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Abstract. We study a two-point free boundary problem for a quasilinear parabolic equation.

This problem arises in the model of flame propagation in combustion theory. It also arises in

the study of the motion of interface moving with curvature in which the studied problem is

confined in the conical region bounded by two straight lines and the interface has prescribed

touching angles with these two straight lines. Depending on these two touching angles, there

are three different cases, namely, area expanding, preserving, and shrinking cases. We first give

a proof of the global existence in the expanding and preserving cases. Then the convergence

to a line in the preserving case is derived. Finally, in the shrinking case, we show the finite

time vanishing and the convergence of the solution to self-similar solution.

1. Introduction

We consider the following two-point free boundary problem (FBP):

ut = [a(ux)]x, −ξ1(t) < x < ξ2(t), t > 0,(1.1)
ux(−ξ1(t), t) = tanα1, ux(ξ2(t), t) = tanα2, t > 0,(1.2)

u(−ξ1(t), t) = ξ1(t) tan β1, u(ξ2(t), t) = ξ2(t) tan β2, t > 0,(1.3)

u(x, 0) = u0(x), −ξ1(0) ≤ x ≤ ξ2(0), ξ1(0) = ξ01, ξ2(0) = ξ02,(1.4)

where we assume that

(1.5) a ∈ C2(−∞,∞), a(0) = 0, a′(s) > 0 for s ∈ (−∞,∞),

βi and αi are given constants satisfying

(1.6) βi ∈ [0, π/2), i = 1, 2, α1 ∈ (−β1, π/2), α2 ∈ (−π/2, β2),

ξ01 and ξ02 are positive constants,

u0 ∈ C1+α[−ξ01, ξ02], u0(−ξ01) = ξ01 tan β1, u0(ξ02) = ξ01 tan β2,(1.7)

u0(x) > 0 for ξ01 < x < ξ02.(1.8)

In this problem, u, ξ1, ξ2 are unknown functions to be found.
Figure 1 shows the configuration of our problem, where Γ(t) represents the surface z =

u(x, t), and the free boundaries are located at x = −ξ1(t) and x = ξ2(t).
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Figure 1: θ1 = α1 + β1 > 0, θ2 = β2 − α2 > 0.

This type of free boundary problem arises in various applications. For example, when
a(s) = s (the case of heat equation), (FBP) arises in the model of flame propagation in
combustion theory (cf. [1, 9, 12] and the references cited therein). When a(s) = arctan(s) (the
case of curvature flow equation), (FBP) arises in the study of the motion of interface moving
with curvature in which the studied problem is confined in the conical region bounded by two
straight lines and the interface has prescribed touching angles with these two straight lines (cf.
[4] and the references cited therein).

There have been many interesting works on the so-called one-point free boundary problem
(when β1 = 0 and β2 = π/2). For the case with α1 = π/4 and α2 = 0, we refer the readers to
[10, 2, 12, 6]. We note that, by a reflection, this case is the symmetric case of our two-point free
boundary problem with β1 = β2 = 0 and −α2 = α1 = π/4. For the case with α1, α2 ∈ (0, π/2),
we refer the readers to [11].

We now consider the general case (1.1)–(1.4). The local (in time) existence, uniqueness of a
classical solution is proved in [3]:

Proposition 1.1 ([3]). Let the assumptions (1.5)–(1.8) be in force. Then
(i) there exists a T > 0 such that the classical solution exists and is unique in the interval

[0, T ), where T depends on the C1+α norm of the initial data u0;
(ii) if ξ1(t) + ξ2(t) ≥ δ > 0 for 0 < t < T , ‖u(·, t)‖C1+α [−ξ1(t),ξ2(t)] ≤ C for 0 < t < T ,

and the limit limt→T−0 ξi(t) := ξi(T ) (i = 1, 2) exists, then there exists a T ′ > 0 such that the
classical solution obtained in (i) can be uniquely extended to the interval [0, T + T ′);

(iii) furthermore, for any c0 > 0, the solution obtained in (i) satisfies
(u, ξ1, ξ2) ∈ C2+α,1+α/2{(x, t);−ξ1(t) ≤ x ≤ ξ2(t), c0 ≤ t < T}×C1+α/2[c0, T )×C1+α/2[c0, T ).

The regularity does not extends to t = 0, because only C1+α initial data is assumed in [3].
If we assume initial data to be in the class C2+α, then the argument in [3] shows that the
regularity also extends to t = 0.

Notice that if ξ′i(t) (i = 1, 2) are bounded on [0, T ), then limt→T−0 ξi(t) = ξi(T ) exists. It is
also clear that W 2,∞ estimates imply C1+α estimates.
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In view of Proposition 1.1 and the discussion above, the following a priori estimates

ξ1(t) + ξ2(t) > δ for t ∈ [0, T ), (δ > 0),(1.9)

|ξ′1(t)| + |ξ′2(t)| ≤ C for t ∈ [c0, T ),(1.10)

‖u(·, t)‖W 2,∞[−ξ1(t),ξ2(t)] ≤ C for t ∈ [c0, T )(1.11)

will be sufficient for us to derive the existence and uniqueness of a classical solution for the
system (1.1)–(1.4) in the interval [0, T ) and extends the solution to [0, T +T ′) for some T ′ > 0.

Set γ1 = tanα1 and γ2 = tanα2. If ξ1(t) > 0 and ξ2(t) > 0 for t ∈ [0, τ ], then by the
maximum principle u(x, t) > 0 for t ∈ [0, τ ]; in this case, we can apply the maximum principle
in the regions {(x, t); −ξ1(t) < x < 0} and {(x, t); 0 < x < ξ2(t)} respectively to obtain

(1.12) u(x, t) ≥ max[(tan β2)x,−(tan β1)x], t ∈ [0, τ ].

this is shown in Figure 1. Clearly, the area D(t) of the region enclosed by the interface and
the given two straight lines is given by (see Figure 1):

(1.13) D(t) =
∫ ξ2(t)

−ξ1(t)
u(y, t)dy − 1

2
ξ21(t) tan β1 − 1

2
ξ22(t) tan β2.

