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Abstract. We study traveling wave solutions for a lattice dynamical system with con-
volution type nonlinearity. We consider the monostable case and discuss the asymptotic
behaviors, monotonicity and uniqueness of traveling wave. First, we characterize the as-
ymptotic behavior of wave profile at both wave tails. Next, we prove that any wave profile
is strictly decreasing. Finally, we prove the uniqueness (up to translation) of wave profile
for each given admissible wave speed.

1. Introduction

In this paper, we study the following lattice dynamical system (LDS) of convolution type:

(1.1) u′
j = D(uj+1 + uj−1 − 2uj)− duj +

∑
i∈Z

J(i)b(uj−i), j ∈ Z,

where uj = uj(t), D, d > 0,

J(i) = J(−i) ≥ 0,
∑
i∈Z

J(i) = 1.

Hereafter the prime denotes the derivative with respect to the independent variable. In this

paper, we shall always assume that b is an increasing Lipschitz continuous function on [0, 1]

such that

(1.2) b(u) > du if 0 < u < 1, b(0) = b(1)− d = 0.

The system (1.1) can be thought as the spatial discrete version of the following nonlocal

partial differential equation:

(1.3) ut = uxx − du+ J ⋆ b(u), [J ⋆ b(u)](x, t) :=

∫ ∞

−∞
J(y)b(u(x− y, t))dy.

In ecology, u represents the population density, d is the death rate and the nonlinear function

b is the birth function of population density which is interacting with neighbors by the
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nonnegative weighted function J . When J is the Dirac function, the equation (1.3) is reduced

to the standard PDE:

(1.4) ut = uxx + f(u), f(u) := −du+ b(u).

On the other hand, when the habitat is divided into discrete regions and the population

density is measured at one point (e.g., center) in each region, then (1.3) is reduced to the

system (1.1) in which the index j stands for the jth site in spatial domain.

We are interested in the traveling wave solutions of (1.1). We say that {uj} is a traveling

wave solution of (1.1) with speed c if uj(t) = U(j− ct) for j ∈ Z and t ∈ R for some function

U (called wave profile). Then (c, U) satisfies the following equation

cU ′(x) +D2[U ](x)− dU(x) +
∑
i∈Z

J(i)b(U(x− i)) = 0, x ∈ R,

where

D2[U ](x) := D[U(x+ 1) + U(x− 1)− 2U(x)].

The spatial discrete version of the equation (1.4) has been studied very extensively for

more general function f (cf. e.g., [2, 5, 6, 7, 11, 12, 19, 20, 21]). A related equation of

convolution type is the following equation:

(1.5) vt = J ⋆ v − v + f(v)

with J compactly supported and satisfying

J(−x) = J(x) ≥ 0,

∫
R
J(y)dy = 1,

and f monostable. Schumacher [17] has derived the existence of traveling wave solution for

the equation (1.5). Here a solution v is a traveling wave solution with speed c if v(x, t) =

V (x − ct) for some (wave profile) V . Carr and Chmaj [3] have obtained the uniqueness of

traveling wave solution for (1.5). Moreover, the asymptotic behavior of traveling fronts and

entire solutions of (1.5) are studied by Lv [13]. See also the works by Coville and Dupaigne

[8, 9, 10]. For the same equation with bistable nonlinearity f , we refer the reader to [1]. We

also refer to [2, 14, 15] for the corresponding discrete lattice case.

In this paper, we shall only study (1.1) with short range interaction so that J(i) = 0 for

all |i| ≥ p with p = 3. Therefore, we shall study the following problem (P):

cU ′(x) +D2[U ](x)− dU(x) +
2∑

i=−2

J(i)b(U(x− i)) = 0, x ∈ R,(1.6)

U(−∞) = 1, U(+∞) = 0, 0 ≤ U(·) ≤ 1 on R,(1.7)

where J(i) = J(−i) ≥ 0 for i ∈ {0, 1, 2} and
∑2

i=−2 J(i) = 1.
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Let (c, U) be a solution of (1.6)-(1.7). By integrating (1.6) from −a to a with a ∈ (0,∞)

and letting a → ∞, we obtain that

c =

∫ ∞

−∞
[b(U(x))− dU(x)]dx > 0.

Moreover, we have 0 < U(x) < 1 for all x ∈ R. Indeed, if U(x0) = 0 for some x0 ∈ R, then
using (1.6) and U ≥ 0, by induction, we have U(x0 + n) = 0 for all n ∈ Z. This contradicts
the boundary condition U(−∞) = 1. Hence U > 0 in R. Similarly, we have U < 1 in R.

For the existence of traveling wave of (1.1), it is already well-studied in [16, 18] for more

general settings, including with time delay. In particular, under the assumptions

(H1) b is differentiable at 0 and 1 such that b′(1) < d < b′(0).

(H2) b is differentiable at 0 and there exist constants M > 0, α ∈ (0, 1] such that

b′(0)u−Mu1+α ≤ b(u) ≤ b′(0)u+Mu1+α, if u ∈ [0, 1],

by the result of [16] (see also [18]), we have

(i) There exists a positive constant cmin such that (P) admits a strictly decreasing solu-

tion if and only if c ≥ cmin. Moreover, if we assume the extra condition that

b(u) ≤ b′(0)u for all u ∈ [0, 1],

then we have cmin = c∗, where

c∗ := inf
r>0

1

r

[
D(er + e−r − 2)− d+ b′(0)

2∑
i=−2

J(i)eir

]
.

(ii) For each c > cmin, the traveling wave is unique (up to a translation) under the

additional condition

lim sup
x→∞

[U(x)e−Λ(c)x] < ∞,(1.8)

where Λ(c) be the larger (negative) root of the following characteristic equation

(1.9) Φ(λ; c) := cλ+D(eλ + e−λ − 2) + b′(0)
2∑

i=−2

J(i)eiλ − d = 0.

Indeed, the method of [16] is by investigating the asymptotic speed of propagation, and it

works also for the case of infinite range interaction. Note that we can follow a (direct) method

developed in [7] to derive the existence of solutions of (P) for any finite range interaction.

The main purpose of this paper is to investigate the asymptotic behavior of wave tails,

the monotonicity of wave profiles and the uniqueness without the assumption (1.8).

