FINITE TIME DEAD-CORE RATE FOR
THE HEAT EQUATION WITH A STRONG ABSORPTION

JONG-SHENQ GUO AND CHIN-CHIN WU

Abstract. We study the solution of the heat equation with a strong absorption. It is well-known
that the solution develops a dead-core in finite time for a large class of initial data. It is also
known that the exact dead-core rate is faster than the corresponding self-similar rate. By using
the idea of matching, we formally derive the exact dead-core rates under a dynamical theory
assumption. Moreover, we also construct some special solutions for the corresponding Cauchy
problem satisfying this dynamical theory assumption. These solutions provide some examples

with certain given polynomial rates.

1. INTRODUCTION

In this paper, we study the following initial boundary value problem (P) for the heat

equation with a strong absorption:

(1.1) Up = Uy —uP, O0< <1, t>0,
(1.2) u(0,t) =0, u(l,t) =k, ¢>0,
(1.3) uw(z,0) =up(x), 0<x<1,

where p € (0,1), k is a positive constant, and ug is a smooth positive function defined on
[0, 1] such that

(1.4) up(0) =0, up(l) =k, ug(xz) >0 for z € [0, 1].

Problem (P) has been studied extensively for past years. It arises in the modeling of
an isothermal reaction-diffusion process [2, 11] in which the solution u of (P) represents
the concentration of the reactant which is injected with a fixed amount on the boundary
x = +1 (by a symmetric reflection), and p is the order of reaction. It also arises in
the modeling of a description of thermal energy transport in plasma [8, 7]. For more
references, we refer the reader to a recent work of Guo-Souplet [4] and the references

cited therein.
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In the literature, the region where u = 0 is called the dead-core and the first time when
u reaches zero is called the dead-core time.

It is shown in [2] that for a large class of initial data wug the solution of (P) develops a
dead-core in a finite time, say, 7. By the following transformation

(15) ulwt) = (T = uly, ), o=1/(1-p)
(1.6) y=z/VT —t, s=—In(T—1),

we see that u is a solution of (P) if and only if w is a solution of the following initial and
boundary value problem (Q):

1
(1.7) Wy = Wy, — WP 4+ oaw — SYy, 0<y<R(s), s> s,
(1.8) wy(0,8) =0, w(R(s),s) = ke, s> s,
(1.9) w(y, so) = wo(y) = Uo(yﬁ)/TQa 0<y< 1/\/T,
where R(s) := e*/? and sy := —InT. Furthermore, it is shown in [4] that, as s — oo,

w(y, s) — U(y) uniformly on compact subsets. Here U(y) := k,y*, k, := [2a(2a —1)] 7.
In particular, w(0,s) — 0 as s — oo. Therefore, the exact convergence rate is still not
determined.

The main purpose of this paper is to find the exact convergence rate of w(0,s). For
the same question to different problems, we refer to the reader to the recent works of
Dold-Galaktionov-Lacey-Vazquez [3] and Souplet-Vazquez [10]. The main idea of these
two works is to use a matching of the inner and outer expansions.

For the inner expansion, we enlarge the inner region near y = 0 by a re-scaling. Then
the inner expansion is derived by studying a stabilization problem as the time goes to
infinity.

For the outer expansion, we first study the linearized operator of the right-hand side
of (1.7) around the singular steady state U. Then, from the dynamical point of view, we
assume that there exist an integer [ > 1 and positive constants €, K, s; with € sufficiently
small such that

(1.10) lw(y,s) —Uly) — éle_(l_1/2)8¢l(y)| < 66—(l—1/2)8y2a—1

for y € [Ke (=125 1] and s > s; for some nonzero constant ¢, where ¢; is the [-th
eigenfunction of the linearized operator.
Then, by a matching, the rate of convergence of w(0, s) can be formally derived as

(1.11) {In[w(0,s)]/s} = —2a(l —1/2) + O(1/s) as s — 0.
Note that the estimate (1.11) implies that

w(0,t) ~ (T —t)°+2=12) g5 177,
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Hence, under the assumption (1.10), the dead-core rate is at most polynomially. But, it
is faster than the so-called self-similar rate.

Although we are unable to verify the assumption (1.10) for general solutions, moti-
vated by the works of Herrero-Velazquez [6] and Mizoguchi [9], we can construct some
special solutions for the corresponding Cauchy problem such that the assumption (1.10)
is satisfied by these solutions for any odd integer [.

We note that the dead-core rate of the solution of (P) should depend on the initial data
up. We observe from the exact expression of ¢; (see Section 4 below) that there are exact
[ intersections of w(y, s) (constructed in Theorem 6.1 below) and U(y) in (0, co0) for any
s > s;1. Notice that the number of intersections of w(y,s) and U(y) is the same as the
number of intersections of u(x,t) and U(x) due to the scaling invariance of U under the
scaling (1.6). Also, ast T T~ (or s — 00), the y-domain of w tends to the whole real
line. It is nature to expect that (1.10) is satisfied with an integer [ which is related to the
number of intersections of u(x,t) and U(z) in (0,1). This gives a connection between the
initial data and the assumption (1.10) on the solution.

The paper is organized as follows. In Section 2, we study the structure of steady states
of (P). The inner expansion is given in Section 3. In Section 4, we first study the spectrum
of the linearized operator around the singular steady state U. With this information on
the spectrum, we then give a formal outer expansion. Then, in Section 5, we formally
derive the exact convergence rate of w(0, s) under the dynamical theory assumption (1.10).
Finally, to illustrate the plausibility of the assumption (1.10), we construct some special
solutions for the corresponding Cauchy problem with certain given rates in Section 6.
These solutions satisfy the dynamical theory assumption (1.10). The proof of a key

lemma in this construction is given in Section 7. This involves a quite heavy analysis.

2. STEADY STATES

In this section, we shall study the steady states of (P). For any n > 0, let U,, be the

solution of

(2.1) u' =uP, u>0 forany y >0; u(0)=mn, «'(0)=0.

In particular, Up(y) = U(y) = k,y** for y > 0. Note that, by a re-scaling, we have
(2.2) Uy(y) = nUs(n"~""?y) for any n > 0.

Also, by a simple comparison, we have U, > U,, if 71 > 12 > 0. Moreover, U, — U as
n— 0.

Remark 1. For n = 0, there are non-negative solutions in the form

Us(y) = kp(y — )2

for any € > 0. Also, these give all the possible non-negative non-trivial solutions of (2.1).
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Concerning the asymptotic behavior of U, as n — 0, we have

Lemma 2.1. Asn — 07,
(2.3) U, (z) = Up(z) + k(n)x** (1 + o(1))
for any x > 0, where k(n) := an"=P)/2 for some a > 0.

Proof. First, we study the asymptotic behavior of U;(y) as y — oo. For this, we write

Uy = Uy + v. Then v satisfies the equation
v = by72’U 4 02y7272av2 + ng72f4a,03 4o

for some constants ¢;, i > 2, where b := (2o — 1)(2ac — 2). Assume that v(y) ~ y” as

y — oo for some v > 0. Then we must have

Y(y—1)=0.

By writing v = 2a— 9, we obtain that either 6 = 1 or § = 4a—2 > 2«, which is impossible.
Hence we obtain that

(2.4) Ui(y) = Uo(y) + ay** (1 +o(1)) as y — oo

for some constant a. The constant a is positive, since Uy > Uj.
Now, for any x > 0, from (2.2) and (2.4) it follows that

Uy(z) = nUl(n(p_l)/Qx) = Up(z) + an(l_p)/zxzo‘_l(l +0(1)) as n— 0.

The lemma is proved.

3. INNER EXPANSION

In the sequel, for convenience we denote o(s) := w(0, s). To derive the inner expansion,
we make the following transformations

(3.1) w(y,s) = o(s)0(&,7), &:=0(s)P V2% 1=1(s):= /S o (ryP=dr.

Then it is easy to check that 6 satisfies the equation

32) b0 = B — 0+ [0 7(s) 4 9(r)] (a6 - 50 ).
where
33) o(7) = (1~ P’ ($)o(s) "

Also, 6(0,7) = 1 and 6¢(0,7) = 0 for all 7 > 0. We shall study the stabilization of the
solution 6 of (3.2).
First, recall from (3.7) of [4] that

0 <uy <CuP™2 forany z €[0,1], T/2<t<T,
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where C' is a positive constant. Hence we have
(3.4) 0 < w, < CwP™/2 for any y € [0, R(s)], s > —In(T/2) := s,
for some positive constant C'. Consequently, by an integration, we deduce from (3.4) that
(3.5) w(y, s) < [o(s)IP/2 4 ey]®* for any y € [0, R(s)], s > s1,

for some positive constant c¢. Using (3.5), (3.1) and w, = o*P)/2¢; we obtain the
following estimate

(3.6) 0<8(E,7) < (L+c6)*, 0<Ehel6,m) < O(1+6)>

for all £ € [0, R(s)o®=V/2(s)], 7 > 71 := 7(s;), for some positive constants ¢ and C.