A simple computation shows that, for t > 0, (notice that ξi(t) (i = 1, 2) is continuously
differentiable for t > 0, by Proposition 1.1),

(1.14) D′(t) = a(γ2) − a(γ1);

thus the area D(t) is expanding in the case γ1 < γ2, preserved in the case γ1 = γ2, and
shrinking in the case γ1 > γ2.

In the case γ1 < γ2, the area is expanding. In this area expanding case, it is proved in [3]
that

(i) there exists a unique solution to the system (1.1)–(1.4) for all 0 < t <∞;
(ii) under the assumption that β1, β2 ∈ [0, π/2), −β1 < α1 < π/2 and α1 < α2 < β2, there

exists a unique forward self-similar solution to the system (1.1)–(1.3) of the form

(1.15) u(x, t) =
√

2(t+ 1)ϕ(
x√

2(t+ 1)
);

(iii) in this expanding case, with appropriate assumptions on the data, the solution of (1.1)–
(1.4) will converge to the forward self-similar solution; this is done in [3] through explicit and
delicate comparison.

If a(s) ≡ s, then we have the heat equation. In this case, various properties of self-similar
solutions are discussed in [9]. In particular,

(i) the exact forward self-similar solutions to the system (1.1)–(1.3) of the form (1.15) is
studied in the expanding case;

(ii) the exact backward self-similar solutions to the system (1.1)–(1.3) of the form

u(x, t) =
√

2(T − t)ϕ((
x√

2(T − t)
)
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is studied in the shrinking case. For certain range of data, the uniqueness of the backward
self-similar solutions is not valid.

The question of asymptotic behavior of the solution to the system (1.1)–(1.4) in the area-
preserving and shrinking cases is not studied, even for the case of heat equation (a(s) ≡ s).
The goal of this paper is to study these two cases. We begin with the following global existence
of classical solution in the expanding and preserving cases. Note that the global existence for
the expanding case has been established in [3], however, our global existence proof covers both
the area-preserving and expanding cases.

Theorem 1.2. Consider the expanding and preserving cases γ1 ≤ γ2. Let the assumptions
(1.5)–(1.8) be in force. Assume also that u0 ∈ C1+α for some α > 0. Then there exists a
unique classical solution for 0 < t <∞.

In the case γ1 = γ2, the area is preserved. We have the following result for the asymptotic
behavior, the result is new even for heat equation case.

Theorem 1.3. Consider the area preserving case γ1 = γ2. Let the assumptions (1.5)–(1.8) be
in force. Then there exists d1 > 0, determined uniquely by the initial data, such that

(1.16) u(x, t) → γx+ d1

uniformly in x as t→ ∞.

In the shrinking case when γ1 > γ2, the area should vanish in finite time. We shall establish
the asymptotic behavior in this case (Theorems 1.4 and 1.5). The result is new even for the
heat equation case.

Theorem 1.4. Consider the area shrinking cases γ1 > γ2. Let the assumptions (1.5)–(1.8) be
in force. We further assume

(1.17) −β1 ≤ α2 < α1 ≤ β2.

Then
(i) there exists a unique classical solution (u(x, t), ξ1(t), ξ2(t)) to the system (1.1)–(1.4) for

0 ≤ t < T with T given by

(1.18) T = D(0)/[a(γ1) − a(γ2)],

where

D(0) =
∫ ξ20

−ξ10

u0(x)dx− 1
2
ξ210 tan β1 − 1

2
ξ220 tan β1.

(ii) u ∈ C2+α,1+α/2(ΩT ) ∩ C0+1,1/2(ΩT ) and ξ1, ξ2 ∈ C1+α/2(0, T ) ∩ C1/2[0, T ], where ΩT =
{(x, t); −ξ1(t) ≤ x ≤ ξ2(t), 0 < t < T}.

(iii) limt→T−0 ‖u(·, t)‖L∞ = 0 and ξ1(T ) = ξ2(T ) = 0.

To study the asymptotic behavior at the vanishing time T , we make a change of variables
and define (v(y, s), p(s), q(s)) by

u(x, t) =
√

2(T − t) v(y, s), y =
x√

2(T − t)
, T − t = e−2s,

ξ1(t) =
√

2(T − t) p(s), ξ2(t) =
√

2(T − t) q(s).
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Then

vs = [a(vy)]y − yvy + v, −p(s) < y < q(s), s > s0 := − ln(T )/2,(1.19)

vy(−p(s), s) = γ1, vy(q(s), s) = γ2, s > s0,(1.20)

v(−p(s), s) = p(s) tan β1, v(q(s), s) = q(s) tan β2, s > s0.(1.21)

The steady-state solutions (ϕ, p, q) of (1.19)–(1.21) are give by

[a(ϕ′)]′ − yϕ′ + ϕ = 0, −p < y < q, p > 0, q > 0,(1.22)

ϕ′(−p) = γ1, ϕ′(q) = γ2,(1.23)

ϕ(−p) = p tan β1, ϕ(q) = q tan β2.(1.24)

Theorem 1.5. Let the assumptions (1.5)–(1.8) be in force. We further assume

(1.25) −β1 < α2 < α1 < β2.

Let T be given as in (1.18) and (v, p, q) be defined as above. Then
(i) for any initial data in C1+α, the corresponding ω-limit set is not empty;
(ii) any ω-limit is a solution to (1.22)–(1.24);
(ii) if we further assume a(s) to be analytic, then v(y, s) will converge to one of the ω-limit

as s→ ∞.

Remark 1.1. The backward self-similar solutions in the case a(s) ≡ s were extensively studied
in [9], where existence, non-uniqueness as well as the properties of solutions were discussed. In
the case of general a(s), Theorem 1.5 establishes the existence of such a backward self-similar
solution under the additional assumption (1.25).

This paper is organized as follows. In section 2, we derive some a priori estimates for
solutions of (FBP). Also, we give a proof of the global existence of solutions of (FBP) in the
area-preserving and expanding cases (Theorem 1.2). We then give a proof for the convergence
of the solution to a line in the area-preserving case in section 3 (Theorem 1.3). In section 4, we
turn to the shrinking case and give some preliminary results, where we also prove the existence
result as well as finite time vanishing result (Theorem 1.4). Finally, we study in section 5
the asymptotic behavior of solution of (FBP) in the shrinking case and prove Theorem 1.5.
The convergence result in section 5 depends also on the properties of the backward self-similar
solutions derived in section 6.