Now, we list the main theorems of this paper as follows.
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First, in order to study the asymptotic behavior of wave tails, we need to study the

following equation

(1.10) ar(x) +
2∑

i=−2

a|i| exp

[∫ x+i

x

r(y)dy

]
= 0,

where a ̸= 0, a2 > 0, a1 > 0, a0 ∈ R. By using a method of [7], we have

Theorem 1. Let a ̸= 0, a2 > 0, a1 > 0, a0 ∈ R, and

P (a, a2, a1, a0, λ) := λa+ a2e
2λ + a1e

λ + a0 + a1e
−λ + a2e

−2λ.

Then

(i) If P (a, a2, a1, a0, λ) = 0 has no roots, then (1.10) has no solutions.

(ii) If P (a, a2, a1, a0, λ) = 0 has only one root Λ∗, then (1.10) has only the trivial solution

r(·) ≡ Λ∗.

(iii) If P (a, a2, a1, a0, λ) = 0 has two real roots {Λ1,Λ2} with Λ1 < Λ2, then all solutions

of (1.10) are formed as

r(x) =
θΛ1e

Λ1x + (1− θ)Λ2e
Λ2x

θeΛ1x + (1− θ)eΛ2x
, θ ∈ [0, 1].

Next, the asymptotic behaviors of wave profiles near both tails are given as follows.

Theorem 2. Assume (H1) and let (c, U) be an arbitrary solution of (P). Then there exist

constants Λ = Λ(c), σ = σ(c) with Λ(c) < 0 < σ(c) such that

lim
x→∞

[U ′(x)/U(x)] = Λ(c), lim
x→−∞

[U ′(x)/(U(x)− 1)] = σ(c),

where Λ(c) is a root of the characteristic equation Φ(λ; c) = 0 defined in (1.9) and σ(c) be

the unique positive root of the following characteristic equation

(1.11) Ψ(σ; c) := cσ +D(eσ + e−σ − 2) + b′(1)
2∑

i=−2

J(i)eiσ − d = 0.

Note that Theorem 2 also implies that c ≥ c∗ for any solution (c, U) of (P). In particular,

we always have cmin ≥ c∗. With this asymptotic behavior, we can derive the monotonicity

of wave profile as follows.

Theorem 3. Assume (H1) and let (c, U) be an arbitrary solution of (P). Then U ′(x) < 0

for x ∈ R.

Moreover, combining this monotonicity property with an idea from [7], we can determine

the tail behavior at x = ∞ more precisely as follows.

Theorem 4. The limit Λ(c) in Theorem 2 is the larger (negative) root of the characteristic

equation Φ(λ; c) = 0 for c > cmin.



TRAVELING WAVE 5

Note that when c = c∗ there is the unique double root of Φ(λ; c) = 0.

Finally, we prove the following theorem by using an idea from [5].

Theorem 5. Assume (H1) and (H2). Let (c, U) be an arbitrary solution of (P) with c >

cmin. Then the limit limx→∞[U(x)e−Λ(c)x] exists and is (finite) positive, where Λ(c) is the

bigger root of the characteristic equation Φ(λ; c) = 0.

Combining this theorem with the (partial) uniqueness result of [16], we conclude that the

wave profile is unique (up to a translation) for each given admissible wave speed. Notice that

(1.8) is not needed in our uniqueness result. It is automatic satisfied for each wave profile.

We organize this paper as follows. First, some preliminaries and the proof of Theorem 1

are given in section 2. Then we study the asymptotic behavior of the tails of wave profile

in section 3. In section 4, we prove Theorem 3 (the monotonicity of wave profiles) and

Theorem 4. Finally, we derive the uniqueness of wave profiles in section 5. The main idea

and method of proofs of this paper are from [5, 7]. For the reader’s convenience, we provide

some details of proofs for completeness. But, due to the convolution term some difficulties

are presented. In particular, the proof of Proposition 2.3 is highly nontrivial comparing

with the case treated in [7]. We remark that our results can be extended to any finite range

interaction if the key proposition (Proposition 2.3 below) can be extended to general positive

integer p. We left it as an open question.

2. Preliminaries

In this section, we shall give some preliminaries for the asymptotic behavior of wave profiles

near both wave tails. Also, we shall give the proof of Theorem 1.

Lemma 2.1. Let (c, U) be a solution of (P). Then there exists a positive constant K such

that

sup
x∈R,|s|≤1

U(x+ s)

U(x)
+ sup

x∈R

| U ′(x) |
U(x)

≤ K.

Proof. Given a solution (c, U) of (P). Since

cU ′(x)− (2D + d)U(x) ≤ 0,

we obtain that U ′(x) ≤ µU(x) for µ ≥ (2D + d)/c. This implies that e−µxU(x) is a non-

increasing function. Therefore, we have

(2.1) U(x+ s) ≤ U(x)eµs ≤ U(x)eµ, if x ∈ R, 0 ≤ s ≤ 1.

So we obtain that

(2.2) sup
x∈R,0≤s≤1

U(x+ s)

U(x)
≤ eµ.
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Next, we focus on the case that x ∈ R and −1 ≤ s ≤ 0. By integrating (1.6) over [x, n],

we get

c[U(n)− U(x)] +D

∫ n

x

[U(y + 1) + U(y − 1)− 2U(y)]dy

+ d
2∑

i=−2

J(i)

∫ n

x

[U(y − i)− U(y)]dy +
2∑

i=−2

J(i)

∫ n

x

[b(U(y − i))− dU(y − i)]dy = 0.

Since J(i) = J(−i) and b(s) ≥ ds if s ∈ [0, 1], by taking n → ∞, we have

−cU(x)−D

∫ x+1

x

[U(y)− U(y − 1)]dy − d

2∑
i=1

J(i)

∫ x+i

x

[U(y)− U(y − i)]dy ≤ 0.

Since U ≥ 0, we have

cU(x) ≥ [D + dJ(1) + dJ(2)]

∫ x+1/2

x

U(y − 1)dy − [D + dJ(1) + dJ(2)]

∫ x+2

x

U(y)dy.

By (2.1), we have∫ x+1/2

x

U(y − 1)dy ≥
∫ x−1/2

x−1

U(x− 1/2)e−µ/2dy =
1

2
e−µ/2U(x− 1/2),∫ x+2

x

U(y)dy ≤
∫ x+2

x

U(x)e2µdy = 2e2µU(x).

