u(z,t) to all
x € (—o00,00) by defining

| —ztanp;  for x < —&(t),
’U,(IE,t) - { .’L'tal'l/BQ for x> fg(t)

Lemma 4.1. The extended function u(x,t) satisfies, for any ti,t2 € [0,T),
(4.1) u(a, t1) — u(x, ta)| < Clty — to| /2.

Proof. The extended function satisfies the equation (1.1) both in and outside the region
{(z,t), © € (=&1(t),&(t))}. Thereis a jump on the first order z-derivative across the boundary
but |u,| is uniformly bounded by max{C1,tan 31, tan 53} for all z € (—o00,00). And u satisfies
in the distribution sense the equation

e = 2 [afus) + {a(2) — aftan o)} H (e — Ex(1)) — {a(m) — a(—tan )} H (x + &1(1))].
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where H (t) is the Heaviside function. It follows that, for any z1,z9 and t; < o,

‘/ u(z, t1) — u(z, tg)dx‘</t2

For any given x* and 1, ty, we choose x1, z9 such that 1 < 2* < z9 and |21 —x2| = |t —t2]1/2,
then

x2
/ ut(x,T)dx‘dT < Clty — tal.

1

| (:C tl)_USC tQ
|21 — o] x2] ‘/ u(®, 1) (x,t2)>dx‘ + l|ual Loe |21 — 22

< Clty —to|Y2.

This completes the proof. O
If we replace the positiveness assumption on u(0,t) by certain assumptions on u(xg,t), we
can repeat the proof of Lemma 2.3 to conclude :

Lemma 4.2. If
u(zg, t) — max|(tan f2)xg, —(tan f1)xo] >m  for 0<t<T,

for some m > 0, then for any co > 0, there exists C' independent of m such that

(4.2) Ugy > —% for =&)<z <&(t), co<t<T.

For a positive solution, we have
Lemma 4.3. If u(z,t) >0 fort € [0, 7], then

’U,(.%',t) > max[(tan 52)'7;7 _(tan 61)x]7 S (_gl(t)7§2(t))
fort e [0,7].

Proof. Using the boundary condition, we can compare the solution with the function
(tan B2)z and —(tan 1)z respectively to conclude the result. 0

Next we give a sufficient condition for the solution u to remain positive.

If we have the additional assumption (1.17), then we claim that w is always positive as
follows.

Lemma 4.4. Suppose that [0,T) is the mazimal existence interval for the classical solution
and T' < co. Under the additional assumption (1.17), we have u(x,t) >0 for 0 <t <T.

Proof. Let [0,7*) be the maximal interval on which u(x,t) remains positive. Then both
&1 and & are positive on this interval. We claim that 7% = T'. In fact, if 7% < T, then u(z,t)
is C2 for t € [0,7*] and & (T*) + &(T*) > 0. Lemma 4.3 implies that u(z, T*) is positive for
x # 0. Therefore we must have w(0,7*) = 0. If =& (T7") < 0 < &(T™), then u(z,t) reaches
the minimum at an interior point (0,7™) and therefore u = 0 and we get a contradiction. If
& (T*) = 0, then &(T%) > 0. Using Lemma 4.3 and applying strong maximum principle to
u — (tan fB2)z, we obtain u,(0,7%) — tan fy > 0, i.e., tany > tan Fo. This contradicts (1.17).
We can similarly get a contradiction if £&3(7) = 0. Thus we proved T = T, and u(z,t) > 0
for0<t<T. O

We now prove that the positive solution must vanish at t =T
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Lemma 4.5. Suppose that [0,T) is the mazimal existence interval for the classical solution
and T < co. Under the additional assumption (1.17), we have & (t) > 0 and &(t) > 0 for all
t €[0,T). Moreover, & (T) = &(T) =0 and u(0,T) = 0.

Proof: Note that the assumption (1.17) implies that 51 + f2 > 0. Hence it follows from
Lemma 4.3 that & (¢t) > 0 for all ¢ < T for i = 1,2. Using the condition (1.17) and following
the same proof as in Lemma 4.4, we can show that &;(¢) > 0 and &»(¢) > 0 for all ¢ € [0,T).