2. Some a priori estimates

In this section we derive some a priori estimates for solutions of (FBP). For the estimates in
this section, we shall always assume (1.5)–(1.8). Note that under these assumptions, the free
boundary x = ξi(t) (i = 1, 2) and their first order derivatives are Hölder continuous for t > 0
(Proposition 1.1). These regularity properties of the free boundary should be used throughout
this paper.

We first get the L∞ bounds on ux, which is a simple application of the comparison principle.
We assume that the classical solution exists on [0, τ), for some 0 < τ ≤ +∞.
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Lemma 2.1.

(2.1) |ux(x, t)| ≤ C1 for 0 < t < τ,

where

(2.2) C1 = max(|γ1|, |γ2|, ‖(u0)x‖L∞).

Note that Lemma 2.1 implies that a′(ux(x, t)) is uniformly bounded from above, and bounded
from below by a positive constant. Thus the equation (1.1) becomes uniformly parabolic.

We next derive half-sided estimates for uxx.

Lemma 2.2. For any c0 > 0, there exists a constant C such that

(2.3) uxx ≤ C for − ξ1(t) < x < ξ2(t), c0 < t < τ.

Proof. Differentiating boundary conditions (1.2), (1.3) at x = ξ2(t) in t, we obtain

(2.4) uxx(ξ2(t), t)ξ′2(t) + uxt(ξ2(t), t) = 0, ux(ξ2(t), t)ξ′2(t) + ut(ξ2(t), t) = ξ′2(t) tan β2.

Using the equation (1.1) and the boundary condition (1.2), we now get

utx(ξ2(t), t) = −uxx(ξ2(t), t)ξ′2(t)

= − ut(ξ2(t), t)
a′(ux(ξ2(t), t))

ξ′2(t)

= − ut(ξ2(t), t)
a′(ux(ξ2(t), t))

( ut(ξ2(t), t)
tan β2 − ux(ξ2(t), t)

)
= − 1

(tan β2 − γ2)a′(γ2)
u2

t (ξ2(t), t) ≤ 0.

Similarly,

−utx(−ξ1(t), t) = − 1
(tan β1 + γ1)a′(γ1)

u2
t (ξ1(t), t) ≤ 0.

It is clear that ut satisfies
utt = a′(ux)utxx + a′′(ux)utx.

It is proved in [3] that uxx(x, t) is bounded for t = c0 for small c0 > 0, provided we assume
u0 ∈ C1+α for some α ∈ (0, 1). It follows that ut = a′(ux)uxx is bounded for t = c0. Thus
we can apply the maximum principle to ut to conclude that ut is bounded from above. This
implies that uxx = ut/a

′(ux) is bounded from above.

Remark 2.1. If u0 ∈ C2 and satisfies the 2nd order compatibility condition at the boundary,
then we can take c0 = 0 in the above lemma.

We next derive the lower bound for uxx.

Lemma 2.3. If

(2.5) u(0, t) ≥ m for 0 < t < τ,

for some m > 0, then for any c0 > 0, there exists C independent of m such that

(2.6) uxx ≥ −C
m

for − ξ1(t) < x < ξ2(t), c0 < t < τ.
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Proof. By changing the value of a(p) outside |p| > C1 (where C1 is from (2.2) in Lemma 2.1)
if necessary, we may assume without loss of generality that l < a′(p) < 1/l for all p ∈ (−∞,∞)
for some l > 0 and a ∈ C2. This implies that the inverse function of a−1(·) is well defined on
(−∞,∞).

We choose w such that

a(w) =
C

m
(u− x tan β2) + a(γ2).

If we take C such that C+a(γ2) ≥ a(C1), then ux(0, t) ≤ w(0, t), ux(ξ2(t), t) = γ2 = w(ξ2(t), t)
for 0 < t < τ . Since uxx is bounded for t = c0 and tanβ2 − ux(ξ2(c0), c0) = tanβ2 − γ2 > 0,
there exists ε > 0 such that tan β2 − ux(x, c0) > (tan β2 − γ2)/2 for x ∈ [ξ2(c0) − ε, ξ2(c0)].
Using the bounds on uxx and ux, we can choose C large enough so that

uxx(x, c0) > − Cl

2m
(tan β2 − γ2)

≥ − C

ma′(w)
(tan β2 − ux(x, c0))

= wx(x, c0) for x ∈ [ξ2(c0) − ε, ξ2(c0)].

Integrating this inequality over the interval [x, ξ2(c0)], using also the boundary condition
ux(ξ2(c0), c0) = w(ξ2(c0), c0) = γ2 we find that

ux(x, c0) ≤ w(x, c0) for ξ2(c0) − ε ≤ x ≤ ξ2(c0).

Since u − x tan β2 is positive on the interval x ∈ [0, ξ2(c0) − ε], it is clear that the above
inequality is valid for 0 < x < ξ2(c0) − ε if we choose the constant C in the definition of w to
be large enough.

Now that the constant C in w is fixed. We can finally define the uniformly parabolic operator
L (in the definition we fix on ux, uxx and w) by

L[ϕ] = ϕt − [a(ϕ)]xx − C

ma′(w)
uxx[a′(ux) − a′(ϕ)].

Clearly

L[ux] = uxt − [a(ux)]xx − C

ma′(w)
uxx[a′(ux) − a′(ux)] = 0,

and

L[w] = wt − [a(w)]xx − C

ma′(w)
uxx[a′(ux) − a′(w)]

=
C

m

( 1
a′(w)

ut − uxx

)
− C

ma′(w)
uxx[a′(ux) − a′(w)]

=
C

m

( 1
a′(w)

a′(ux)uxx − uxx

)
− C

ma′(w)
uxx[a′(ux) − a′(w)]

= 0.

Thus by comparison
ux < w for 0 < x < ξ2(t), c0 < t < τ.
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Thus

uxx(ξ2(t), t) ≥ wx(ξ2(t), t) ≥ − C

ml
(tan β2 − γ2) for c0 < t < τ.

One can similarly show that

ux > a−1
(
− C

m
(u+ x tan β1) + a(γ1)

)
for − ξ1(t) < x < 0, c0 < t < τ.

and obtain

uxx(−ξ1(t), t) ≥ − C

ml
(γ1 + tan β1) for c0 < t < τ.