Hence

cU(x) ≥ 1

2
e−µ/2[D + dJ(1) + dJ(2)]U(x− 1/2)− 2e2µ[D + dJ(1) + dJ(2)]U(x).

This implies that [U(x− 1/2)/U(x)] is bounded uniformly for x ∈ R. Combining with (2.2),

we conclude that

sup
x∈R,|s|≤1

U(x+ s)

U(x)
≤ M1

for some positive constant M1 ∈ R.
Moreover, dividing (1.6) by U(x) and using the Lipschitz continuity of b, we obtain that

supx∈R |U ′(x)/U(x)| ≤ M2 for some constant M2. Therefore, the lemma is proved. �

Lemma 2.2. Let (c, U) be a solution of (P). Then there exists a positive constant K such

that

sup
x∈R,|s|≤1

1− U(x+ s)

1− U(x)
+ sup

x∈R

| U ′(x) |
1− U(x)

≤ K.

Proof. First, we define V (x) = 1− U(x). Then (1.6) can be re-written as

cV ′(x) +D2[V ](x)− dV (x) +
2∑

i=−2

J(i)[b(1)− b(1− V (x− i))] = 0.(2.3)
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Following the same method as that of Lemma 2.1, we can get

sup
x∈R,0≤s≤1

V (x+ s)

V (x)
≤ eµ

for some positive constant µ,

Secondly, since V (−∞) = 1− U(−∞) = 0 and 0 < V (·) < 1 on R, the quantity

K(x) := max
s≥0

V (x− s)

V (x)

is well-defined for each x ∈ R. We claim that K(x) < e2µ for all x ∈ R. Suppose not, then

we can find x1 ∈ R and s0 > 0 such that V (x1 − s0) ≥ V (x1)e
2µ. Let y ∈ (−∞, x1) be the

smallest value attained max(−∞,x1) V (·). So we have

V ′(y) = 0, max{V (y − 1), V (y − 2)} < V (y).

On the other hand, since

max
[x1,x1+2]

V (·) ≤ V (x1)e
2µ ≤ V (x1 − s0) ≤ V (y),

we have V (y + i) ≤ V (y) for i = 1, 2. Hence, by (1.2),

cV ′(y) +D[V (y + 1) + V (y − 1)− 2V (y)]− dV (y) +
2∑

i=−2

J(i)[b(1)− b(1− V (y − i))]

≤ D[V (y + 1) + V (y − 1)]− (2D + d)V (y) + d− d(1− V (y))

≤ D[V (y − 1)− V (y)] < 0.

This contradicts (2.3). So we have proved that K(x) < e2µ for all x ∈ R. This implies that

sup
x∈R,|s|≤1

V (x+ s)

V (x)
≤ e2µ.

Finally, dividing (2.3) by V (x), it is easy to see that

sup
x∈R

|V ′(x)|
V (x)

≤ K

for some positive constant K. Hence the lemma follows. �

We shall follow the method of [7] to prove Theorem 1. In the course of proof, we need to

analyze the following recurrence equation

(2.4) an+3an+2 + l1an+2 +
l1

an+1

+
1

an+1an
= l, n ∈ Z,

where l1, l are positive constants. Recall that, for the case treated in [7], the recurrence

equation is given by

an+1 +
1

an
= l, n ∈ Z,
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for some positive constant l. It is easy to deduce the monotonicity of an, and we can easily

obtain the convergence of an. But, the convergence of the sequence {an} defined by (2.4) is

not trivial.

By taking two consecutive equations from (2.4), we have

an+2(an+3 − an+1) + l1(an+2 − an+1)(2.5)

+
l1

an+1an
(an − an+1) +

1

an+1anan−1

(an−1 − an+1) = 0, n ∈ Z.

Moreover, we have

(i) If {an}∞n=−∞ is a positive sequence satisfying (2.4), then {an}∞n=−∞ is a bounded

sequence and (2.5) holds.

(ii) If {an}∞n=−∞ is a positive sequence satisfying (2.4) and any consecutive four terms

are equal, then {an}∞n=−∞ is a constant sequence.

In the sequel, we shall prove the following very technical proposition.

Proposition 2.3. If {an}∞n=−∞ is a positive sequence satisfying (2.4), then both limn→∞ an

and limn→−∞ an exist.

To prove this proposition, we define

Mn := max{an−2, an−1, an, an+1, an+2}, mn := min{an−2, an−1, an, an+1, an+2}.

Lemma 2.4. Let {an}∞n=−∞ be a non-constant positive sequence satisfying (2.4). Then

mn < an < Mn, ∀ n ∈ Z.

Proof. By the definitions of Mn and mn, we have mn ≤ an ≤ Mn for all n ∈ Z. Suppose

that there exists k ∈ Z such that ak = Mk. This implies that

ak ≥ ak+2, ak ≥ ak+1, ak ≥ ak−1, ak ≥ ak−2.

By (2.5) with n = k − 1, we have

ak−2 = ak−1 = ak = ak+1 = ak+2.

Therefore, {an}∞n=−∞ is a constant sequence. We have reached a contradiction.

The case that there exists k ∈ Z such that ak = mk can be treated similarly. Therefore,

we have proved the lemma. �
By Lemma 2.4, we have

Mn = max{an−2, an−1, an+1, an+2}, mn = min{an−2, an−1, an+1, an+2}, ∀n ∈ Z.

Indeed, in the next lemma, we have more precise information.

Lemma 2.5. Let {an}∞n=−∞ be a non-constant positive sequence satisfying (2.4). Then, for

each integer k ∈ Z, we have
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(1) min{ak−2, ak−1} = mk < min{ak+1, ak+2}, if Mk = max{ak+1, ak+2};
(2) min{ak+2, ak+1} = mk < min{ak−1, ak−2}, if Mk = max{ak−1, ak−2}.

Moreover, either Mk = max{ak+1, ak+2} or Mk = max{ak−1, ak−2}, and they are exclusive.