On the other hand, recall from (1.7) of [4] that
(3.7) u(z,t) > [u(0,t)"? + cx?]* for any x € 0,1], T/2<t < T,

for some positive constant c¢. Hence w(y, s) grows at least as fast as y?* for y > 1 and
s> 1.

Next, it follows from Hopf’s Lemma that w,, (0, s) > 0 and so ws(0,s) > —w?(0, s) by
(1.7). Hence g(1) < 1 —p for all 7 > 0. In the sequel, we assume, in addition to (1.4),

that ug satisfies the condition
(3.8) upg —ub <0 in [0,1].
It follows from the maximum principle that u; < 0 in [0, 1] x [0,T]. From the relation

ut(ajv t) = (T - t)a_l[wS(ya S) - Oé’U}(y, S) + ywy(y, S)/Q]a
it follows that w(0, s) < aw(0, s) for all s > s5. Hence g(7) > —w! (0, s) for all s > sg.
Therefore, g is bounded and liminf, ., g(7) > 0.
Note that

/Ooog(r)dr =—(1-p) /Oo o1 (5)0’(s)ds = oo.

S0
Hence either limsup,_, . g(7) = 0 or limsup,_, g(7) > 0. Indeed, the first case holds as
shown in the following useful lemma.

Lemma 3.1. There holds lim,_,., g(7) = 0.

Proof. Otherwise, there is a sequence {7,,} — oo such that ¢(7,) — v as n — oo for some
constant v > 0. By using (3.6) and the standard regularity theory, we can show that
there is a subsequence, still denoted by {7,}, such that

o0&, 7+ 1) — 9(5,7’) as n — 0o

uniformly on any compact subsets, where 0 solves the equation

~ ~ ~ 1 -
0, :955—9]”4—7(&0— 5&(95), E>0, 7>0,
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with (0,7) = 1 and 6¢(0,7) = 0. Moreover, it is easy to check that ¢ > 0 and (¢, 7)
grows at most polynomially as & — oo for 7 > 1.

Now, it follows from the so-called energy argument (cf. the proof of Proposition 3.1 in
[4]) that (&, 7) — V() as T — oo for some V satisfying

V"= VP 4+ y(aV — %5‘/') =0, £>0,
V'(0) =0, V(0) =1.
Note that V' > 0 and V' grows at most polynomially. Set
W(y) =v"V(y/v7)
Then W satisfies
W"—Wp+on—%yW':O, y >0,
W'(0) =0, W(0) =~~.

Since W > 0, W’ > 0 for y > 0, and taking into account of the polynomial boundedness
of W, it follows from Proposition 3.3 of [4] that either W = U or W = a~*. The first case
is impossible, since U(0) = 0. The second case is also impossible, since 6 is unbounded
by (3.7). Hence the lemma follows. O

Again, by the standard limiting process with the estimate (3.6) and Lemma 3.1, for
any given sequence {7,} — oo we can show that there is a limit 6 satisfying

0. =0 —0°, €>0, TER,
: s

= 0,
0,7) =1, 6:(0,7) =0,
such that (&, 7 + 7,) — 6(€,7) as n — oo uniformly on compact subsets of (0,00) x R.

St

Since we also have
0= U{/ - va 5(0, 7-) = U1(0)7 é&(oa 7-) = (Ul)ﬁ(())’

Hopf’s Lemma and the real analyticity of 6 — U, imply that 6 = U. Indeed, suppose
on the contrary that 6 # U;. Taking any finite 7, it follows from the real analyticity of
v(€) == 0(€, 1) — Uy(€) in € that the zeros of v are isolated. Assume that the smallest
positive zero of v is & (& := o0, if there is no finite zero). Without loss of generality we
may assume that v < 0 in (0,&p). In the connected component

Q:={(¢7)]>0,7>1,0—U <0}

containing (0,&y) x {70}, any point (0,7) with 7 > 7 is a maximum point. Then Hopf’s
Lemma implies that (6 —U;)¢(0,7) < 0, a contradiction. Therefore, we must have 6 = U;.

Since this limit is independent of the given sequence {7, }, we see that 6(¢,7) — U;(§)
as 7 — oo uniformly on any compact subsets. Returning to the original variables and

using the relation (2.2), we thus have proved the following so-called inner expansion.
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Theorem 3.2. As s — 0o, we have

w(y, s) = Usgs) (y)(1 + 0(1))

uniformly in {0 < o®~Y/2(s)y < C} for any positive constant C.
4. OUTER EXPANSION
In the matching process, we need to study the following linearized operator
;C o y / b O
vi=—v"+ 5V —|—Ev, b:=(2a—-1)2a—2)

which comes from the linearization of (1.7) around the singular steady state U.
Consider the eigenvalue problem

(4.1) Lo=Ap, y>0; ¢(0)=0, ¢(0) =
Set p(y) := exp(—y*/4). We introduce the following weighted Hilbert spaces:

Lf, = { ¢ is measurable in R ' o(lyl), / &*(y)p(y)dy < oo} ,

{¢eL2 / 02 (y)p(y)dy < oo / ¢2 dy<oo}

=Aw%@m@my+gﬁmff>
¢>=Aw&@mw@

Then the principal eigenvalue Ay of (4.1) can be characterized by

Also, we set

(4.2) Ao i=nf{J(¢)/1(¢) | ¢ € H, I(¢) > 0}.

It is easy to see that Ao > 0. Also, by taking a minimization sequence, we can show that
this \g can be attained by a function ¢, € H which is the eigenfunction of (4.1) such that

%>ommm,éﬂ%@W@@=L

Moreover, from the standard theory on eigenvalue problem, there is a sequence of
eigenpairs {(An, ¢n) }n>o of (4.1) with 0 < Mg < Ay < Ag < --- and A, — 00 as n — 0.
Since ¢,, #Z 0, without loss of generality we may assume that ¢, > 0 for y > 0 and small.
Also, we take ¢, so that fooo(gbn(y))Qp(y)dy = 1. It is also easy to see that

(4'3) ¢n(?/) = dny’H(l + 0(1)> asy — 0"

for some positive constant d,,, where v, := 2a — 1.
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To compute the eigenvalues, we set

o(y) =y H(n), n=1y*/4

Then ¢ satisfies (4.1) if and only if H satisfies

~

(4.4) nH"(n) + (b —mn)H'(n) —aH(n) =0,

where @ := v, /2 — X and b := v, + 1/2. This is Kummer’s Equation (cf. [1]) and its
general solution is given by

ClM(&7 [;a 77) + C2U<d7 i)a 77)
for some constants ¢; and ¢y, where

T M(a,b,n) M 4+a—0b,2—0bn)

Ula,b,n) = — S
@b = e It ra—pyra) " L@ — b)

with M Kummer’s function and I' the Gamma function.
Since H(0) is finite, 1 —b= 3/2—2a <0, and M(-,-,0) = 1, it follows that the solution
of (4.4) is given by
H(n) = cM(é,b,n)
for some constant c.

Since b > 0, H(n) is always well-defined. If —a € NU{0}, then M (a, b, n) is a polynomial
of degree —a in n (cf. [1]). Indeed, M =1 if @ = 0. For n € N, we have
1

“ - n!
M(—n,b,n) =1+ - - - n".
( ) mE_:l( ) (n—=m)!mlp...(b+m—1)

Otherwise, if —a ¢ NU {0}, then

 (w5.5) ~ i (5) e (%)

as y — 0o, where ¢ := v, /2+1/2+ X = a+ A. Since ¢ € H, we conclude that the
eigenvalues of £ are given by \g=a —1/2and A\, =~v,/2+n=a+n—1/2forn € N.

Note that ¢g(y) = coly|>**™! for some positive constant cq. Since ¢(y) = y'+H(n), we

have
(4.5) On(y) = oy (1 +0(1)) as y — 07,
(4.6) $n(y) = Cay™ (1 +0(1)) as y — oo,

for some constants ¢, > 0 and (—1)"¢, > 0 for all n € N.
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In this paper, we are unable to derive a good outer expansion rigorously. Since w — U
as s — oo, from the dynamical theory point of view, we assume instead that there exist
an integer [ > 1 and positive constants €, K, s; with e sufficiently small such that

(4.7) lw(y, s) — U(y) — Ge= M35, (y)| < ee Mmool

for y € [Ke=A=%) 1] and s > s, for some nonzero constant ¢;.

5. RATE OF CONVERGENCE

In this section, we shall use the idea of matching to derive formally the exact convergence
rate of o(s) := w(0, s) to zero as s — 0.
We recall from Lemma 2.1 and Theorem 3.2 that for any y > 0:

(5.1) w(y, s) — Uly) = actP72(s)y?* 11 + o(1)) as s — oo.
On the other hand, by (4.7) and (4.3), we have, for y(s) := Ke~ M=),
(5:2)  (ad — )™ Ty (s) 7 <w(y(s), ) = Uly(s)) < (ady + e)e TPy (s)2e

for all s > s; for some [ > 1. Consequently, (1.11) can be formally derived under the
dynamical theory assumption (4.7).