These estimates imply that (by using the equation)

(2.7) ut(x, t) ≥ −C
∗

m
for x = −ξ1(t), x = ξ2(t), c0 < t < τ.

Differentiating the equation (1.1) in t and applying the maximum principle to ut, we obtain

ut ≥ −C
∗

m
for − ξ1(t) < x < ξ2(t), c0 < t < τ.

Using the equation (1.1) again, we conclude the lemma.
These estimates imply the classical global existence in the area-preserving and expanding

cases as claimed in Theorem 1.2.
Proof of Theorem 1.2. We can choose any γ ∈ [γ1, γ2] and d > 0 such that u0(x) ≥ γx+d

for x ∈ [−ξ1(0), ξ2(0)]. Then by comparison, we immediately get

(2.8) u(x, t) ≥ γx+ d for − ξ1(t) < x < ξ2(t).

By Lemma 2.1, ux is uniformly bounded by C1. By (2.8), u(0, t) ≥ d. Thus if we choose m = d
in Lemma 2.3, then uxx is also uniformly bounded for t > c0, which in term implies that ut is
bounded for t > c0 by using the equation (1.1). The estimate (2.8) also implies

(2.9) min[ξ1(t), ξ2(t)] ≥ δ

for some δ > 0. From (2.4), (1.2) and the uniform bound on ut , we conclude

(2.10) ξ′2(t) =
ut(ξ2(t), t)
tan β2 − γ2

is uniformly bounded for t > t0. Similarly, ξ′2(t) is also bounded for t > c0. Therefore ξi(t)
(i = 1, 2) are bounded by Ct+C and u(x, t) is therefore also bounded by Ct+C. Using these
bounds in Proposition 1.1, we find that the solution can be extended to all t.

Remark 2.2. We proved that for the case γ1 ≤ γ2, the solution is global, and

(2.11) sup
c0<t<∞

{‖u(·, t)‖W 2,∞ [−ξ1(t),ξ2(t)]+ ‖ut(·, t)‖L∞[−ξ1(t),ξ2(t)]+ |ξ′1(t)| + |ξ′2(t)|} ≤ C.

This estimate is useful in the asymptotic study for the area-preserving case.
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3. Asymptotic limit for the area-preserving case

For the case γ1 ≥ γ2, we can choose any γ ∈ [γ2, γ1] and D > 0 such that u0(x) ≤ γx +D
for x ∈ [−ξ1(0), ξ2(0)]. Then by comparison, we immediately get

(3.1) u(x, t) ≤ γx+D for − ξ1(t) < x < ξ2(t).

Choosing γ = γ1 and γ = γ2 respectively, using also (1.3), we obtain

(3.2) ξ1(t) ≤ D

tan β1 + γ1
, ξ2(t) ≤ D

tan β2 − γ2
.

In particular, if γ1 = γ2 := γ, then we can combine (2.8) and (3.1):

(3.3) γx+ d ≤ u(x, t) ≤ γx+D for − ξ1(t) < x < ξ2(t), 0 < t <∞.

By (2.11), we also have uniform bounds on ux, uxx, ξ′i(t) (i = 1, 2) for t ∈ [c0,∞).

Proof of Theorem 1.3. For A(s) :=
∫ s

0
a(y)dy and

J(t) =
∫ ξ2(t)

−ξ1(t)
A(ux(x, t))dx,

we have (using the boundary conditions)

J ′(t) =
∫ ξ2(t)

−ξ1(t)
a(ux)uxtdx+A(γ)ξ′2(t) +A(γ)ξ′1(t)

= −
∫ ξ2(t)

−ξ1(t)
[a(ux)]xutdx+ a(ux)ut

∣∣∣ξ2(t)
−ξ1(t)

+A(γ)ξ′2(t) +A(γ)ξ′1(t)

= −
∫ ξ2(t)

−ξ1(t)
u2

tdx+ [a(γ)(tan β2 − γ) +A(γ)]ξ′2(t)

+[−a(γ)(tan β1 + γ) +A(γ)]ξ′1(t).

Thus

J(t) +
∫ t

c0

∫ ξ2(t)

−ξ1(t)
u2

t dx ≤ J(c0) + C(‖ξ1‖L∞[c0,∞) + ‖ξ2‖L∞[c0,∞)).

The right-hand of the above equality is uniformly bounded. Thus

(3.4)
∫ ∞

c0

∫ ξ2(t)

−ξ1(t)
u2

tdx <∞.

This estimate, together with the compactness of the solution as t→ ∞ (subsequence of u(x, t+
tj) converges in C1+α in x up to the boundary and C2 in the interior, ξi(tj) → ξi∞ (i = 1, 2)), we
immediately obtain the convergence on the subsequence. By following the standard argument
as in [7], we find that the subsequential limit function must be a solution to the steady state
equation [a(ux)]x = 0 with the boundary conditions (1.2), (1.3). It is clear that the only
solutions to the steady state are lines of the type γx+ d1 for some d1.
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With the D(t) defined in (1.6), it is clear that D′(t) = 0 in the area preserving case. In
particular, D(t) ≡ D(0) for all t > 0. If we pass the limit along the convergent subsequence,
we find

(3.5)
∫ ξ2∞

−ξ1∞
(γx+ d1)dx− 1

2
ξ21∞ tan β1 − 1

2
ξ22∞ tan β2 = D(0).

From (1.3), we also have

(3.6) −γξ1∞ + d1 = ξ1∞ tan β1, γξ2∞ + d1 = ξ2∞ tan β2.

It is clear that (3.5) and (3.6) uniquely determine d1, ξ1∞ and ξ2∞. As in [7], the uniqueness
of the limit (d1, ξ1∞, ξ2∞) implies that u(x, t), ξi(t) (i = 1, 2) all converge uniformly as t →
∞.

Remark 3.1. Let b = limt→∞[ξ1(t) + ξ2(t)]. The convergence theorem of the standard par-
abolic theory gives the exponential convergence rate up to the first eigenvalue (see [5] for the
convergence rate for the linearized problem, the uniform convergence of the nonlinear problem,
together with the convergence rate for the linearized problem, imply the convergence rate for the
nonlinear problem). More precisely, for any λ ∈ (0, a′(γ)π2/b2), limt→∞ eλt|u(x, t)−γx−d1| =
0.