Proof. Given any integer k. Suppose that Mk = max{ak+1, ak+2}. We claim that mk <

min{ak+1, ak+2}. Suppose not. Then we have mk = min{ak+1, ak+2}. Since an is a non-

constant sequence, we have Mk > mk. This implies ak+1 ̸= ak+2. Without loss of generality,

we may assume ak+1 > ak+2. So Mk = ak+1 and mk = ak+2. By Lemma 2.4, we get

ak+3 = Mk+1 > ak+1, ak+4 = mk+2 < ak+2.

Continuing in this way, we obtain that

· · · < ak+6 < ak+4 < ak+2 < ak+1 < ak+3 < ak+5 < · · ·

Using (2.5) with n = k + 2t for any positive integer t, we have

an+2(an+3 − an+1) > l1(an+1 − an+2)

⇒ an+2(an+3 − an+2) + an+2(an+2 − an+1) > l1(an+1 − an+2)

⇒ an+2(an+3 − an+2) > (an+1 − an+2)(l1 + an+2)

⇒ an+3 − an+2 > (1 +
l1

an+2

)(an+1 − an+2) > (1 +
l1

ak+2

)(an+1 − an)

Repeating the above process, we get that

ak+2t+1 − ak+2t ≥ (1 +
l1

ak+2

)t−1(ak+3 − ak+2)

for any positive integer t. This contradicts the boundedness of {an}. Therefore,

mk < min{ak+1, ak+2}.

By Lemma 2.4, we must have

mk = min{ak−2, ak−1}.

The case when Mk = max{ak−1, ak−2} is similar. Finally, it is clear that only one of the

options can hold for each k. The proof is completed. �

Lemma 2.6. Let {an}∞n=−∞ be a non-constant positive sequence satisfying (2.4). Then either

Mn = max{an+1, an+2}, mn = min{an−2, an−1} for all n ∈ Z and both {Mn} and {mn} are

non-decreasing; or, Mn = max{an−1, an−2}, mn = min{an+2, an+1} for all n ∈ Z and both

{Mn} and {mn} are non-increasing.

Proof. Suppose that there is an integer k ∈ Z such that Mk = max{ak+1, ak+2}. By

max{ak+1, ak+2} = Mk ≥ max{ak−1, ak, ak+1, ak+2}
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and the definition of Mk+1, we have

Mk+1 ≥ max{ak+1, ak+2, ak+3} ≥ max{ak−1, ak, ak+1, ak+2, ak+3} = Mk+1.

This and Lemma 2.4 imply that

Mk+1 = max{ak+1, ak+2, ak+3} = max{ak+2, ak+3}.

Next, we claim that Mk−1 = max{ak, ak+1}. Suppose not. Then from Lemma 2.5 we have

Mk−1 = max{ak−3, ak−2}. Moreover, we have mk−1 = min{ak, ak+1}. Since, by assumption,

mk = min{ak−2, ak−1}, we have

mk = min{ak−2, ak−1} ≥ mk−1 = min{ak, ak+1} ≥ mk.

From this we deduce that mk = min{ak, ak+1} = ak+1, by Lemma 2.4. This contradicts

Lemma 2.5. Therefore, we conclude that Mk−1 = max{ak, ak+1}.
By induction and Lemma 2.5, we get

Mn = max{an+1, an+2},mn = min{an−2, an−1}, ∀n ∈ Z.

Since

Mn+1 ≥ max{an+1, an+2} = Mn, mn+1 = min{an−1, an} ≥ mn,

both {Mn} and {mn} are non-decreasing sequences.

The other case is similar. Therefore, the lemma is proved by combining Lemma 2.5. �

Proof of Proposition 2.3. By Lemma 2.6, without loss of generality, we may assume that

Mn = max{an+1, an+2} and mn = min{an−2, an−1}, ∀n ∈ Z.

So {Mn} and {mn} are bounded and non-decreasing sequences. Therefore, limn→±∞Mn and

limn→±∞mn must exist.

First, we consider limn→∞ an. We define M := limn→∞Mn and m := limn→∞mn. If

M = m, then limn→∞ an exists (since mn < an < Mn).

Suppose that M > m. By hypothesis, we have

Mn = max{an+1, an+2}, mn+3 = min{an+1, an+2}.

This implies

Mn +mn+3 = an+1 + an+2.

Since {Mn} and {mn} are non-decreasing sequences,

an+1 + an+2 ≤ an+2 + an+3, ∀n ∈ Z.

Hence {a2n} and {a2n+1} are non-decreasing sequences. So the limits

p := lim
n→∞

a2n, q := lim
n→∞

a2n+1
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are well-defined. Note that, by (2.4),

an+2 < l/l1, an+1 > l1/l

for all n. Hence p, q ∈ (0,∞). By (2.5) with n even and taking n → ∞, we obtain

l1(p− q) +
l1
pq

(p− q) = 0.

This implies that p = q. Therefore, limn→∞ an exists.

Similarly, we can prove that limn→−∞ an exists. This completes the proof. �

Now, we turn to the study of (1.10). First, we have

Lemma 2.7. If r(·) ∈ L1
loc(R) solves (1.10) in R, then r(·) ∈ L∞(R) ∩ C∞(R).

Proof. First, we may assume a > 0. (If a < 0, then we may define r̃(x) = −r(−x)). We

define

v(x) := exp

[
µx+

∫ x

0

r(y)dy

]
with µ := a0/a. Since

(2.6) −ar(x) =
2∑

i=−2

a|i|e
−iµv(x+ i)

v(x)
,

we get

(2.7) −av′(x) = v(x)[−ar(x)− a0] = v(x)
∑

i∈{±2,±1}

a|i| exp

[∫ x+i

x

r(y)dy

]
> 0.

This implies that v′(x) < 0 for all x ∈ R and so v(∞) exists and v(∞) ≥ 0. By integrating

(2.7) over [x,M ], we get

av(x)−av(M) =
∑

i∈{±1,±2}

a|i|

∫ M

x

v(t) exp

[∫ t+i

t

r(y)dy

]
dt =

∑
i∈{±1,±2}

a|i|e
−iµ

∫ M

x

v(t+ i)dt.

Sending M → ∞, we get

av(x)− av(∞) > a1

∫ x+1/2

x

eµv(t− 1)dt ≥ a1
2
eµv(x− 1/2).

Therefore, we obtain that

v(x− 1/2) ≤ 2a

a1
e−µv(x), ∀x ∈ R.