6. CONSTRUCTION OF SOME SPECIAL SOLUTIONS

In this section, we shall construct some special solutions for the problem (CP):

(6.1) wszwyy—%wy—i-ozw—wp for y >0, s> sy,
(6.2) wy(0,5) =0 for s > sy,
(6.3) w(y,s1) =we(y) >0 for y € [0, 00).

By setting v :== w — U, (6.1) is equivalent to
(64) Vs = —Av + f(v)a

where

Y b
Av = —v,, + 5 Uy + ?FU —ov, b= (20— 1)(20 = 2),

f):=U" = (v+U)" + bv/y*.
First, we fix some notation. For each [ € N, let ¢; be the constant in (4.5) with n = [.

Let k(n) be the constant in (2.3). We choose (for a fix [) two positive constants 7; and
n2 so that k() < ¢ < k(n2).
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Theorem 6.1. For each odd | € N, there exists a positive solution w of (CP) such that,
for some positive constants s1, K,0,€ with (A — a)/(2N —2a+1) < 0 < 1/2, 51 > 1,
K>1,and e < 1,

(6.5) e Uy (e™y) <w(y, s) < e Uy, (e™y)

fory €10, Ke"] and s > s, and

(6.6) lw(y,s) = Uly) — e gy (y)] < ee (> + y*Y)

fory € [Ke "% %] and s > s1, where 3= 3 := )\ — «a and v = 7y := 2a3.

Hereafter [ is a fixed odd positive integer so that 3 = A\ — a and v = 2a3 are fixed.
For a given d := (dy,--- ,d;_;) € R! with the property

(D) Yol lda] < eem?,
we let w(y, s; d) be the solution of (6.1)—(6.3) with the initial data wy(y) = v(y, s1)+U(y),

where
-1

(6.7) vy, s1) = v(y, s15d) = Y dutn(y) + ¢ > Gu(y)
n=0

satisfying, for some (fixed) constants & and K with & € (A, —a)/(2\ —2a+1),1/2) and
K>1,
-1

(V1) duly) = —e™ {U(y) — e MU (Py) + Zdncbn(y)} Ly €0, Ke P,

n=0

where U, is the solution of (2.1) so that k(n) = ¢; in (2.3);
(V2)  dily) = duly). y € [Ke P, e,
(V3)  ¢y(y) is smooth for y > Ke ? and satisfies the bound
duly) < min{u(y),U(y)} fory > e
(V4)  w(y,s1) +U(y) > 0in (0, 00).
Fix a positive constant ¢ < 1. Take 0 € (N, — a)/(2\ — 2a + 1),5), s1 > 1, and
K > K such that e#/8 < K < e%1/2_ For s, > s; > 0 and 6 € (0,1], let W’ _ be the

51,52
set of (symmetric) continuous functions w on [0, c0) satisfying
(6.8) |w(y,s) = Uly) —e P au(y)| < Gee ™ (y** ™ +y*) if y € [Ke ™, e7], s € [s1, 5.
Define U, 4, to be the the set of all d € R’ with the property (D) such that w(y, s;d) €
Wl

61,5, Also, we define U,, s, to be the closure of U, ,,. Hereafter the constant o is fixed.

Proposition 6.1. Let s; > 1 and K > K. Ifd € Ua,sz with some sy > s1, then there
ezists a positive constant oy € (0,1) such that

(6.9) (1+do)e Uy (e™y) < wly, s) < (1= do)e Uy (e™y)
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fory €10, Ke "] and s € [s1, 8], where w(y, s) == w(y, s;d).
Proof. First, we recall from the proof of Lemma 2.1 that, as n®~1/2e%5y — oo,
(6.10) e U (e®y) = U(y) + k(n)e™*y** (1 + o(1)).

By assumption, w(y,s) € Wl _ since d € U,, ,,. By (6.8) and the choices of 71,72, €,

51,527

there exists a positive constant d; € (0, 1) such that
(6.11) (14 80e7Uy, (%) < w(y, ) < (1= 61)e " Upe(e™y)

in Dy :={y = Ke ™", s € [s1,8]}, if K > 1. From (D), (V}) and (V4), by choosing
dy € (0,07) small enough, we have

(6.12)  (L+8)e Uy (%) < wly,s1) < (1 - 8)e ™ Uy (™)

in Dy :={y €[0,KeP1), s =5}, if sy > 1 and K > K. Set 8§y := 5. From (6.11) and
(6.12), it follows that (6.9) holds in Dy U Dy, if K > K and s; > 1.
Now, we define

U~)(y, S) = (1 - 50)6778[]772 (eﬂsy>7
W(y,s) = (1L+8)e Uy, (”%y).
Then from a direct calculation we get, for y € [0, Ke %] and s € [sy, o],

S L S
ws—wyy+§ywy—aw+wp

= (1= 80)e" 2 [—1+ (1 = 60)" UL + e By} > 0 if 51> 1,
Wy = iy + iy — o+ 7
= (14 60)e [~ 1+ (L + 6o)P 'JUP + €27 B1} <0 if 51> 1,
where B; := —(v + a)Uy, (e?y) + (6 + 1/2)(e”*y)U] (e”y), i = 1,2. Since w,(0,s) = 0 =

U;(0), the proposition follows by a comparison principle. O

We next derive the estimate in the region {y > €?*} as follows.
Proposition 6.2. Let s1 > 1 and K > K. Ifd e Uslm with some sy > s, then
(6.13) 0 <w(y,s) <U(y)
fory > €7 and s € [sy, sa], where w(y, s) := w(y, s;d).

Proof. Note that, by (V4), it follows from the maximum principle that w > 0. Since
d € Us, s,, by (6.8) and (4.6), we have

w(y,s) < U(y) +e (6 — 2e)y* < U(y) if e < 1 and s; > 1,



12 JONG-SHENQ GUO AND CHIN-CHIN WU

for y = €7 and s € [s1, s9]. Here [ is assumed to be odd and so ¢ < 0. Clearly, (6.13)
holds for y > e?® and s = sy, if 51 > 1, since v(y, s1) < 0 for y > €?** by using (D), (V2)
and (V3). The proposition follows by a comparison principle. O

Next, we define the operator P(-; sy, s5) from Uy, ,, to R! by
P<d7 S1, 52) = (va te 7plfl)7 DPn = <U(y7 52, d)a ¢n(y)>7 n = 07 to 7l - 17
where v(y, s;d) := w(y, s;d) — Uly) and (f, ) == [;~ [(¥)g9(y)p(y)dy.

Proposition 6.3. Let s1 > 1 and K > K. If there is d € Usm for some sy > sy such
that P(d;s1,s9) = 0, then w(y,s;d) € W2 _ for some 0 € (0,1).

51,52

To prove this key proposition, we shall apply an idea of Herrero and Velazquez [6],
which was modified by Mizoguchi [9]. Since it involves rather complicated computations,

we shall postpone its proof at the end of this paper. We continue to prove Theorem 6.1.

Proposition 6.4. Let s; > 1. Istl,s2 # () for some sy > s1, then there exists d € Usl&
such that P(d; s1,s2) = 0.

Proof. We shall apply the degree theory to prove that
deg (P(da S1, 82), 07 Usl,SQ) = 17

where deg (P(d; s1, 52),0, Us, s,) denotes the degree of P(-; sy, s2) with respect to 0 in the
set Us, s,. First, we claim that deg (P(d; s1,51),0,Us, s,) = 1. Note that p,(d; s1,s1) =
dy + €77 (1, ). Set

hi(d) = (1 — t)I(d) + tP(d; sy, 51),

where I(d) is the identity mapping in R and ¢ € [0, 1]. Through the choice of &y, for s; > 1
we have h'(0Us, 5,) # 0 for ¢ € [0,1]. By the standard degree theory, deg (h'(d),0,Us, s,)
is independent of t € [0, 1]. Hence we obtain that

deg (P(d; s1,51),0,Us, 5,) = deg (I1(d),0,Us, s,) = 1.

Moreover, by Proposition 6.3 and Lemma 7.3, we have P(d; s1, s2) # 0 for all d € 0Uy, ,,
if s; > 1. Therefore, it follows from the homotopy invariance of degree theory that
deg (P(d; s1, 52),0,Us, s,) = 1. This proves the proposition.

Proposition 6.5. Let s; > 1. Then U, s, # 0 for all so > s4.
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Proof. Set s* :=sup{s > s1 | Us, s # 0}. From the theory of continuous dependence on
initial data, we see that Uy, s # 0) for s > s with s — s; < 1. Hence s* > s;. Claim that
s* = oo. If not, then there exists a sequence {s;} with s; < s* < oo such that s; — s* as
j — o0. By Proposition 6.4, there exists d; € U, ,, such that P(d;; sy, s;) = 0 for each j.
Since {d;} is bounded, without loss of generality, we may assume d; — d* as j — oo for
some d* € R, Moreover, we have d* € U,, ,~ and P(d*;s;,s*) = 0 from the continuity of
P. From Proposition 6.3, there exists # € (0,1) such that w(y, s;d*) € W?