4. Preliminary for the shrinking case

The assumption γ1 > γ2 means that there is a negative total heat flux through the boundary
and therefore u should decrease overall.

Notice that the estimates (3.1) and (3.2) were proved for both the area preserving and
shrinking cases. These bounds are valid as long as the solution exists:

u(x, t) ≤ γx+D, ξ1(t) ≤ C, ξ2(t) ≤ C.

In this section we assume that [0, T ) is the maximal existence interval for a classical solution.
In the Lemmas 4.1–4.3 in this section, we only need to assume that the initial data u0 is C1+α

and we do not need the condition (1.17).
We first prove the Hölder estimates for u(x, t) in t direction. We extend u(x, t) to all

x ∈ (−∞,∞) by defining

u(x, t) =
{ −x tan β1 for x < −ξ1(t),
x tan β2 for x > ξ2(t).

Lemma 4.1. The extended function u(x, t) satisfies, for any t1, t2 ∈ [0, T ),

(4.1) |u(x, t1) − u(x, t2)| ≤ C|t1 − t2|1/2.

Proof. The extended function satisfies the equation (1.1) both in and outside the region
{(x, t), x ∈ (−ξ1(t), ξ2(t))}. There is a jump on the first order x-derivative across the boundary
but |ux| is uniformly bounded by max{C1, tan β1, tan β2} for all x ∈ (−∞,∞). And u satisfies
in the distribution sense the equation

ut =
∂

∂x

[
a(ux) + {a(γ2) − a(tan β2)}H(x− ξ2(t)) − {a(γ1) − a(− tan β1)}H(x + ξ1(t))

]
,
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where H(t) is the Heaviside function. It follows that, for any x1, x2 and t1 < t2,∣∣∣ ∫ x2

x1

(
u(x, t1) − u(x, t2)

)
dx

∣∣∣ ≤ ∫ t2

t1

∣∣∣ ∫ x2

x1

ut(x, τ)dx
∣∣∣dτ ≤ C|t1 − t2|.

For any given x∗ and t1, t2, we choose x1, x2 such that x1 < x∗ < x2 and |x1−x2| = |t1− t2|1/2,
then

|u(x∗, t1) − u(x∗, t2)|
≤ 1

|x1 − x2|
∣∣∣ ∫ x2

x1

(
u(x, t1) − u(x, t2)

)
dx

∣∣∣ + ‖ux‖L∞ |x1 − x2|

≤ C|t1 − t2|1/2.

This completes the proof.
If we replace the positiveness assumption on u(0, t) by certain assumptions on u(x0, t), we

can repeat the proof of Lemma 2.3 to conclude :

Lemma 4.2. If

u(x0, t) − max[(tan β2)x0,−(tan β1)x0] > m for 0 < t < τ,

for some m > 0, then for any c0 > 0, there exists C independent of m such that

(4.2) uxx ≥ −C
m

for − ξ1(t) < x < ξ2(t), c0 < t < τ.

For a positive solution, we have

Lemma 4.3. If u(x, t) > 0 for t ∈ [0, τ ], then

u(x, t) > max[(tan β2)x,−(tan β1)x], x ∈ (−ξ1(t), ξ2(t))
for t ∈ [0, τ ].

Proof. Using the boundary condition, we can compare the solution with the function
(tan β2)x and −(tan β1)x respectively to conclude the result.

Next we give a sufficient condition for the solution u to remain positive.
If we have the additional assumption (1.17), then we claim that u is always positive as

follows.

Lemma 4.4. Suppose that [0, T ) is the maximal existence interval for the classical solution
and T <∞. Under the additional assumption (1.17), we have u(x, t) > 0 for 0 ≤ t < T .

Proof. Let [0, T ∗) be the maximal interval on which u(x, t) remains positive. Then both
ξ1 and ξ2 are positive on this interval. We claim that T ∗ = T . In fact, if T ∗ < T , then u(x, t)
is C2 for t ∈ [0, T ∗] and ξ1(T ∗) + ξ2(T ∗) > 0. Lemma 4.3 implies that u(x, T ∗) is positive for
x 	= 0. Therefore we must have u(0, T ∗) = 0. If −ξ1(T ∗) < 0 < ξ2(T ∗), then u(x, t) reaches
the minimum at an interior point (0, T ∗) and therefore u ≡ 0 and we get a contradiction. If
ξ1(T ∗) = 0, then ξ2(T ∗) > 0. Using Lemma 4.3 and applying strong maximum principle to
u− (tan β2)x, we obtain ux(0, T ∗) − tan β2 > 0, i.e., tanα1 > tan β2. This contradicts (1.17).
We can similarly get a contradiction if ξ2(T ∗) = 0. Thus we proved T ∗ = T , and u(x, t) > 0
for 0 ≤ t < T .

We now prove that the positive solution must vanish at t = T .
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Lemma 4.5. Suppose that [0, T ) is the maximal existence interval for the classical solution
and T < ∞. Under the additional assumption (1.17), we have ξ1(t) > 0 and ξ2(t) > 0 for all
t ∈ [0, T ). Moreover, ξ1(T ) = ξ2(T ) = 0 and u(0, T ) = 0.

Proof: Note that the assumption (1.17) implies that β1 + β2 > 0. Hence it follows from
Lemma 4.3 that ξi(t) ≥ 0 for all t < T for i = 1, 2. Using the condition (1.17) and following
the same proof as in Lemma 4.4, we can show that ξ1(t) > 0 and ξ2(t) > 0 for all t ∈ [0, T ).

Since ut is bounded above by Lemma 2.2, ξ′i(t) ≤ C (i = 1, 2) (cf. (2.10)); the function
ξi(t)−Ct is therefore monotonically decreasing and the limit lim

t→T−
(ξi(t)−Ct) exists. Therefore

the limit lim
t→T−

ξi(t) exists and we define it to be ξi(T ). With this definition, it is clear that

ξi(t) is continuous on [0, T ]. If ξ1(T ) + ξ2(T ) > 0, then for x0 = [ξ1(T ) + ξ2(T )]/2, we have
u(x0, T ) > max[(tan β2)x0,−(tan β1)x0], by Lemma 4.3 and the strong maximum principle.
Now we can apply Lemma 4.2 to conclude that uxx remains bounded near t = T and therefore
the classical solution can be further extended beyond t = T . This contradicts our assumption
that [0, T ) is the maximal existence interval. Thus we must have ξ1(T ) + ξ2(T ) = 0 and the
lemma is proved.