It follows from (2.6) and the fact that v is non-increasing, we conclude that r(·) ∈ L∞(R).
Furthermore, r(·) ∈ C∞(R) by using (1.10). This proves the lemma. �

Lemma 2.8. A locally integrable solution of (1.10) that attains its global maximum or min-

imum must be a constant function.
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Proof. Let r be a locally integrable solution of (1.10). By differentiating (1.10), we get

ar′(x) +
2∑

i=−2

a|i| exp

[∫ x+i

x

r(y)dy

]
· [r(x+ i)− r(x)] = 0.

If we define

A(x) := exp

[∫ x+1

x

r(y)dy

]
,

then the above equality can be re-written as

ar′(x) + a2A(x+ 1)A(x)[r(x+ 2)− r(x)] + a1A(x)[r(x+ 1)− r(x)](2.8)

+ a1[A(x− 1)]−1[r(x− 1)− r(x)] + a2[A(x− 1)A(x− 2)]−1[r(x− 2)− r(x)] = 0.

Suppose that r attains its global maximum. Without loss of generality and by a transla-

tion, we may assume that r(·) attains its global maximum r∗ at x = 0. Hence r′(0) = 0 and

r(±2) = r(±1) = r∗. By induction, we easily deduce that r(j) = r∗ and r′(j) = 0 for all

j ∈ Z. By (1.10), we get

a2A(j + 1)A(j) + a1A(j) + a1/A(j − 1) + a2/[A(j − 1)A(j − 2)] = −ar∗ − a0

for all j ∈ Z. Proposition 2.3 implies that A± := limj→±∞ A(j) exists such that

a2(A
±)2 + a1(A

±) + a1/(A
±) + a2/[(A

±)2] = −ar∗ − a0.(2.9)

Now, let {xi} be a sequence with

lim
i→∞

r(xi) = r∗ := inf
x∈R

{r(x)}.

We claim that r∗ = r∗. By Lemma 2.7, {r(xi + ·)}∞i=1 is a uniformly bounded and equi-

continuous sequence. According to Ascoli-Arzelà Theorem, we can extract a subsequence

(still called {r(xi+ ·)}∞i=1) such that limi→∞ r(xi+ ·) = r̂(·) uniformly in any compact subset

of R for some r̂(·) ∈ C(R). It is easy to check that r̂(·) is also a solution of (1.10) and

r̂(0) = r∗ is a global minimum of r̂(·). A similar argument as above, we can get

−ar∗ − a0 = a2Â(j + 1)Â(j) + a1Â(j) +
a1

Â(j − 1)
+

a2

Â(j − 1)Â(j − 2)
, ∀j ∈ Z.

Moreover, we also have

(2.10) −ar∗ − a0 = a2(Â
±)2 + a1(Â

±) +
a1

Â±
+

a2

(Â±)2
,

where Â(x) := exp[
∫ x+1

x
r̂(y)dy] and Â± := limj→±∞ Â(j).

Finally, without loss of generality (by taking a subsequence if necessary), we may assume

that xi ≥ −M for some positive constant M . Since∫ j+1

j

r(y)dy = ln[A(j)] → ln[A+] as j → ∞,



TRAVELING WAVE 13

we have

1

n

∫ x+n

x

r(y)dy → ln[A+] as n → ∞ uniformly in x ∈ [−M,∞).

Therefore

ln[A+] = lim
i→∞

lim
n→∞

1

n

∫ xi+n

xi

r(y)dy = lim
n→∞

lim
i→∞

1

n

∫ xi+n

xi

r(y)dy

= lim
n→∞

1

n
lim
i→∞

∫ n

0

r(xi + y)dy = lim
n→∞

1

n

∫ n

0

r̂(y)dy = ln[Â+].

This implies that A+ = Â+. So by (2.9) and (2.10), we have r∗ = r∗. Therefore r(·) is

a constant function. The case when r(·) attains its global minimum can be also treated

similarly. The lemma is proved. �

Lemma 2.9. If r(·) ∈ L1
loc(R) solves (1.10), then r(±∞) := limx→±∞ r(x) exists and

P (a, a2, a1, a0, r(±∞)) = 0.

Proof. First, we consider {xi} such that

lim
i→∞

xi = ∞, lim
i→∞

r(xi) = r∗ := lim sup
x→∞

r(x).

We claim that

(2.11) lim
i→∞

max
[xi−2,xi+2]

{| r(·)− r∗ |} = 0.

Since the family {r(xi + ·)}∞i=1 is uniformly bounded and equi-continuous, we can choose

a subsequence (still denoted by {r(xi + ·)}) such that limi→∞ r(xi + ·) = r̂(·) uniformly in

any compact subset of R for some r̂(·) ∈ C(R). This implies that r̂(·) is also a solution of

(1.10). By r̂(0) = limi→∞ r(xi) = r∗ and r̂(y) = limi→∞ r(xi + y) ≤ r∗ for all y ∈ R, we
have r̂(0) = maxx∈R{r̂(x)}. By Lemma 2.8, we get r̂(·) ≡ r∗. Then (2.11) follows form the

uniform convergence of {r(xi + ·)}.
Next, we claim that r(∞) exists. Otherwise, we have r∗ := lim infx→∞ r(x) < r∗. Since

lim
i→∞

max
[xi−2,xi+2]

{| r(·)− r∗ |} = 0, lim inf
x→∞

r(x) = r∗ < r∗,

we can find j ∈ N such that

r(·) > r∗ + r∗
2

in [xj, xj + 2] ∪ [xj+1 − 2, xj+1], min
[xj ,xj+1]

{r(·)} <
r∗ + r∗

2
.

Since r(·) is continuous, we can choose x̂ be the left-most point in [xj, xj+1] such that

r(x̂) = min[xj ,xj+1]{r(·)}. From the above fact, we have x̂ ∈ [xj + 2, xj+1 − 2] such that

r′(x̂) = 0, r(x̂) ≤ min{r(x̂+ 2), r(x̂+ 1)}, r(x̂) < min{r(x̂− 1), r(x̂− 2)}.

This leads a contradiction with (2.8). Therefore, r(∞) exists.
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Similarly, r(−∞) := limx→−∞ r(x) exists. Finally, by sending x → ±∞ in (1.10), we get

P (a, a2, a1, a0, r(±∞)) = 0.