5175*.

Hence we
get w(y, s;d*) € Us, 5«4y for some n > 0. This is a contradiction to the definition of s*

and the proposition is proved.
Now, we are ready to prove Theorem 6.1.

Proof of Theorem 6.1: From Proposition 6.5 it follows that there exists a strictly
increasing sequence {s;} C (s1,00) with s; — 00 as j — oo such that Uy, ,, # . By
Proposition 6.4, there exists d; € U,,,, such that P(d;;s;,s;) = 0 for each j. Hence,
from Proposition 6.3, we have w(y, s;d;) € Wslhs]_ f01: each j. Since {d;} is bounded,
without loss of generality we may assume that d; — d as j — oo for some d € R'. Let

w(y, s;d) be the solution of (CP) with initial value w(y, s1;d) = v(y, s1;d) + U(y). Since
dy, € Usmk - Ushsj for all k > j for any given j, we have d € USLS]. for all j. Therefore,

we conclude that w(y, s;d) € W} O

§1,00°

7. PROOF OF PROPOSITION 6.3

In the sequel, C' denotes a (universal) positive constant, which may be different from
one line to another, depending on p and (.

Recall that f(v) := UP — (v+ U)? + bv/y*. Note that, by (V4), w=v+ U > 0 and so
f is well-defined. From

vs=—Av+ f(v) in R X (s1,00),

it follows that (cf. [5])

(7. vs) = A+ [ A ol ar

51

for s > s1. Hereafter s; is a very large constant.
Lemma 7.1. We have
(7.2) 0< f(v) <CUP %

for some C' > 0.
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Proof. First, since

f(0) = 5p(1l = B)U + 0P

for some v between 0 and v, we see that f(v) > 0.
To prove the upper bound, we divide our proof into two cases.
Case 1: —U/2 < wv. Applying the mean value theorem, we have

fw) = U — (v+U)P+pUrtv
= —p(U +0w)P v+ pUP v = —p[(U + Ov)P~t — UP o
= 01p(1 = p)(U + 016,0)" 0

1 e
Hlp(l - p) (U - 59102(]) 1)2

IN

1 \""
< Oip(1-p) (iU) v? < CUP?,

where the constants 6; € (0,1), i =1,2.
Case 2: —U <v < —U/2. Since —U < v < =U/2, we have —2 < U/v < —1. Hence
fv) = U - (v+U)P+pUrtv
< UP—=(v+U)P

(9) -Gy (4)

2
2UP~29)? (g) < CUP %02,
v

= Ur%?

Combining Case 1 with Case 2, we have proved the lemma.

Lemma 7.2. Let 6 > 1. Ifd € USLSQ for some sy > s1, then

(7.3) 0< f(v) < CK*e 2P5%y~2  fory c [0, Ke ™,
(7.4) 0 < f(v) < Ce 2592~ fory € [Ke %, 6],
(7.5) 0 < flv) < Ce 2sythim20=2 for 4 € [5,e7%],
(7.6) 0< f(v) <Cy** 2 fory>e”®

for each s € [s1, s3], where v :=v(y, s;d) = w(y, s;d) — U(y).
Proof. Given any s € [s1, so]. From (6.9), there exists a constant C' > 0 such that
[u(y, s)] < CK* e

for y € [0, Ke7P¢]. Then (7.3) follows from the definition of f. From (6.8), (4.5) and
(4.6), we have

l(y,s)| < Ce Pyt if y € [Ke P, );
l(y,s)| < Ce Py if y € [0, e7°].
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Moreover, from (6.13) it follows that [v(y, s)| < Cy** for y > e?®. Therefore, (7.4) through
(7.6) follow by using (7.2). O

Lemma 7.3. Suppose that d € Uy, ,, such that P(d;sy,s3) = 0. Then for any v € (0,1)
there exists s1 > 1 such that

-1
(7.7) > fdn| < ve
n=0

Proof. Since P(d;s1,s2) = 0, we have (v(y,$2),¢,) = 0 for n = 0,--- 1 — 1. Fix
n € {0,---,0l—1}. Then we get from (7.1) and (6.7) that |d,| < I,,1 + I, 2, where

In,l = 67681|<(%l7 ¢n>‘7
S2
o = e O [T, .

S1

Since ¢; — ¢y in L2 as 51 — 00, (¢, pn)| — 0 as s; — co. Thus for any v € (0,1) there
exists s1 > 1 such that

v
In,l S ﬂe_ﬁsl.
Now, we shall apply Lemma 7.2 to estimate [(f, ¢,)| for each 7 € [sq, s2]. Recall that

K < eP1/2, First, from (7.3) it follows that
< CK2a672a[3‘r < Ce(lfa)ﬂfefﬂf'

(7.5 /  Fol b))y

Next, by (7.4) and (7.5), we have

79 [+ Frewmswan) <o

Finally, by (7.6), we have

(7.10) / f(v(yaT))%(y)ﬂ(y)dy‘ < 06_6%/8/ Y Nt20-2-? B < O T8,

oT

Combining (7.8), (7.9) and (7.10), we could find a constant x > 0 such that
(7.11) (ol r)). 6] < CeG  if s 1.
Hence

I,o < 2%6*531 if s> 1.

This completes the proof of the lemma.

Throughout the following, we suppose that d € USI& with 1 < s; < sy such that
P(d; s1,s2) = 0.
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7.1. Short Time: s; < s < sy + 1.

Since v = >"° (v, Pn) P, We may rewrite v(y, s1) as

-1

U(ya 31) = Z(dn + 67581 <<£l7 ¢n>)¢n + 67551 <él7 ¢l>¢l + Z 67551 <(517 ¢n>¢n

n=0 n=I[+1

Thus from (7.1) we may write, for s > s,

’U(y, S) = Sl(ya 3) + S2(ya S) + S3(ya S):

where

(7.12) Si(y, s) == e (¢, di) b,

-1

(713)  Sylys) =D e MmCT0G 6 )e P, + D dyem Mg,

n#l n=0

(7.14) S3(y, s) == /5 e A f(u(y, 1))dr.

S1

Lemma 7.4. For any v € (0,1), there exist s; > 1 and K > K such that
|Sa(y, s)] < ve P (y?* 7t 4y,
if Ke ™ <y <e’ and s, <s<s, +1, where o € (0,5).

Proof. Given any v € (0,1). Note that Sy(y, s) satisfies
1 b
(52)s = (S2)py = 5u(S2)y + @S2 = 255

Set Sy(y, s) = y** 1V (y,s). We have

22a-1) y

%Z%ﬁ( 5

1
Jislr

Moreover, by setting V' = e~*/2V, we obtain that
S — 22a—1) y\ =
V,= Vyy -+ <T — 5) Vy.
From Proposition 6.1 of [1], it follows that
— exp (4o —3)(s —s1)/4) [~ e~ (5750 2y
V) = e AV )

1 — e (s=s1)

2o—(s—s1) 2\
A= )/2y=(40=3)/2 oy s (_y © tr ) V(r, s1)dr,
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where [,(z) is the modified Bessel function of order p and ¢, is a positive constant

depending on «. Hence

4o —1)(s — s1)/4)
(7.15) Sy(y, 5) = Cy**~ 1exp (( fé_e >(Essl 51)/4) / H(r,y;s — s1)r?vodr,

where vg(y, s1) := v(y, 1) — efﬁsl@l, ¢1)¢i(y) and

(s—s1)/ 2 ,—(s—s1) 2
e o € Ty _ye 177 (4a-3)/2
(716) H(T7y7 S Sl) T I(4a—3)/2 <2(1 _ 6_(8_81))> eXp( 4(1 _ 6_(5_81))>y :

Since

Czte?
(1 + Z);H—l/Q’

[7u(2)] <

from (7.15) we have for s < s <s; +1

153 Y s — s Puoldr =

2(y, s)| < = /0 T(r,y;s — s1)r/?|vo|dr := Sa1 + Sa2,

where
Soq 1= % /OK8531 T(r,y;s — 31)r1/2|v0|d7”,
Soaim 1l [ Tl s Pl
s - o) im A2 )

(1+ e (=s/2py/2(1 — e=(5=s1)))

coxp [ — lye” 02 — PN
P 4(1 — e~(s—51)) y '

Firstly, we consider Sy ;. Using (V1) and (6.10), for s; > 1 we have
(7.17) lvo(y, 51)| < CK? 29851 for 4 e [0, Ke 5],
From (7.17), we have

CK2a672aﬁsly2a71
1 — e (s=s1)

Ke P51
So1(y,s) < / T(r,y;s — s)r'/2dr.
0
For y > Ke P and r < Ke P51, we have (using s; < s <51+ 1)
ye_(s_sl)/2 —r>r if K> 2K P12,

Hence we obtain

C}:{'Qa —2as1 Reiﬂsl T2
So1(y,s) < (1= e—G—n)1/2 /0 exp <_4(1 — e(ssl))> dr.
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Set t =7/(1 — e~ =5)1/2_ We then have

] 2
So1(y,s) < C’KQO‘e_Qaﬁsl/ exp (—tz) dt
0

C}?Zaef2aﬁsly2a71(K67ﬁs)72a+1
< Ve*ﬁsy%‘*l if K> K.