We are now ready to prove Theorem 1.4.
Proof of Theorem 1.4. In view of Lemmas 4.1–4.5, the parts (ii) and (iii) of Theorem 1.4

are already established if we can establish (i), namely, for the maximal existence interval [0, T ),
T is finite and is given in (1.18). Let us denote the right-hand side of (1.18) to be T ∗, i.e.,
T ∗ = D(0)/[a(γ1)− a(γ2)] and we want to show T = T ∗. It is clear from (1.14) that T ∗ is the
unique time such that

(4.3) D(t) > 0 for 0 < t < T ∗,D(T ∗) = 0.

By Lemma 4.4, u(x, t) > 0 on the maximal existence interval [0, T ). Then using Lemma 4.3,
we find that D(t) defined (1.13) satisfies

D(t) > 0 for 0 ≤ t < T.

By Lemma 4.5, D(T ) = 0. By comparing this with (4.3), we conclude that T = T ∗. This
finishes the proof.

The rest of this section will be devoted to deriving additional estimates needed for the proof
of asymptotic expansion. If we replace (1.17) with (1.25), we can also derive the estimate on
ξj(t), j = 1, 2.

Lemma 4.6. Suppose that [0, T ) is the maximal existence interval for the classical solution,
where T is given by (1.18). Under the further assumption (1.25)

(4.4) 0 < ξj(t) < C
√
T − t for j = 1, 2, t < T.

Proof. First, it follows from Lemma 4.5 that ξj(t) > 0 for j = 1, 2, t < T .
Integrating the inequality (2.3), we obtain

γ2 − C(ξ2(t) − x) ≤ ux(x, t) ≤ γ1 +C(x+ ξ1(t)) for − ξ1(t) < x < ξ2(t), t < T.
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Integrating this inequality again, we get

(4.5) u(x, t) ≤



u(0, t) + γ1x+ C
(

1
2x

2 + xξ1(t)
)

for 0 < x < ξ2(t),

u(0, t) + γ2x+ C
(

1
2x

2 − xξ2(t)
)

for − ξ1(t) < x < 0,

Thus

(4.6)
∫ ξ2(t)

−ξ1(t)
u(x, t)dx ≤ [ξ1(t) + ξ2(t)]u(0, t) +

γ1

2
ξ22(t) − γ2

2
ξ21(t) + C̃[ξ31(t) + ξ32(t)].

Substituting this estimate into the expression for D(t) in (1.13), we derive

(4.7)
D(t) + 1

2(tan β1 + γ2)ξ21(t) + 1
2(tan β2 − γ1)ξ22(t)

≤ [ξ1(t) + ξ2(t)]u(0, t) + C̃[ξ31(t) + ξ32(t)].

Notice that the assumption (1.25) implies that the coefficient (tan β1 + γ2) and (tan β2 − γ1)
are positive. Since D(t) > 0 for t < T , (4.7) implies, for r(t) =

√
ξ21(t) + ξ22(t)

r2(t)[1 − C∗r(t)] ≤ Cr(t)u(0, t).

Choosing t to be sufficiently close to T such that 1 −C∗r(t) ≤ 1/2, then we obtain

r(t) ≤ Cu(0, t) ≤ C
√
T − t.

The last inequality was obtained from the Hölder continuity in t for u(0, t) (Lemma 4.1). This
completes the proof.

We finally prove

Lemma 4.7. Under the assumptions of Lemma 4.5, there exists c > 0 such that

(4.8) u(0, t) ≥ c
√
T − t.

Proof. Using Lemma 4.6 in (4.7), we obtain

[a(γ1) − a(γ2)](T − t) = D(t) ≤ C
√
T − t u(0, t) + C(T − t)3/2,

from which the lemma follows.

5. Asymptotic behavior for the shrinking case

In this section we want to study the asymptotic behavior as t→ T . Throughout this section
we shall assume that (1.25) is satisfied. Let

u(x, t) =
√

2(T − t) v(y, s), y =
x√

2(T − t)
, T − t = e−2s,

ξ1(t) =
√

2(T − t) p(s), ξ2(t) =
√

2(T − t) q(s).

Then

vs = [a(vy)]y − yvy + v, −p(s) < y < q(s), s > s0 := − ln(T )/2,(5.1)

vy(−p(s), s) = γ1, vy(q(s), s) = γ2, s > s0,(5.2)

v(−p(s), s) = p(s) tan β1, v(q(s), s) = q(s) tan β2, s > s0.(5.3)
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Under the assumption (1.25), it is proved in section 4 that u is positive. It is clear that

p(s) > 0, q(s) > 0.

Combining the lemmas from section 4, we have

Lemma 5.1. For a positive solution, we have

(5.4) max[(tan β2)y,−(tan β1)y] ≤ v(y, s) ≤ C, |vy(y, s)| ≤ C,

and

(5.5) 0 < p(s) ≤ C, 0 < q(s) ≤ C.

Proof. (5.5) is an immediate result from Lemma 4.6. The gradient bounds is an immediate
result from the gradient bound for u. Lemma 4.3 gives the lower bound estimates for v(y, s).

The estimate u(0, t) ≤ C
√
T − t implies that v(0, s) ≤ C. Since p(s), q(s) are bounded,

v(y, s) ≤ v(0, s) + ‖vy‖L∞ ≤ C.

The lemma is proved.
Next, we prove the following non-degeneracy lemma.

Lemma 5.2. There exists c > 0 such that

p(s) > c, q(s) > c.(5.6)

Proof. Using Lemma 4.7, we obtain, for some c1 > 0,

v(0, s) ≥ c1.

Using this estimates and the gradient bounds on v, we obtain

v(y, s) ≥ c1
2

for |y| < c2,

for some c2 > 0. Now the lemma follows from the boundary condition.
Using Lemma 5.2 and interior parabolic estimates, all derivatives of v(y, s) are bounded at

y = 0. We now derive the following estimate for the second order derivative.