Then the lemma follows. �

Lemma 2.10. If r(·) ∈ L1
loc(R) is a non-constant solution of (1.10), then r(−∞) < r(x) <

r(∞) for all x ∈ R and∫ ∞

0

[r(∞)− r(y)]dy +

∫ 0

−∞
[r(y)− r(−∞)]dy < ∞.

Proof. According to Lemma 2.8, r(x) cannot attain its global maximum or minimum. This

implies that r(∞) ̸= r(−∞) and

Λ1 := min{r(−∞), r(∞)} < r(x) < Λ2 := max{r(−∞), r(∞)}, ∀x ∈ R.

By Lemma 2.9, we have

P (a, a2, a1, a0,Λ1) = P (a, a2, a1, a0,Λ2) = 0.

By the graph of P (a, a2, a1, a0, λ), we have

∂

∂λ
P (a, a2, a1, a0,Λ1) < 0 <

∂

∂λ
P (a, a2, a1, a0,Λ2).

So we can find ϵ > 0 such that

a+ 2a2e
2(Λ1+ϵ) + a1e

(Λ1+ϵ) − a1e
−(Λ1+ϵ) − 2a2e

−2(Λ1+ϵ) < 0,(2.12)

a+ 2a2e
2(Λ2−ϵ) + a1e

(Λ2−ϵ) − a1e
−(Λ2−ϵ) − 2a2e

−2(Λ2−ϵ) > 0.(2.13)

Suppose that r(∞) = Λ1 and r(−∞) = Λ2. By translation, we may assume that

r(x) < Λ1 + ϵ, if x ≥ −4.

If we define l := minx∈[−4,4] r(x), then we have l ∈ (Λ1,Λ1 + ϵ). Compare the line h = l− kx

with the curve h = r(x) for x > 0. If k ≥ ϵ and 0 < x ≤ 4, then r(x) ≥ l > l − kx. If k ≥ ϵ

and x > 4, then r(x) > Λ1 > l − ϵ > l − kx. Combining these two cases, we get that

r(x) > l − kx, ∀ x > 0, k ≥ ϵ.

Therefore, the quantity

δ := inf{k > 0 | r(x) ≥ l − kx, ∀x > 0}

is well-defined and we can easily see that δ ∈ (0, ϵ). Moreover, there is a number x0 ∈ (4,∞)

such that

r(x0)− (l − δx0) = 0 ≤ r(x)− (l − δx), ∀x > 0.
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This implies that

r′(x0) = −δ, r(x0 ± i)− r(x0) ≥ ∓iδ for i = 1, 2.

Recall A(x) = exp[
∫ x+1

x
r(y)dy] and using Λ1 < r(·) < Λ1 + ϵ in [0,∞), we have

aδ

= a2A(x0 + 1)A(x0)[r(x0 + 2)− r(x0)] + a1A(x0)[r(x0 + 1)− r(x0)]

+ a1A(x0 − 1)−1[r(x0 − 1)− r(x0)] + a2A(x0 − 1)−1A(x0 − 2)−1[r(x0 − 2)− r(x0)]

≥ δ[−2a2e
2(Λ1+ϵ) − a1e

(Λ1+ϵ) + a1e
−(Λ1+ϵ) + 2a2e

−2(Λ1+ϵ)].

This leads to a contradiction with (2.12). Therefore,

r(∞) = Λ2 > r(−∞) = Λ1.

Finally, we claim that ∫ 0

−∞
[r(y)− Λ1]dy < ∞.

Let R(x) := r(x)− Λ1. For the ϵ above, there exists xϵ ∈ R such that

r(·) ≤ Λ1 + ϵ on (−∞, xϵ + 4].

By a direct computation and the Mean Value Theorem, we have

(2.14) aR(x) +
∑

i∈{±1,±2}

a|i| exp[sgn{i}θi(x)]
∫ x+i

x

R(y)dy = 0, x ∈ R,

where

θ±2(x) ∈ [2Λ1, 2 max
[x−2,x+2]

{r(·)}], θ±1(x) ∈ [Λ1, max
[x−1,x+1]

{r(·)}].

Integrating (2.14) over [−M,xϵ], we get

0 = a

∫ xϵ

−M

R(x)dx+
∑

i∈{±1,±2}

a|i|

∫ xϵ

−M

∫ x+i

x

exp[sgn{i}θi(x)]R(y)dydx

= a

∫ xϵ

−M

R(y)dy +
∑

i∈{±1,±2}

a|i|

∫ xϵ

−M

∫ y

y−i

exp[sgn{i}θi(x)]R(y)dxdy +O(1)

=

∫ xϵ

−M

{a+
∑

i∈{±1,±2}

a|i|

∫ y

y−i

exp[sgn{i}θi(x)]dx}R(y)dy +O(1),

where O(1) is uniformly bounded (independent of M). According to the range of θi(x) and

r(·) ≤ Λ1 + ϵ on (−∞, xϵ + 4], we have

a+
∑

i∈{±1,±2}

a|i|

∫ y

y−i

exp[sgn{i}θi(x)]dx

< a+ 2a2e
2(Λ1+ϵ) + a1e

(Λ1+ϵ) − a1e
−(Λ1+ϵ) − 2a2e

−2(Λ1+ϵ) < 0.
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By taking M → ∞, we have

[2a2e
−2(Λ1+ϵ) + a1e

−(Λ1+ϵ) − a1e
(Λ1+ϵ) − 2a2e

2(Λ1+ϵ) − a]

∫ xϵ

−∞
R(y)dy

≤
∫ xϵ

−∞

−a−
∑

i∈{±1,±2}

a|i|

∫ y

y−i

exp[sgn{i}θi(x)]dx

R(y)dy = O(1).

Therefore,
∫ xϵ

−∞R(y)dy < ∞. We conclude that∫ 0

−∞
[r(y)− Λ1]dy < ∞.

Similarly, using (2.13) we can deduce that∫ ∞

0

[Λ2 − r(y)]dy < ∞.

The proof is now completed. �

Proof of Theorem 1. First, parts (i) and (ii) follows from Lemma 2.9 and Lemma 2.10.