Since u; is bounded above by Lemma 2.2, &(t) < C' (i = 1,2) (cf. (2.10)); the function
&i(t) — Ct is therefore monotonically decreasing and the limit tll)I%l (&i(t)—C't) exists. Therefore

the limit thr%l &i(t) exists and we define it to be & (7). With this definition, it is clear that

&i(t) is continuous on [0,7]. If & (T) + &(T) > 0, then for zo = [§1(T) + &(T')]/2, we have
u(zo,T") > max[(tan f2)zg, —(tan 51 )zg], by Lemma 4.3 and the strong maximum principle.
Now we can apply Lemma 4.2 to conclude that u,, remains bounded near ¢t = T" and therefore
the classical solution can be further extended beyond ¢ = T'. This contradicts our assumption
that [0,7") is the maximal existence interval. Thus we must have & (T) + £(7) = 0 and the
lemma is proved. O

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. In view of Lemmas 4.1-4.5, the parts (ii) and (iii) of Theorem 1.4
are already established if we can establish (i), namely, for the maximal existence interval [0, T’),
T is finite and is given in (1.18). Let us denote the right-hand side of (1.18) to be T™, i.e.,
T* = D(0)/[a(y1) — a(y2)] and we want to show T"= T™. It is clear from (1.14) that T is the
unique time such that

(4.3) D(t)>0 for 0<t<T*,D(T*)=0.

By Lemma 4.4, u(x,t) > 0 on the maximal existence interval [0,7"). Then using Lemma 4.3,
we find that D(t) defined (1.13) satisfies

D(t)>0 for 0<t<T.

By Lemma 4.5, D(T) = 0. By comparing this with (4.3), we conclude that 7" = T™*. This
finishes the proof. O

The rest of this section will be devoted to deriving additional estimates needed for the proof
of asymptotic expansion. If we replace (1.17) with (1.25), we can also derive the estimate on

fj(t)v .7 = 172-

Lemma 4.6. Suppose that [0,T) is the mazimal existence interval for the classical solution,
where T is given by (1.18). Under the further assumption (1.25)

(4.4) 0<¢(t)<CVT -t for =12, t<T.

Proof. First, it follows from Lemma 4.5 that &;(t) > 0 for j =1,2,t <T.
Integrating the inequality (2.3), we obtain

Y2 — C(&2(t) — ) Sug(z,t) <y +C(x+&1(t) for = &i(F) <z <&(t),t<T.
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Integrating this inequality again, we get

u(0,t) + mz + C( 322 + z&1(t) for 0<x<&(t),

(45) ulef) < u(0,t) + yox + C( 322 — 2&(t) for =& (t) <x <0,

Thus
2(t) ~

(4.6) | utwtds <60 + 0.0 + B0 - L0+ ClE® + ).
—&1(t)

Substituting this estimate into the expression for D(t) in (1.13), we derive

(4.7) D(t) + g (tan B1 + 12)&F () + g(tan B2 — 7)€ (1)
' < [&1(t) + &(O)]u(0,1) + CIEF (1) + & (1))

Notice that the assumption (1.25) implies that the coefficient (tan 31 + y2) and (tan 82 — 1)
are positive. Since D(t) > 0 for t < T, (4.7) implies, for r(t) = \/E3(t) + £3(t)
r2(t)[1 — C*r(t)] < Cr(t)u(0,t).
Choosing ¢ to be sufficiently close to T" such that 1 — C*r(t) < 1/2, then we obtain
r(t) < Cu(0,t) < CVT —t.

The last inequality was obtained from the Hélder continuity in ¢ for w(0,¢) (Lemma 4.1). This
completes the proof. ]
We finally prove

Lemma 4.7. Under the assumptions of Lemma 4.5, there exists ¢ > 0 such that
(4.8) u(0,t) > VT —t.
Proof. Using Lemma 4.6 in (4.7), we obtain
[a(m) = a(@)(T = t) = D(t) < CVT — tu(0,1) + C(T — t)*/?,

from which the lemma follows. O

5. ASYMPTOTIC BEHAVIOR FOR THE SHRINKING CASE

In this section we want to study the asymptotic behavior as t — T'. Throughout this section
we shall assume that (1.25) is satisfied. Let