Lemma 5.3. There exists a constant C such that

(5.7) −C ≤ vyy(y, s) ≤ Ce−s for − p(s) ≤ y ≤ q(s), s0 < s <∞.

Proof. If we rewrite the estimate in Lemma 2.3, we obtain

vyy ≤
√

2Ce−s.

Using Lemmas 2.3 and 4.7, we get

uxx(x, t) ≥ − C√
T − t

.

Rewriting this in y variable, we get vyy ≥ −C.
Combining these lemmas and using the boundary conditions, we obtain

Lemma 5.4.

(5.8) |p′(s)| + |q′(s)| ≤ C for s0 < s <∞.
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Proof: Since vs is bounded, we use the boundary condition to write p′(s) and q′(s) in terms
of vs to conclude the lemma.

If we let

D∗(s) =
∫ q(s)

−p(s)
v(y, s)dy − 1

2
p2
1(s) tan β1 − 1

2
p2
2(s) tan β2,

Then

(5.9) D∗(s) =
1

2(T − t)
D(t) =

1
2
[a(γ1) − a(γ2)] for s0 < s <∞.

We next derive energy estimates.
Following [13] (see also [8]), we define

(5.10) E(s) =
∫ q(s)

−p(s)
Φ

(
y, v(y, s), vy(y, s)

)
dy,

where Φ = Φ(y, v, w) is to be determined. Then

(5.11)
d

ds
E(s) = J0 + J1 + J2,

where

J0 = −
∫ q(s)

−p(s)

1
a′(vy(y, s))

Φww(y, v(y, s), vy(y, s))|vs|2(y, s)dy,

J1 = Φ(q(s), q(s) tan β2, γ2)q′(s) + Φ(−p(s), p(s) tan β1, γ1)p′(s)
+Φw(q(s), q(s) tan β2, γ2)(tan β2 − γ2)q′(s)
−Φw(−p(s), p(s) tan β1, γ1)(tan β1 + γ1)p′(s),

J2 =
∫ q(s)

−p(s)

{
Φv − Φwy − Φwvvy − Φww

[
yvy − v

a′(vy)

]}
vs(y, s)dy

≡
∫ q(s)

−p(s)
K

(
y, v(y, s), vy(y, s)

)
vs(y, s)dy.

Let

Φ(y, v, w) =
∫ w

0
(w − σ)P (y, v, σ)dσ −

∫ v

0

µ

a′(0)
P (y, µ, 0)dµ.

Then

Φww(y, v, w) = P (y, v, w),

and,

K(y, v, w) =
∫ w

0

{
− σ

∂P

∂v
(y, v, σ) − ∂P

∂y
(y, v, σ)

− ∂

∂σ

[
P (y, v, σ)

yσ − v

a′(σ)

]}
dσ.
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We want to construct P so that the braces {· · · } in the above vanishes. Let P (y, v, w) =
exp(Q(y, v, w)), then this is equivalent to

(5.12) wQv(y, v, w) +Qy(y, v, w) +
yw − v

a′(w)
Qw(y, v, w) +

∂

∂w

{yw − v

a′(w)

}
= 0.

This linear PDE is solved through characteristics.
We let ψ(η; y, v, w) be defined as the solution of the conjugate problem with the terminal

condition:

a′(ψη)ψηη − ηψη + ψ = 0, η ∈ (−C∗, y), y ≤ C∗(5.13)

ψ(y; y, v, w) = v, ψη(y; y, v, w) = w,(5.14)

where we assume that p(s) ≤ C∗, q(s) ≤ C∗ for all s > s0. Since a′(s) ∈ (l, 1/l) for some l > 0,
the solution of this ODE is well defined. It is clear that for bounded v and w, the solution ψ
and its derivative ψη are uniformly bounded.

Differentiating (5.14) in y, we obtain ψη(y; y, v, w) + ψy(y; y, v, w) = 0, and hence

ψy(y; y, v, w) = −ψη(y; y, v, w) = −w.

Similarly, since ψηη(y; y, v, w) + ψηy(y; y, v, w) = 0,

ψyη(y; y, v, w) = −ψηη(y; y, v, w)

=
−yψη(y; y, v, w) + ψ(y; y, v, w)

a′(ψη(y; y, v, w))
=

−yw + v

a′(w)
.

Next, differentiating (5.14) in v and w, respectively, we find that

ψv(y; y, v, w) = 1, ψvη(y; y, v, w) = 0, ψw(y; y, v, w) = 0, ψwη(y; y, v, w) = 1.

Thus the functions ψy(η; y, v, w) and −wψv(η; y, v, w) +
−yw + v

a′(w)
ψw(η; y, v, w) and their first

derivatives in η agree at η = y.
Differentiating (5.13) with respect to the parameters y, v and w, using also the uniqueness

of the solution of the corresponding ODE, we derive

(5.15) ψy(η; y, v, w) = −wψv(η; y, v, w) +
−yw + v

a′(w)
ψw(ξ; y, v, w).

Let R(y, v, w) =
∂

∂w

{yw − v

a′(w)

}
and define

(5.16) Q(y, v, w) = −
∫ y

0
R(η, ψ(η, y, v, w), ψη (η, y, v, w))dη.
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Then a direct computation shows that (using also (5.15))

wQv(y, v, w) +Qy(y, v, w) +
yw − v

a′(w)
Qw(y, v, w) +

∂

∂w

{yw − v

a′(w)

}
= wQv(y, v, w) +

yw − v

a′(w)
Qw(y, v, w) −

∫ y

0
(Rvψy +Rwψηy)dη

= −
∫ y

0

{
w(Rvψv +Rwψηv) +

yw − v

a′(w)
(Rvψw

+Rwψηw) + (Rvψy +Rwψηy)
}
dη

= −
∫ y

0

{
Rv ·

[
wψv +

yw − v

a′(w)
ψw + ψy

]}
dη

−
∫ y

0

{
Rw ·

[
wψηv +

yw − v

a′(w)
ψηw + ψηy

]}
dη.

The first term of the above expressions vanishes by (5.15) and the second term also vanishes
by differentiating (5.15) in η.

Substituting this equality into the expression for K , we get

K(y, v, w) ≡ 0,

and hence
J2 = 0.

Using the bounds on p(s) and q(s), we obtain that

(5.17) sup
s0<s<∞

∣∣∣ ∫ s

s0

J1(τ)dτ
∣∣∣ ≤ C <∞.