Next, we focus on the case that P (a, a2, a1, a0, ·) = 0 has two real roots {Λ1,Λ2} with

Λ1 < Λ2. Suppose that r(x) is an arbitrary non-constant solution of (1.10). By Lemma 2.9

and Lemma 2.10, we have r(∞) = Λ2 > Λ1 = r(−∞). We define

u(x) = exp

[∫ x

0

r(y)dy

]
,

u1(x) = θeΛ1x, θ = exp

[∫ −∞

0

(r(y)− Λ1)dy

]
,

u2(x) = u(x)− u1(x).

By a direct computation, we have

u′(x) = u(x)r(x), u2(0) = 1− θ, 0 < θ < 1.

Since

u2(x)e
−Λ1x = exp

[∫ x

0

(r(y)− Λ1)dy

]
− exp

[∫ −∞

0

(r(y)− Λ1)dy

]
,

we obtain that u2(x)e
−Λ1x > 0 for all x ∈ R and u2(x)e

−Λ1x → 0 as x → −∞.

Now we define

r̂(x) :=
u′
2(x)

u2(x)
.

It is easy to see that r̂(x) is a solution of (1.10). We claim that r̂(x) is a constant function.

Suppose not. Then it follows from Lemma 2.10 that∫ 0

−∞
[r̂(y)− Λ1]dy < ∞.
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But,

ln[u2(x)e
−Λ1x]− ln[u2(0)] =

∫ x

0

(u2(y)e
−Λ1y)′

(u2(y)e−Λ1y)
dy =

∫ x

0

[r̂(y)− Λ1]dy.

By taking x → −∞, we have

lim
x→−∞

ln[u2(x)e
−Λ1x] < ∞,

a contradiction. Therefore, r̂(x) must be a constant solution of (1.10). This also implies that

either r̂(x) ≡ Λ1 or r̂(x) ≡ Λ2.

If r̂(x) ≡ Λ1, then u(x) = ceΛ1x. This implies that r(·) is a constant function, a contra-

diction. Hence we have r̂(x) ≡ Λ2 and so u2(x) = u2(0)e
Λ2x = (1 − θ)eΛ2x. Therefore, by

adding two constant solutions r(x) ≡ Λ1 and r(x) ≡ Λ2 together, all solutions of (1.10) are

given by

r(x) =
θΛ1e

Λ1x + (1− θ)Λ2e
Λ2x

θeΛ1x + (1− θ)eΛ2x

for θ ∈ [0, 1]. This proves the theorem. �

3. Asymptotic behavior

Let (c, U) be a solution of (P). This section is devoted to the proof of Theorem 2, the

asymptotic behavior of U near x = ±∞.

Proof of Theorem 2. To study the behavior at x = ∞, we define ρ(x) := U ′(x)/U(x). First,

we claim that limx→∞ ρ(x) exists. Suppose not. Then we have that

λ := lim sup
x→∞

ρ(x) > λ := lim inf
x→∞

ρ(x).

By the definition of ρ(x), (1.6) can be re-written as

cρ(x) +

[
J(2)

b(U(x+ 2))

U(x+ 2)

]
exp

[∫ x+2

x

ρ(s)ds

]
(3.1)

+

[
D + J(1)

b(U(x+ 1))

U(x+ 1)

]
exp

[∫ x+1

x

ρ(s)ds

]
+

[
D + J(1)

b(U(x− 1))

U(x− 1)

]
exp

[∫ x−1

x

ρ(s)ds

]
+

[
J(2)

b(U(x− 2))

U(x− 2)

]
exp

[∫ x−2

x

ρ(s)ds

]
+

[
−2D − d+ J(0)

b(U(x))

U(x)

]
= 0.

Choose λ1, λ2 such that λ < λ1 < λ2 < λ and choose λ ∈ (λ1, λ2) such that

P (a, a2, a1, a0, λ) ̸= 0,
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where

a = c, a2 = a−2 = J(2)b′(0), a1 = a−1 = D + J(1)b′(0), a0 = −2D − d+ J(0)b′(0).

Let {η1i } → ∞ and {η2i } → ∞ as i → ∞ such that ρ(η1i ) = λ1, ρ(η
2
i ) = λ2 and η2i < η1i

for all i ∈ N. Since ρ(·) is a uniformly continuous function, we can choose that ξi to be the

right-most point in (η2i , η
1
i ) such that ρ(ξi) = λ. Since ρ(ξi)− ρ(η1i ) = λ− λ1 > 0, we get

ρ(·) ≤ λ on [ξi, η
1
i ] and δ := inf

i∈N
{η1i − ξi} > 0.

By Lemma 2.1, {ρ(ξi + ·)}∞i=1 is uniformly bounded and equi-continuous. By Ascoli-Arzelà

Theorem, we can extract a subsequence (still denote ρ(ξi + ·)) such that ρ(ξi + ·) → r(·)
uniformly in any compact subset of R for some function r ∈ C(R). Therefore,

r(0) = lim
i→∞

ρ(ξi) = λ, r(·) ≤ λ on [0, δ]

and r(x) is a solution of the equation (1.10). But, this contradicts Theorem 1, since all non-

constant solutions of (1.10) are strictly increasing. Therefore, the limit Λ := limx→∞ ρ(x)

exists. By taking x → ∞ in (3.1), we see that Λ is a root of (1.9). Since b′(0) > d, we have

Λ < 0.

On the other hand, by the same argument as above and using Lemma 2.2, we can also

prove that the limit

σ := lim
x→−∞

U ′(x)

U(x)− 1

exists and satisfies (1.11). Note that σ ̸= 0, since b′(1) < d. Indeed, (1.11) has a unique

positive root and a unique negative root.

Finally, it remains to determine the sign of σ. If σ < 0, then there exists M > 0 such that

U ′(x) > 0 if x ≤ −M . This contradicts U(−∞) = 1. Thus σ > 0 which is the unique positive

root of the characteristic equation (1.11). This completes the proof of the theorem. �

4. Monotonicity and the proof of Theorem 4

In this section, we shall prove Theorems 3 and 4. Let (c, U) be a solution of (P). For the

notational convenience, we define

W [U ](y) := cµU(y) +D2[U ](y)− dU(y) +
2∑

i=−2

J(i)b(U(y − i)),

T [U ](x) :=
eµx

c

∫ ∞

x

e−µyW [U ](y)dy.

where µ is a constant satisfying µ ≥ (d+ 2D)/c. Note that T [U ](x) = U(x) for all x ∈ R.
We now prove the following strong comparison principle.
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Lemma 4.1. If (c, U1), (c, U2) are solutions of (P) and satisfy U1 ≤ U2 on R, then either

U1 ≡ U2 or U1 < U2 on R.