IN

Secondly, we consider S34(y, s). From Lemma 7.3, (4.5) and (4.6), for the given v €
(0,1) there exists s; > 1 such that

(7.18) lo(y, s1)| < ve 1 (g2t 4 y?N)  for Ke ™™ <y < 71,
Moreover, it also holds

(7.19) lvo(y, s1)| < Cy*M  for y > e,

From (7.18) and (7.19), for s; > 1 we can estimate S5 by

5272 S 5%72 + 522’2 + 5372,

where
1 2 N 1/242A
Yy o l
3272 N 1 — g (s—s1) /6551 T(T7 Y, s 81)’/“ d?“,
CreBsiq2a-1 oo
5222 _ e v / T(r,y;s — 51)T2a—1/2(1 + Tz/\lfzourl)dr,
; 1 — e (s—s1) age—(o—o1)/2
OI/Q*IBSI 2a—1 2yef(5*31)/2
532 = %/‘ T(?",y) s — 51)7,,20171/2(1 + T2/\172a+1)dr.
’ 1—e 1 0
Since

r—ye (5Ts/2 > r(1— 6_81(&_0)) >r/2 ifr>e® y <e’ and s, > 1,

we have

CyQa—l o r (4a—3)/2 r2
1 . 1/242)
S0 S T / 2(1— e 1) P\ e ey )

Cy2a—1 6—62551/32 /oo r (4a—3)/2
1 —e(s=s1) o1 \2(1 — e~(s—s1))

r? .
) . /242X
exp ( 5201 = e(ssl)))r dr.

Set t =7/(1 — e (=s)1/2, Then

IN

IN

oo
_ _ 26s _ _ 42
52172 CyQOz 1o Ce 1/ t2a+2>\l 1o t/32dt
0

< pePsyPal if s > 1.
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For 53 ,, since

r— ye_(s—sl)/2 >r/2 ifr> 2y6_(8_51)/2,

’ B 1 - 67(3751) 2y67<5751)/2 2(1 - 67(5781))

—r’ 20—1
) a—1/2 20 —204+1
exp <16(1 _6(881)))7“ (1+r )dr.

we have

Set t =7/(1 —e~(*7*V)!/2. Then
52272 < CyefﬁslyQafl /OO t4a—267t2/16(1 +t2)\172a+1)dt
0
< Cve Pyt if s> 1
Finally, since

67(5751)/27“]4 >7r?/2 ifr < 2ye~(5=51)/2,

we have

@ - CveBsiqy2a—1 2ye~(s751)/2 r (4a—3)/2 2 1-2a
22 = l—e ) [ 2(1 — e~(s=s1)) 4(1 — e~(s=s1))

ye~(o0/2 — |2 2a-1/2 20 —2a+1
- exp (— 10— ) r (I+r )dr

Cye—ﬂslyZa—l _— o0 |ye—(s—sl)/2 _ 7“’2
1—2a+1 _
S T etyEt+Y )/0 P\ T ey )W

< C’l/e’ﬂ‘“(yza’1 + 92 if s> 1.

This completes the proof.

Lemma 7.5. For any v € (0,1), there ezist s; > 1 such that
[S3(y, s)| < we™®(y* 7 +y*),
if Ke™ <y <e’ and sy <s<s +1, where o € (AN —a)/(2\ — 2a +1),5).
Proof. Let Z(y,s) = e~ A6~ f(v(y, 7)), 81 < T < 5. Then
Yy b
Zy==AZ =2y~ 52, = 52 +0Z

Following the same reasoning as in the proof of Lemma 7.4, we have

2(y.5) = €yt SR =D 2D % gy = ol

1—e (s—7)




20 JONG-SHENQ GUO AND CHIN-CHIN WU

where H is defined in (7.16). Therefore, we obtain
da—1)(s—1)/4
Salys) = gt [FORELZ DO % i — oy ot

1 —e(5=7)

Thus

901 [ 1 > e~ 2y et
[95(y,5)l = Cy / (1_6<H>)<4a1)/2/0 (Hm)

—(s—=7)/2 _ |2
- exp (— lye r| )7’20‘_1|f(v(7“, 7))|drdr

4(1 — e=(s=7)
< S31+ 532+ S33,

s Le BT —2a+1
Cr
Saq = CyQal/ (s — 7_>2a+1/2/ <1 4 ) )
st 0 §—T

—(s—7)/2 _ .12
- exp (_C|ye 7] ) 7“20‘_1|f(v(7", 7))|drdr,

S —T

s e’T O —2a+1
Sao 1= Cy2a—1/ (s — 7_)—2a+1/2/ (1 i Ty >
s1 Le—B1 S —T

—(s—7)/2 _ .12
- exp (_C|ye 7] ) r2“’1|f(v(r, 7)) |drdr,

S —T

S o0 CT‘ 720{4’1
Ssg = C’y2a_1/ (s — T)_20‘+1/2/ (1 + . yT>
S1 eoT -

—(s—7)/2 _ .12
- exp (_C|ye 7] ) r2o‘_1|f(v(r, 7)) |drdr,

S—T

where

by using (s —7)/e <1 —e ") < (s —7) for s — 7 € [0,1]. Here 1 < L < K.

I. Estimate of Ss;. By the same way of estimating (7.3), we have

5371 < C«L2ae—2aﬁsly2a—l/ (S—T)_2a+1/2

S1

Le=P7 —(s=7)/2 _ |2
/ exp (_C]ye rl >r2°‘_3drd7'.
0 S —T

Since y > Ke P and r < Le "7, we get

—(s=7m)/2 _ p|2 a2 1 g2
T

S — S —T

Set u = /(s — 7)'/2. Then we obtain

® 2 Le=PT/V/s=7 2
5'371 < CL2a€—2o¢ﬁsly2a—1 / (S . T)—a—l/Qe—Cy /(s=T) / e—Cu u20‘_3dud7'.

S1 0
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Set t = y?/(s — 7). Then

53’1 §C’L2a6_2o"881y20‘_1/ 7504—3/2e—clty—2o¢+1/ e*C“2uza*3dudt.
y?/(s—s1) 0

Since y > Ke %, we obtain that

5371 < CL2a6—2a,881y2a—1(Ke—ﬁs)—Qa—l—l < Ve—,@s1y2a—1 if K > L.

II. Estimate of Ss,. From (7.4), (7.5) and Proposition 6.1, we have S35 < S5, + 53,

where
s e’T C —2a+1
S§2 — 6—2551y2a—1/ (s — T)2a+1/2/ (1 i ry )
’ s1 Le—B87 S—=T

(s=7)/2 _ 2
- exp (_C]ye rl ) rio S drdr,

S —T

s e’T CT’y —2a+1
ng — 062ﬂ81y2a1/ (S . 7_)2oz+1/2/v (1 + )
7 s1 Le=B7 §—T
—(s—7)/2 _ |2
e r
exp (—C L | ) r N3 drdr.
1 1,2

Firstly, we consider S3,. Note that S5, < 5’3”21 + 537, where

s 4y CT —2a+1
S§21 — 062631y2a1/ (5 . 7_)2a+1/2/ (1 + Yy )
s1 Le—B87 §—T

—(s=7)/2 _ |12
- exp (_C|ye rl ) rioSdrdr,

S —T

S —T
s ) C —2a+1
S;g = C’e‘QﬂslyQ"‘_l/ (s — 7')_2a+1/2/ (1 + Y )
’ 51 4y S—T
—(s—7)/2 _ ,.|12
- exp (—C |y6 T| ) 7’4a75d7’d7—.
sS—T

Consider S§21 Since ry > r?/4, if r < 4y, we have

. s 4y Or? —2a+1
83:2 S Ce—QﬁslyQa—l/ (8_7_)—2()6+1/2/ <1+ )

s1 Le—B8T S—T

—(s—7)/2 _ |2
- exp (_C|ye rl ) rio=drdr.