= —t)v(y,s = —t=e%
u(x,t)— 2(T t) (yv )7 Yy 2(T—t)7 T t )
&1(t) =2(T —t) p(s), &(t)=~/2(T —1t)q(s).
Then
(5.1) v = [a(v)ly — g0, + v, —p(s) <y < qls), 5> 50 = —In(T)/2,
(5.2) vy (=p(s),8) = 71, vy(q(s),8) =72, 5> s0,

(5.3) v(—=p(s),s) = p(s)tan By, v(q(s),s) = q(s) tan B2, s > sq.
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Under the assumption (1.25), it is proved in section 4 that u is positive. It is clear that
p(s) >0, g(s) > 0.
Combining the lemmas from section 4, we have

Lemma 5.1. For a positive solution, we have

(5.4 max((tan o)y, —(tan B1)y] < v(y,5) < C, [y, )| < C,
and
(5.5) 0<p(s) <C, 0<gq(s)<C.

Proof. (5.5) is an immediate result from Lemma 4.6. The gradient bounds is an immediate
result from the gradient bound for u. Lemma 4.3 gives the lower bound estimates for v(y, s).
The estimate u(0,¢) < Cv/T — t implies that v(0,s) < C. Since p(s), q(s) are bounded,

v(y,s) < v(0,s) + vyl L~ < C.

The lemma, is proved. O
Next, we prove the following non-degeneracy lemma.

Lemma 5.2. There exists ¢ > 0 such that

(5.6) p(s) > ¢, q(s) > c.
Proof. Using Lemma 4.7, we obtain, for some ¢; > 0,
v(0,8) > ¢;.

Using this estimates and the gradient bounds on v, we obtain

c
v(y,s) > 51 for |y < e2,

for some ¢y > 0. Now the lemma follows from the boundary condition. 0
Using Lemma 5.2 and interior parabolic estimates, all derivatives of v(y, s) are bounded at
y = 0. We now derive the following estimate for the second order derivative.

Lemma 5.3. There exists a constant C' such that
(5.7) —C <wvyy(y,s) <Ce®  for —p(s) <y<q(s),so<s<o0.
Proof. If we rewrite the estimate in Lemma 2.3, we obtain
Vyy < V2Ce™.
Using Lemmas 2.3 and 4.7, we get
C
T —

Rewriting this in y variable, we get vy, > —C. 0
Combining these lemmas and using the boundary conditions, we obtain

uzz(xut) Z -

~+

Lemma 5.4.

(5.8) 1P’ (s)| +1d(s)| <C  for sp<s< o0.
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Proof: Since vy is bounded, we use the boundary condition to write p(s) and ¢'(s) in terms

of vg to conclude the lemma. O
If we let
* Q(S) 1 2 1 2
D*(s) = / v(y, s)dy — 5pi(s) tan f1 — 5pj(s) tan fa,
—p(s)
Then
(5.9) D*(s) = 5 D(t) = 2la(n) — ()] for so<s<
— Z — s < 00.

S 2T — 1) 9 aln) — a2 r S0

We next derive energy estimates.
Following [13] (see also [8]), we define

(5.10) B = [ @ (0050009,

—p(s)

where & = ®(y, v, w) is to be determined. Then

(5.11) %E(S) =Jo+ J1 + Jo,
where
a(s) 1 )
I o T A R AR
Ji = ®(q(s),q(s) tan B2,72)q' (s) + ®(—p(s), p(s) tan B1,71)p'(s)
+®4u(q(s),q(s )taDﬂQ,’Yz)(taflﬂz —72)q'(s)
_@w(_p(8)7p( ) anﬁlvvl)( an/g1 +71)p/(8)
Jy = /q(s) By — Dy — Pty — Puy [yvy H
2 p(s) v wy wv Yy
q(s)
=/ R TR R ) E
—p(s
Let
P (y, v, w) :/0 (w—J)P(y,v,U)dG—/O ﬁP(y,u,O)du-
Then
(I)ww(yav’w) = P(y,v,w),
and,

w oP oP
K(y,?),’ll)) = /; { - U%(y,?),g) - 6_y(yvvva)




16 JONG-SHENQ GUO AND BEI HU

We want to construct P so that the braces {---} in the above vanishes. Let P(y,v,w) =
exp(Q(y,v,w)), then this is equivalent to

— ) _
(512)  wQuly )+ Qylyvw) + e Quly v w) + 5 e =0

This linear PDE is solved through characteristics.
We let ¢(n;y,v,w) be defined as the solution of the conjugate problem with the terminal
condition:

(5'13) a/(wn)wnn - nwn +¢9 =0, ne (_C*vy)v y < C*

(5.14) V(y;y,v,w) = v, dy(y;y,v,w) = w,

where we assume that p(s) < C*, q(s) < C* for all s > sg. Since d/(s) € (I,1/1) for some [ > 0,
the solution of this ODE is well defined. It is clear that for bounded v and w, the solution

and its derivative v, are uniformly bounded.
Differentiating (5.14) in y, we obtain v, (y; y, v, w) + ¥y (y;y,v,w) = 0, and hence

Uy (Y3 y, v, w) = =y (Y5 9,0, w) = —w.

Simila’rlya since Q/)nn (y’ ?/, Ua w) + ¢ny (y’ ?/, Ua w) = 0)

wyn(?ﬁ y,U,U)) = _wnﬂ(y;yv’I)’w)
—yPn iy, v, w) +Y(yy,0,w)  —yw+w
a (Yy(y;y, v, w)) a’(w)

Next, differentiating (5.14) in v and w, respectively, we find that

¢U(y;yav’w) = 1’ wvn(y;yav’w) = Oa ww(y;yav’w) = 0’ ¢wn(y;y,v,w) =1

—yw +v

o (w) w(n;y,v,w) and their first

Thus the functions ¥y (n;y,v, w) and —wi, (n;y, v, w) +

derivatives in 1 agree at n = y.
Differentiating (5.13) with respect to the parameters y, v and w, using also the uniqueness
of the solution of the corresponding ODE, we derive

—yw + v

(515) Q/)y(na y,v,w) = _w¢v(n;yav)w) + CLI(’U)) ww(g;yav)w)’
Let R(y,v,w) = a%{y;i}(;)v} and define

Y
(5.16) Qy,v,w) = —/0 R, ¥(n,y,v,w), ¥y (0, y,v,w))dn.
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Then a direct computation shows that (using also (5.15))

_ 9 _
va(y,v,w) + Qy(y,v,w) + y;ij(w)v Qw(y,v,w) + %{y;f(w)v}

_ Yy
0ty [ e Rt

Y
= — [ {wtt+ Rui) +

= wQy(y,v,w) +

@(w)
Rt + (Ruthy + Rutbyy) b

= = [ R [wi+ Tt 0, Jan

y —
Yyw — v
_/O {Rw : [wwnv + o' (w) Uyw + wny] }dﬁ-
The first term of the above expressions vanishes by (5.15) and the second term also vanishes
by differentiating (5.15) in 7.
Substituting this equality into the expression for K , we get

K(y,v,w) =0,
and hence
Jo = 0.

Using the bounds on p(s) and ¢(s), we obtain that

(5.17) sup ‘/ Jl(T)dT‘ <C < o0.
Sp<s<o0 S0

Thus we proved:
Theorem 5.5.
(5.18) /“’/q(s) : P(y,v(y, s),vy(y, 5))lvs[*(y, 5)d
5.18 —— Py, v(y,s),vy,(y, s))|vs|“ (y, 8)ds < o0.

so 7 —p(s) a/(vy(ya 5)) Y

It is clear that [ < da/(s) < 1/1 for some [ > 0 and therefore

Py, v(y:5),0y(9:5) _

for syp<s<oo
a’ (vy(y, s))

co <
for some 0 < ¢y < C < .

Proof of Theorem 1.5 (i) (ii). We follow the standard procedure in [7], which was already
used in the proof of Theorem 1.3.

Theorem 5.5, together with the estimates on the derivatives of the solution established in
sections 4 and 5, immediately imply that a subsequence will convergence to the w-limit which is
a stationary solution of (5.1). The vy, estimates ensures that the boundary conditions remain
in force after taking the limit. 0

We call a stationary solution of (5.1)-(5.3) a backward self-similar solution. Note that in
general we do not have the uniqueness of backward self-similar solutions. For example, in the
heat equation case, there are at least two backward self-similar solutions if tan™' G, < ag <
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—01 < a1 < [y, where G, < —tan 31 is a constant depending only on aq and ;. Also, there
is at least one backward self-similar solution if (1.25) holds (cf. Theorem 4.1 in [9]).