Thus we proved:

Theorem 5.5.

(5.18)
∫ ∞

s0

∫ q(s)

−p(s)

1
a′(vy(y, s))

P (y, v(y, s), vy(y, s))|vs|2(y, s)ds <∞.

It is clear that l ≤ a′(s) ≤ 1/l for some l > 0 and therefore

c0 ≤ P (y, v(y, s), vy(y, s))
a′(vy(y, s))

≤ C for s0 < s <∞

for some 0 < c0 < C <∞.
Proof of Theorem 1.5 (i) (ii). We follow the standard procedure in [7], which was already

used in the proof of Theorem 1.3.
Theorem 5.5, together with the estimates on the derivatives of the solution established in

sections 4 and 5, immediately imply that a subsequence will convergence to the ω-limit which is
a stationary solution of (5.1). The vyy estimates ensures that the boundary conditions remain
in force after taking the limit.

We call a stationary solution of (5.1)-(5.3) a backward self-similar solution. Note that in
general we do not have the uniqueness of backward self-similar solutions. For example, in the
heat equation case, there are at least two backward self-similar solutions if tan−1Gc < α2 <
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−β1 < α1 ≤ β2, where Gc < − tan β1 is a constant depending only on α1 and β1. Also, there
is at least one backward self-similar solution if (1.25) holds (cf. Theorem 4.1 in [9]).

Although the ODE solution may not be unique in general, there can only be finitely many
solutions in the case that a(s) is analytic. We will prove this fact in section 6. This fact will
enable us to establish the following theorem.

Proof of Theorem 1.5 (iii). Suppose that both ϕ1 and ϕ2 are the ω-limit. The estimates
in the previous sections imply that ϕi (i = 1, 2) are well-defined in a small neighborhood of
0. If ϕ1 ≡ ϕ2 in a small neighborhood of 0, then it is clear that ϕ1 ≡ ϕ2 everywhere, by
uniqueness of the ODE. Thus if the ω-limit is not unique, then there must exists a small δ such
that ϕ1(δ) 	= ϕ2(δ). For any number η between ϕ1(δ) and ϕ2(δ), we can choose sj → ∞ such
that v(δ, sj) = η. Using the compactness and the Lyapunov function we find that v(y, s + sj)
will converge to the ODE solution which is a ω-limit with value η at y = δ. Thus we obtain a
continuum of ω-limit, which is a contradiction to the result in the next section.

6. The backward self-similar solution

The backward self-similar solution in the case of heat equation (a(s) ≡ s) has been studied
in [9].

For the general case, the limit ϕ will satisfy:

[a(ϕ′)]′ − yϕ′ + ϕ = 0,−p < y < q, p > 0, q > 0,(6.1)

ϕ′(−p) = γ1, ϕ′(q) = γ2,(6.2)

ϕ(−p) = p tan β1, ϕ(q) = q tan β2.(6.3)

Lemma 6.1. Under the assumption (1.25), there exists ε0 > 0 such that (6.1)–(6.3) has no
solution for p ∈ [0, ε0].

Proof. We let ϕ(y, p) be the solution of

[a(ϕy)]y − yϕy + ϕ = 0, y > −p,(6.4)

ϕy(y, p) = γ1 for y = −p,(6.5)

ϕ(y, p) = p tan β1 for y = −p.(6.6)

It is clear that if p = 0, then ϕ(y, 0) = γ1y is the unique solution of (6.4)–(6.6) and therefore
the second equality in (6.2) cannot be satisfied. For p > 0, let G(y, p) = yϕy(y, p) − ϕ(y, p),
then

Gy =
y

a′(ϕy(y, p))
G, G(−p, p) = −p(γ1 + tanβ1).

Thus

(6.7) G(y, p) = −p(γ1 + tan β1) exp
∫ y

−p

τ

a′(ϕy(τ, p))
dτ < 0,

and

(6.8) lim
y→+∞G(y, p) = −∞.
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In particular, ϕyy(y, p) = G/a′(ϕy) < 0, and ϕy(y, p) < γ1 for y > −p. Thus if a solution of
(6.1)–(6.3) exists, then

q tan β2 = ϕ(q, p) ≤ ϕ(−p, p) + γ1(q + p) = p tan β1 + γ1(q + p),

which implies that q(tan β2 −γ1) ≤ p(tan β1 +γ1). From (6.7) and the relationship ϕyy(y, p) =
G/a′(ϕy), we also obtain the estimates for ϕyy. Combining all these estimates, we obtain

γ1 − γ2 = −
∫ q

−p
ϕyy(τ, p)dτ ≤ (p + q) max

τ∈[−p,q]
(−ϕyy(τ, p)) ≤ Cε20 for p ∈ (0, ε0].

This is a contradiction if ε0 is small.
We next prove:

Lemma 6.2. In addition to the assumption (1.25), we assume that a(s) is analytic in s for
s ∈ [γ2, γ1]. Then there are at most finitely many solutions of (p, q) satisfying (6.1)–(6.3).

Proof. For p > ε0, the −ϕyy(y, p) is bounded from below by a positive constant. Thus we
can uniquely solve q = q(p) > −p such that

ϕy(q(p), p) ≡ γ2.

The estimates (6.8) implies that q(p) is bounded from above. It is also clear that γ2 ≤ ϕy ≤ γ1

for −p ≤ p ≤ q(p).
Define, for p ≥ ε0,

(6.9) K(p) := ϕ(q(p), p) − q(p) tan β2.

The above discussion implies that K(p) is well defined for all p ≥ ε0.
If p0 is a zero for K(p), we want to show p0 is an isolated zero for K.
If a(s) is analytic for s ∈ [γ2, γ1], then K is analytic. Therefore the zeros of K can not

have a limit point unless K(p) is identically zero. Thus if p0 is not an isolated zero for K,
then K(p) ≡ 0 for p ≥ ε0. However, Lemma 6.1 implies that K(ε0) 	= 0. Thus we obtain a
contradiction and we proved that the zeros of K are isolated.

If p is sufficiently large, then it is clear from (6.7) that q(p) < 0 and thus K(p) > 0.
Since K(p) can only have finitely many isolated zeros on a bounded interval, the lemma is
proved.
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