S —T

Set u =r/(s — 7)/2. Then

1 s dy/Vs—T
53:2 < 08—2551y2a—1/ (S—T)_3/2/ <1+Cu2)—2a+1

5 (Le=87)/\/5=7
- exp (—C

ye—(s—T)/Q

=

—Uu

2
) u** P dudr.
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. 1.1 .. ..
To estimate S5y, we divide it into two cases and define

D Le—,BT 4y ye —(s—7)/2 ye —(s—7)/2
b { L/S—T \/8—7’:| Vs—T T 2y/s—T }
*(S*T)/2
ye

Since

ye —(s—7)/2
- 2\/5—7' }
ye—(s—f)/Z

2
/ (1 —+ CU2>_2a+1 exp <—C ? > u4°‘75du
D; S —T

W )
< / e—Cy /(s—‘r)u4oz—5du < Ce—Cy /(s—‘r)(y2/(8 . 7_))201—2
0

—Uu

Y

by setting t = y?/(s — 7), we have

Sé:zl,l — C€2ley2a1/ 3/2/ 1+ C'u —2a+1
Dy

2
- exp (—C’ ) u** S dudr

ye~(5=7)/2

i

—Uu

< Ce—2ﬂsly2a—2 /OO t2a—5/26—0tdt
0

S Ce—QﬁslyQ(x—l(KG—ﬂs)—l

< pe Pyt it K> 1.

Moreover, for any a € (0,1/8), we have

2
/ (14 Cu*)**exp <—C’ > u'* P du
Do

S/ u4a73+a(1+Cu2>f2a+3/2fa/2(1+Cu2)71/2+a/2u727adu
Do

yef(sff)/2
Y —u

S —T

< / uf2fadu < Cyflfa(s _ 7_)1/2+a/27
Do

since

ye—(s—T)/2 _ 3y€—(s—7')/2
Uu

— A if u € Ds.
o057 = ofs—r TR
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Hence, by noting that K € (ef51/8 ef51/2),

531:21,2 = C«g—?,@sly?a—l/ (S—T)_3/2/ (1+C«u2)—2a+1

S1 D2
—(s=7)/2
- exp (—C ye

N

—Uu

2
) u** P dudr

s

S Ce—Q,@slyQa—ly—l—a/ (S o 7_)—1—|—a/2d7_
S1

S Ce—QﬁslyQa—l(Ke—ﬂs)—l—a

< l/e_ﬂslyzo‘_l if s> 1.

We conclude that

S;ZI < V@’ﬂslym’1 if s> 1.

. 1.2 .
Consider S3’5. Since

‘ye_(S—T)/2 . ,r.l2 Z y26_1 + T2/2 lf r Z 4y7

we have
S?}:22 < Cre—QﬂslyQa—l/ (8 . 7_)—2a+1/2/ e—Cy2/(S—T)G—CT2/(S—T)T4Q—5drdT'
S1 4y
Set u =r/(s — 7)/2. Then
s 00
S;,% < Ce—QﬁslyQQ—l/ (S . 7_)—3/2/> G_CyQ/(S_T)G_CuQu4a_5dU,d7'.
7 s1 dy/\/s—T

Set t = y?/(s — 7). Then we get

S;; < Ce2ﬂsly2a1y1/ t—1/2e—Ct/ e‘cu2u4o‘_5dudt
y?/(s—s1) i

< CerPyerl(Ke ™)t SwerPryett K > 1L

Secondly, we consider S3,. Note that S5, < S§21 + Sg; , where

s 4y o —2a+1
S§21 — C€—2ﬂsly2a—1/ (s — 7_)—204+1/2/ 5 (1 i - Z/T)
Le—PT -

S1

—(s—7)/2 _ |2
- exp —O |ye T| ) T4/\l_3d7’d7',
S—T
s %) C —2a+1
S§22 = C’ezﬁsly%‘l/ (s — 7)2‘”1/2/ <1 + Y )
) 51 4y S—T

—(s=7)/2 _ |2
- exp (_Olye rl > r* M3 drdr.

S—T
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Consider Sg% Since ry > r?/4, if r < 4y, we have

. s 4y 2 —2a+1
53:2 < CeQﬁslyZal/ (8_7_>2a+1/2/ <1+ )
BT

s1 Le— S—T

—(s—7)/2 _ |2
- exp (_C|ye Tl ) N3 drdr.

S —T

Set u =r/(s — 7)/2. Then we have

s
S§:21 < C€2ley2a1/ (8_7_>2)\172a71/2

S1

/43//«/37‘ ( | (s T)/2 |2> e der 1
. exp —u|® | uT T dudT
Le=B7/\/s—T VS —T

IA

s 4N —4do
Ce*%’slym*l / (8 . 7_)2,\1720471/2 4y : dr
51 VS—T

Ce—2ﬂsly4)\l—2a—1 < C«e—,@sl y2)\l (67,85160'(2&720171)3)

IN

< e PPN if 51> 1.
Consider 3323 . Since
‘ye_(S_T)/2 | >yfe 4?2 ifr > 4y,

we have

‘5'3:22 S Ce2ﬁs1y2al/
s

1

s

(S o 7_)72a+1/2 /'00 efcyQ/(sz)efCTQ/(sz)rll)\l*?)drdTi
4y

Set u =r/y/s — 7. Then

s
S§7722 < Ce?ﬂslyZOzl/ (S_T)2A12a1/260y2/(s7')/ 670u2u4/\173dud7
s1 dy/\/s—T

< Ceparl < pe el g s,

ITI. Estimate of S33. From (7.6), we have

s %) C —2a+1
Sss < Cyza—l/ (3—7)_2a+1/2/ (1+S_WT)

1

(s=1)/2 _ 2
- exp (_C|ye rl ) rio=3drdr.
T

S —

To estimate S 3, we divide it into two cases: y < e?®/4 and y > €7°/4.
Case 1: y < ¢e?®/4. Since

—(s—7)/2 _ |2 o
exp (_C‘ye T| > < 6_062 efCrQ/(sz) if r > e and y < 605/4,
S —T
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we have

s —

Sg , < Cy2a—1 / (S . T)—2a+1/2/ 6—062‘”6—07’2/(5—7)7,,4(1—3de7_'

1

Set u = r/y/s — 7. Then we get

5 00
51373 < Cy2a—1 / (S _ 7_)—1/2/ 6—062076—0u2u4a—3dud7_
s1 €oT /\/s—T

< C,6_062t781y2a—1 < yefﬁé’ly?o‘*l if 51> 1.

Case 2: y > ¢°°/4. Note that Ss33 = Sz + S35, where

s 4y C —2a+1
S§,3 — CyQa—l/ (s — 7_)—2a+1/2/ (1 I - ij)
s1 eoT

—(s—7)/2 _ |12
- exp <—C’|y€ rl > ri*=3drdr,

S—T

s [e'9) C —2a+1
Sig — CyZa—l/ (s — 7_)—2a+1/2/ (1 n Ty )
s 4y §—T

—(s—7)/2 _ .12
- exp <—C|y€ r| > r4o=3drdr.

S —T

Consider S3 4. Since ry > r?/4, if r < 4y, we have

s 4y CT2 —2a+1
Sg{,g < C’y2al/ (s — 7')2a+1/2/ <1 + ) rio=3drdr.

S1 eoT S — T

Set u =r/y/s — 7. Then we have

s 4y//s—T
5313 < CyQal/ (5—7’)_1/2/ utdudr

1 T s—T
s o -1 4y
< C 20‘_1/ s—71) V| —— —— ) dr
N y S1 ( ) VS —T VS —T
S CyQae—Usl
< C’e—ﬁsly2>\leﬁs1+a(—2>\l+2a—1)sl
< pe Py if 51> 1,

where the assumption o > (A, — ) /(2\, — 2ac + 1) is used.
Consider S3 5. Since

‘ye_(s_ﬂ/2 — 7“|2 >yfet +r2/2  ifr > 4y,
we have

53?73 < CyQa—l /S(S _ 7_)—2@—!—1/2 /OO G_CT2/<S_T)€_Cy2/(S_T)T4a_3d’f‘d7'.

1 4y
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Set u =r/y/s — 7. Then we get

s 0
S§,3 < Cy2a1/ (8—7')1/2/ e~y B qudr
s1 4y /\/s—T
S Cy2a—1 S Ce—,@sly2)\l6,851+cr(—2)\l+2a—1)sl

< pe Py if 51> 1,

where the assumption o > (A, — ) /(2\, — 2ac + 1) is used.
Putting together all the above estimates, the lemma is proved.

7.2. Long Time: sy > s + 1.

Since P(d; s1,s2) = 0, we have

dy = —e 1y, dp) — / " O £ (0(r), 6, )

S1

forn=0,1,--- 1l — 1. From (7.1) we may write

U(y7 S) = ]1(y7 S) + IQ(:% S) + ]3(y7 S) + ]4<y7 8)7

where
(7.20) I := e (o1, o),
(721) b= 3 e Mmlemng ge g,
n=I[l+1
(7.22) fim Y [ et o(r) )
n=0 v 51
-1 .,
(7.23) L= =Y [0 u(), )b
n=0 v 51

Notice that I3 = S3 and Sy, = I, + 1,.
Lemma 7.6. For any v € (0,1), there exists sy > 1 such that
Ly, s)| < ve (7! + ™)

forally >0 and s;1+1 < s < s9.
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Proof. From (4.5), (4.6) and (7.11), we get
L] < O 4y / o~ Onma)(s—) g~ (B+)r g

S1

= Ce Py +y™) / " Ao g

S1

IN

Ce—ﬁs(yQa—l + y2)\l)e—551
< yefﬁs(yZafl + y2)\l) if s1 > 1’

for any y > 0 and s € [s1 + 1, s9]. O

From now on, we shall fix R > 1.