Although the ODE solution may not be unique in general, there can only be finitely many
solutions in the case that a(s) is analytic. We will prove this fact in section 6. This fact will
enable us to establish the following theorem.

Proof of Theorem 1.5 (iii). Suppose that both ¢; and @9 are the w-limit. The estimates
in the previous sections imply that ¢; (i = 1,2) are well-defined in a small neighborhood of
0. If o1 = @2 in a small neighborhood of 0, then it is clear that ¢ = o everywhere, by
uniqueness of the ODE. Thus if the w-limit is not unique, then there must exists a small d such
that ©1(8) # ¢2(d). For any number 7 between ¢1(d) and ¢2(d), we can choose s; — oo such
that v(0,s;) = n. Using the compactness and the Lyapunov function we find that v(y, s + s;)
will converge to the ODE solution which is a w-limit with value n at y = §. Thus we obtain a
continuum of w-limit, which is a contradiction to the result in the next section. ]

6. THE BACKWARD SELF-SIMILAR SOLUTION

The backward self-similar solution in the case of heat equation (a(s) = s) has been studied
in [9].
For the general case, the limit ¢ will satisfy:

(6.1) [a(@)) =y’ +=0,—p<y<gq, p>0,g>0,
(6.2) O'(=p) =7, ¢'(q) =,
(6.3) o(—p) =ptanfi, ¢(g) = gtan fo.

Lemma 6.1. Under the assumption (1.25), there exists g > 0 such that (6.1)—(6.3) has no
solution for p € [0, ep).

Proof. We let ¢(y,p) be the solution of

(6-4) [Q(Soy)]y — Yoyt = 0, y > —p,
(6.5) oy(y,p) =m for y=—p,
(6.6) o(y,p) =ptan By for y=—p.

It is clear that if p = 0, then ¢(y,0) = y1y is the unique solution of (6.4)—(6.6) and therefore
the second equality in (6.2) cannot be satisfied. For p > 0, let G(y,p) = yo,(y,p) — ©(y,p),
then

Gy = WG’ G(—=p,p) = —p(n + tan B1).
Thus
y
(6.7) G(y,p) = —p(m + tan B1) exp /p WdT <0,
and
(6.8) lim G(y,p) = —o0.

y—-+oo
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In particular, ¢, (y,p) = G/d'(py) < 0, and ¢,(y,p) < v for y > —p. Thus if a solution of
(6.1)—(6.3) exists, then

qtan B2 = ©(q,p) < @(=p,p) +71(q¢+p) = ptan By +71(q + p),

which implies that g(tan 2 —~1) < p(tan 51 +v1). From (6.7) and the relationship ¢y, (y,p) =
G/d(py), we also obtain the estimates for ¢,,. Combining all these estimates, we obtain

q
M= = —/ Pyy(TP)AT < (p+q) max (=yy(Tp)) < Ceg for  pe (0,e].
p TP

This is a contradiction if ey is small. O
We next prove:

Lemma 6.2. In addition to the assumption (1.25), we assume that a(s) is analytic in s for
s € [v2,71]. Then there are at most finitely many solutions of (p,q) satisfying (6.1)—(6.3).

Proof. For p > ey, the —py,(y,p) is bounded from below by a positive constant. Thus we
can uniquely solve ¢ = ¢(p) > —p such that

©y(a(p), ) = 72

The estimates (6.8) implies that ¢(p) is bounded from above. It is also clear that y2 < ¢, <7

for —p <p < q(p).
Define, for p > ¢,

(6.9) K(p) == ¢(q(p),p) — q(p) tan SBs.

The above discussion implies that K (p) is well defined for all p > &.

If pg is a zero for K(p), we want to show py is an isolated zero for K.

If a(s) is analytic for s € [vy2,7], then K is analytic. Therefore the zeros of K can not
have a limit point unless K (p) is identically zero. Thus if py is not an isolated zero for K,
then K(p) = 0 for p > ¢9. However, Lemma 6.1 implies that K(g9) # 0. Thus we obtain a
contradiction and we proved that the zeros of K are isolated.

If p is sufficiently large, then it is clear from (6.7) that ¢(p) < 0 and thus K(p) > 0.
Since K (p) can only have finitely many isolated zeros on a bounded interval, the lemma is
proved. O
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