Lemma 7.7. For any v € (0,1), there exists s; > 1 such that
La(y, 5)| < ve Pyt
for Ke™#* <y<Rand s +1<s<ss.
Proof. Fix s > s;+1. Since ¢; — ¢, in Lf) as §1 — 00, ]((51, ®n)| — 0 as s; — oo uniformly

on n for n > 14 1. Moreover, we have e~ (A=) (s=s1)g=fs1 — o=Ose=(An=A)(s=51)  Hence for
a given v € (0,1) there exists s; > 1 such that

o0

Ly, s)l <ve ™ 3 e D]g, .

n=I[l+1
Since [ |on(W)|?p(y)dy = 1 and ¢, (y) = c,y** T M (—n, 20 — 1/2; 42 /4), we have
0

e 240—2/ 2732678 (M (—n, 20 — 1/2; €))2dE = 1.
0

Making use of

/xt_le_x(M(—n,d;f))de
0
we have

/OOO 520[73/2675(]\/[(—77,, Q00 — 1/2; 5))2(15 — [F(Qa — 1/2)]2F(n + 1)

T(20+n —1/2)

Hence

. ['(2a+n—1/2)
"7 2020 — 1/2)PT(n + 1)’

—x

Since we know that I'(z) ~ 2me 727 1/2

(F(2a+n —1/2)
F(n+1)

T as r — 00, we get

1/2
) ~ Cn® 3% for n>> 1.

Thus
(7.24) o~ Cno3% forn > 1.
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Moreover, since
2

M(—n,2a —1/2; yz)
=720 (20 — 1/2)e"" (o 4+ n — 1/4)y?/4]/>~

(\/4a+4n—1
- COS —y

uniformly for y € [0, R], there exits a positive constant C' = C'(R) such that

y—(a— 1/2)7T> (I+0(1)) asn— o0

(7.25) |M(—n, 20 — 1/2;%/4)| < Cn**= for y € [0, R] and n > 1.
From (7.24) and (7.25), we obtain
(7.26) |pn| < Cy**~In~Y* for y € [0, R] and n > 1.
Since
Z e "n M < 0,
n=[+1

it follows that there exists s; > 1 such that
Ly, s)| < we Pyt

This proves the lemma.

Lemma 7.8. For any v € (0,1), there exists sy > 1 such that
[Is(y. s)| < ve ™ (y*=! +y*)

for Ke™?* <y<Rand s +1<s<ss.

Proof. Given any v € (0,1), note that I3 = I3, + I35, where

-1
=Y / e~ £(0(7)), ) budlr,
n=1 Y91

b= [ e P w(r), 0,)ndr
n=l Y51

By the same reasoning as the proof of Lemma 7.6, it follows immediately that
1I31] < ve Pyl 42N i g > 1L

We write I3y = I3, + I3,, where

=Y / e~ On=06=D( F(0(1)), b} buclr,
n=l s—1

e s—1
o= Y [ e (), o)
n=l v 91
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Since
-1

By = [ e smar =3 [ e fu(n). o.)oudr

n=0

by the same arguments as the proofs of Lemma 7.5 and the estimate of I3, we get
]3172 <wve P (2ot 4PN if s > 1L
For I3,, we have

s—1 0
I, = / e PN " e O MET(f(0(7)), b dudl .
1 n=l

Thus

s—1 /2 / 5\ 1/2
‘[??72’ S / (s—7) (Z 6_2 A=) (s—7 ‘¢n’ )\2) <Z ‘<f(’l]<7;\>2), ¢n>‘ > dr.
s1 n=l n

From (7.26), we have for n > 1 and 7 € [s1,s — 1]
672()\71*)\1)(87T) ’¢n’2)\i < Cef2nn3/2y4a72_
Since Y07, e"2"n?? < 0o, we obtain

~ 1/2
(Z 6—2()\n—/\l)(5—7') |¢n|2)\72—b) S CyZa—l‘

n=l

Moreover, from (7.26)

0o 5\ 1/2
(Z [ (o ,A%)>,¢n>r )

Z| n)|
o o(r,7))||dnle” Adr
Zf )| n]

n

VAN

VAN

n—1/4

- sz/ 1l )t

< C / |Fu(r, 7)) 2 e dr,
0

since Y7, n~%/* < co. Hence we have

s—1 oo
(7.27) ]13272\ < Cy%‘l/ eﬁ(sﬂ/ | f(v(r, T))\?“Qa’le”g/‘ldrdr.

S1 0

From Lemma 7.2, we have the estimate

/ Pl ) ey < Ty + Ty + Jy,
0

29
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Ke=f7
_ _a .2
Jl — CK2a€ 2a,8'r/ 7,2a 36 r /4d7”,
0

e
J2 = 06_2’67—/
Ke 87

oT

_ Y 1 2
(,{,204 4_|_7,4)\l 2a 2)?,,204 16 r /4d7°,

o
J3 = 06_267/ o3 /gy,
€

oT

By a similar argument to the proof of Lemma 7.3, we have

/ |fo(r, 7)) |r2e e Adr < 777 if s> 1.
0

Plugging into (7.27), we obtain

This proves the lemma.

I? < wve PPl ifs > 1.
3,2 Yy

Lemma 7.9. For any v € (0,1), there exists s; > 1 such that

|L(y, s)| < ve P (y** 4 y*)

forye {Ke P <y<e}n{y>es )2} ands; +1 <5< sy.

Proof. Since I, = S — I, by Lemma 7.6, we only need to estimate .S,.
From (7.17), (7.18) and (7.19), we could easily find that for a given v € (0,1) there

exists s; > 1 such that

(7.28) [vo(y, s1)] < vem (T M) i KeT™ <y < e
(7.29) lvo(y,s1)| < CK?e™2*1  if y < Ke P,
(7.30) wo(y s1)l < Oy ify > e
Moreover, from (7.15) and Lemma 7.2, we have |Sy| < S3 + 57 + S35, where
Ke=8s1
521 — CK2a672a,331y1/26(4a71)(8731)/4 / T’I/Zd'f’,
0
S2.:= Qe PonyPalelsms)/2 / e (1 + Ce(5751)/2py) 2041
Ke P51

_eXp(_C|y€7(stl)/2 _ T‘2>T2a71(r2a71 + 7“2)‘l)d7“,

823 — Cy2a1€(ssl)/2/

o0

eos

p2hit2e—l exp(—C]ye*(S*ﬁ)/2 — r]Q)dr.

First, for S, since y > e*=51)/2 and K € (e%1/%,¢7%1/2), we have

2
< ve Py

2

Sl < Ce—ﬁsyQ)\l {K2ae—2a581y—2)\l+1/26,@s€(4a—1)(5—51)/4(Ke—ﬁsl )3/2}7

if S1 > 1.
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Next, we consider S3. Define
Dyi= (e = r] < /), Dyi= (lge e o] 2 /2,
and write S3 = Sy' + S5, where
Sat= C’l/e_ﬁslym_le(s_sl)/z/ (14 Ce(5751)/2py)—2a+1
Dy
-exp(—C’|ye_(s_Sl)/2 — r|?)r2emt(p2omt 22 dr,
522 . Cyeﬁsly2a—1e(s—sl)/2/ (1 4+ Ce—(=sD/2p)~20+1
D2
exp(—Clye™ (/2 p )t (2t g2y,
Since e~ (75U 2py > 12 /2 if |ye=(751)/2 — | < /2. We get

Sg,l < Cye—ﬁsly2a—16(3—51)/2/ eXp(_C‘ye—(s—sl)/2 . T|2)(1 + 7"2>\l_2a+1)d7"
Dy

< Cue—,@s1y2a—1€(s—51)/2[1 + (ye—(s—sl)/Q)Q)\l—Qa—i—l]
< Clje—ﬂsy%\l{e(ﬂ—k%)(s—sl)[y—Q)\l—i-Zoa—l + 6—(2)\1—204-&—1)(5—51)/2}}
< Cl/e_ﬁsy”‘l.

Moreover, we get

522,2 < Cyefﬁsly2afle(8781)/2 / eXp<_Cr2)r2afl<r2a71 + 7’2/\l)d7’
Do

Cl/e_ﬂsyz’\l [6(ﬁ+1/2)(s—51)y—2)\l+20¢—1]

IN

< Cre Py,

Finally, we consider S3. Since r — ye=*=51)/2 > Or if r > €% and y < €”*, we have

S5

IN

Cy2otels=s1)/2 /oo r2At2e=l oy (—Cr?)dr,

eos

— _ _ 20s
Cy2a le(s 51)/26 Ce?7%1

IN

Y

< ve Py if 5> 1.

This completes the proof of the lemma.

Lemma 7.10. For any v € (0, 1), there exists sy > 1 such that
[I3(y, )| < ve Pyt

forye {Ke ™ <y <e}n{y>el=9/2} and s +1 < 5 < s5.

Proof. By Lemma 7.5, we only need to prove that

|B(y, s)| < ve Py,

31
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where

Bly.s) = / A oy, 7))

S1

Following the same argument as the proof of Lemma 7.5, we have

s—1 1)
|B(y,s)] < C’y2°‘1/ e(ST)/2/ (14 Ce=(6=)/2py) 2041

51 0
cexp (=Clye” =72 —r2)r2* Y f(u(r, 7)) |drdr

= L+ + 15

where

s—1 Ke BT
[1 — Cy2a1/ e(s—7)/2/ (1 +C€_(S_T)/2Ty)_2a+1
0

S1

- exp (—C’\ye_(s_T)/2 — 7’]2)7’2“_1\]”(1))|drd7,

w

oT

s—1 e
Ig — Cyzal/ 6(37)/2/ (1 _i_Cef(sf‘r)/er)fQoﬁl
S1

Ke—07
cexp (—=Clye=C=7/2 — )27 £ (v)|drdr,

s—1 %)
Ig) — C«y2a—1/ 6(8—7’)/2/ (1 +C€_(S_T)/2Ty)_2a+1

S1 eoT

cexp (—Clye™ =72 —r|2)p21 £ (v)|drdr.

Consider I1. From (7.3) we have

s—1 Ke A7
[?} < CKQae—QaﬁslyZa—l / e(s—‘r)/Q / T2a_3d’f’d7'
S1 0
s—1
_ CK2a672aﬂsly2afl / 6(377)/2<K67ﬁ7)2a72d7

1

IN

s—1
OK4a—2€—2a,631 y2a—1€s/2 / e—(1/2+,3(2a—2))7—d7_

S1

IA

CefﬂsyQ)\L {K4a72y72/\l+2a71e(ﬁ+1/2)s67(2a,3+ﬂ(2a72)+1/2)51}
< Ve*ﬁsyz’\l if s;>1andy > e(s—s1)/2,

Consider I3. From (7.4) and (7.5) we get 12 < I3' + I3”, where

s—1 e
]g’l = Cy2al/ 62576(37)/2/ (1 +Ce—(s—r)/2ry)—2a+1

s1 Ke—B7

cexp (—Clye™ /2 — r|))rie=Sdrdr,

oT

s—1 e
[§’2 = CyQOfl/ 62676(87)/2/ (1+ C'e_(s_T)/27’y)‘2a+1

s1 Ke=B7
cexp (—Clye” =72 — ¢4 N =3drdr,
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Firstly, we consider Ig’l. Define

l)1 — {‘yef(sfﬂ')/Z o 7,.’ < 7./2}, D2 = {|ye*(87‘r)/2 . 7a| > 7,,/2}7

L2 21,1 | 2
and write I3 = I3 + I3

s—1
[g,l,l = Cy2a—1/ 6—2ﬁ76(8—7)/2/ (1+06—(s—7)/2ry)—2a+1
S1 Dl

- exp (—C’|y6_(8_7)/2 — r[)rtSdrdr,
s—1
]5,1,2 — Cy2a—1/ 6—2ﬂ7—6(s—7—)/2/ (1 + C«e—(s—'r)/Q,ry)—QoH—l
S1 D2
- exp (—C’|y6_(s_7)/2 — r)r* S drdr.

7172
, where

Consider I;"'. If 7 € D;, we have
r/2 < ye (772 < 32,
Hence

s—1
I§,1,1 < CyZal/ 6257-6(87)/2/ 7"73de7'

S1 Dl

s—1
< CyQa—l/ 6—2,876(3—7)/2(y6—(s—7—)/2)—2d7_
S1
s—1
< C«yQa—fi/ 6—2,87'63(3—7)/2d7_
S1
< Cefﬁsy%\l [y72)\l+2a736(ﬁ+3/2)s67(26+3/2)31]
< wve Py if 5> 1 and y > el5)/2,

2,1,2
For I3*, we have

s—1
15,1,2 < Cy2a1/ 62576(37)/2/ 670r27,4a75d7,d7_

S1 D2

IN

s—1
Cy2a—1 / 6—2676(5—7')/2d7_

S1

IN

CefﬁsyQ/\l (y*2>\l+20¢*1e(6+1/2)3€(*2ﬁ+1/2)81)
< Ve*ﬁsy”‘l if s;>1andy> e(s—s1)/2,

: 2,2 o122 7221 | 7222
Secondly, we consider I3 and as before we write I3* = 1377 + I3, where

s—1
[§,2,1 — Cy2a1/ €2ﬁ7'e(s7')/2/ (1+Cef(sfﬂ-)/2ry)72a+1

81 Dl
- exp (—C’|ye_(5_7)/2 — r|)r*N3drdr,
s—1
13272,2 — Oy2a—l/ 62BT€(ST)/2/ (1 + 067(577)/2ry)72a+1
S1 D2
- exp (—C’|ye_(5_7)/2 - r|2)r4)‘_3drd7.

33
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2,2,1 . 2,2,1 .
For I5%", by the same reasoning as the case of 15", we obtain

2,2,1
I3

IN

s—1
C«y4>\l—2a—1 / 6—2,87-6—(2)\1—204—1/2)(5—7') dr

S1

IA

Cef,@syZ)\l (y2)\l72a716(7)\l+a+1/2)36751/2)
< wve PPN if s3> 1 and y < e%°.
For ]§’2’2, by the same reasoning as the case of ]§’1’2, we also get
15,2,2

< ve Py if s;>> 1and y > elm)/2,

Now, we consider Ig’. Since r — ye*(S*T)/2 >Crifr>e,y<eand7 <s—1,1it

follows from (7.6) that

I3

IN

s—1 [
va2a—1/ e(s—7)/2/ e—CT2T4a—3drdT

s1 eoT

IA

s—1
06—062‘751 y2oz—1 / e(s—T)/ZdT

S1

C’e*ﬁsyQ’\’ 67062"51 (y72/\l+2a71e(ﬁ+1/2)sefs1/2)

IN

< Ve—ﬁsy% if sy>1andy> els=51)/2,

This proves the lemma.

Proof of Proposition 6.3: By Lemmas 7.4 and 7.5, it suffices to consider the case when
sy > s1 + 1. Fix §; such that s; +1 < §, < s9. Let R = e(®1751)/2 Set

Uo(y,S) = U(yas)_eiﬁs<$la¢l>¢l-

Note that vo(y, s) = S2(y, s) + S5(y, s) = Lx(y,s) + I3(y,s) + I4(y, s). We easily see that
(7.29) and (7.30) are true if s; is replaced by s for any s € [sq,s2]. Moreover, from
Lemmas 7.6, 7.7 and 7.8, we have

(7.31) lvo(y, s)| < we P (y** ! 4 y™)
for Ke ™ <y <R, s € [s;+1,5,); and from Lemmas 7.6, 7.9 and 7.10, we have
(7.32) lvo(y, 5)| < we P (y** ! 4 ™)

for R <y < e, s € [sy+1,5]. Hence (7.28) is true if s; is replaced by s for any
s € [s1, 5]
Let s € [1,5; +2logR]. If R <y < ¢°°, then we have y > e*~51)/2_ Hence, by the

same arguments as Lemmas 7.6, 7.9 and 7.10, we have

(7.33) L (y, s)| + | Is(y, s)| + [ Lu(y, s)| < ve P (y* ' + )
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for R<y<e’and s;+1< s <35 +2log R. Moreover, by the same arguments as those
of Lemmas 7.4 and 7.5, we obtain

(7.34) [S2(y, s)| + [S3(y, s)| < ve ™ (y** 7! +y*Y)

for Ke P <y < e’ and §; < s < 5, + 1. From (7.33) and (7.34), we have

(7.35) |La(y, )| + L5y, s)| + | La(y, s)| < ve™ P (y** 7! +y*Y)

for R <y < e and §; < s < 51 + 2log R. Continuing to set s = §; + 2log R,
53 = 59+ 2log R, ---, and following the same argument as above, we have

(7.36) Ly, )| + | Ls(y, s)] + | 1a(y, 8)| < ve (>t +y*Y)

for R<y <e? and §; < s < so.
Combining (7.31), (7.32) and (7.36), with the help of Lemmas 7.4 and 7.5, we have

(7.37) v(y, s) — ey, i) n| < ve P (P + M)

for Ke % <y < e’ and s; < s < s,. Since (qgl,gbl) — 1 as s1 — 00, we get
0(y, s) — e P hi| < 2wem P (P 4 y?N)

for Ke P <y < e’ and s; < s < so. Hence we have proved Proposition 6.3.
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