Proof. Suppose that U1 < U2 on R does not hold. Then we can find x0 ∈ R such that

U1(x0) = U2(x0). Since U1(·), U2(·) are solution of (P), we have T [U1](x0) = T [U2](x0). By

the definition of T [U ](x), we can get∫ ∞

x0

e−µy{W [U1]−W [U2]}(y)dy = 0.

Since W [U1] ≤ W [U2] on R, we have W [U1] ≡ W [U2] on [x0,∞). By the definition of W [U ]

and the monotonicity of b, we get that U1(y − 1) = U2(y − 1) and U1(y − 2) = U2(y − 2)

for y ∈ [x0,∞). Hence U1 ≡ U2 on [x0 − 2,∞). Continuing in this way, we conclude that

U1 ≡ U2 on R. The lemma is proved. �
Next, we use the sliding method to prove the following lemma.

Lemma 4.2. If (c, U) is a solution of (P) such that U ′(x) ≤ 0 for all |x| ≫ 1, then U ′(x) < 0

on R.

Proof . By hypothesis, we can find M > 0 such that U ′(x) ≤ 0 on R \ (−M,M). Since

U(∞) = 0, U(−∞) = 1 and U(·) is continuous, the set

A := {ξ > 0 | U(x+ η) ≤ U(x),∀x ∈ R, ∀η ≥ ξ}

is nonempty. Hence ξ∗ := inf A is well-defined. Note that U(x + ξ∗) ≤ U(x) for all x ∈ R.
We claim that ξ∗ = 0. Suppose ξ∗ > 0. Since U(∞) ̸= U(−∞), by Lemma 4.1, we have

U(x+ ξ∗) < U(x), ∀x ∈ R.

Since U(x) is a continuous function, we can choose ϵ ∈ (0, ξ∗) such that

U(x+ η) < U(x), if x ∈ [−M − 2ξ∗,M + 2ξ∗] and η ∈ [ξ∗ − ϵ, ξ∗].

For x ∈ R \ (−M − ξ∗,M + ξ∗) and η ∈ (0, ξ∗], by the Mean Value Theorem, we obtain

U(x+ η)− U(x) = ηU ′(f(x, η)),

where x < f(x, η) < x + η. Hence U(x + η) ≤ U(x) for all x ∈ R \ (−M − ξ∗,M + ξ∗) for

all η ∈ (0, ξ∗]. We conclude that

U(x+ η) ≤ U(x), ∀x ∈ R, ∀η ∈ [ξ∗ − ϵ, ξ∗].

But this contradicts the definition of ξ∗. Therefore, ξ∗ = 0 and we have U ′(x) ≤ 0 for

all x ∈ R. Finally, differentiating U = T [U ], we get that U ′(·) < 0 on R. The proof is

completed. �
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Proof of Theorem 3. Let (c, U) be a solution of (P). By Theorem 2, we have

lim
x→∞

U ′(x)

U(x)
= Λ(< 0) and lim

x→−∞

U ′(x)

U(x)− 1
= σ(> 0).

This implies that U ′(x) < 0, if |x| ≫ 1. By Lemma 4.2, we have U ′(x) < 0 for any x ∈ R.
The theorem is proved. �

Now, we turn to the proof of Theorem 4.

Proof of Theorem 4. Let c > cmin. Then the characteristic equation (1.9) always has two

negative roots, denoted by λ(c) < Λ(c) < 0. We claim that

lim
x→∞

U ′(x)

U(x)
= Λ(c).

Suppose on the contrary that

lim
x→∞

U ′(x)

U(x)
= λ(c).

Choose ĉ ∈ (cmin, c) and (ĉ, Û(x)) a solution of (P). Then, by Theorem 2, we have

lim
x→∞

Û ′(x)

Û(x)
≥ λ(ĉ).

So we obtain

lim
x→∞

[ln(Û(x)/U(x))]′ = lim
x→∞

{[Û ′(x)/Û(x)]− [U ′(x)/U(x)]} ≥ λ(ĉ)− λ(c) > 0.

This implies that limx→∞ ln[Û(x)/U(x)] = +∞. Therefore, there exists a positive number

M such that

(4.1) Û(x) > U(x) ∀ x ≥ M.

On the other hand, using b(1) = d and

lim
x→−∞

[U ′(x)/(U(x)− 1)] = σ(c) > 0,

it follows that

lim
x→−∞

[∫ Û(x)

U(x)

1

b(s)− ds
ds

]′

= lim
x→−∞

[
Û ′(x)

Û(x)− 1
· Û(x)− 1

b(Û(x))− dÛ(x)
− U ′(x)

U(x)− 1
· U(x)− 1

b(U(x))− dU(x)

]

= lim
x→−∞

{ Û ′(x)

Û(x)− 1
· Û(x)− 1

[b(Û(x))− b(1)]− d[Û(x)− 1]

− U ′(x)

U(x)− 1
· U(x)− 1

[b(U(x))− b(1)]− d[U(x)− 1]

}
=

σ(ĉ)− σ(c)

b′(1)− d
< 0,



TRAVELING WAVE 21

since b′(1) < d and, by (1.11), σ(c) is strictly decreasing in c. Hence there exists M1 > 0

such that

(4.2) Û(x) > U(x) ∀ x ≤ −M1.

By (4.1), (4.2) and Theorem 3, we obtain that

(4.3) Û(x−M1) > U(x+M), ∀x ∈ R.

Note that both u1(x, t) := Û(x−M1 − ĉt) and u2(x, t) := U(x+M − ct) are solutions of

the following spatially continuous version of (1.1):

ut(x, t) = D[u(x+ 1, t) + u(x− 1, t)− 2u(x, t)]− du(x, t) +
∑
i∈Z

J(i)b(u(x− i, t)).

By (4.3), we have u1(·, 0) ≥ u2(·, 0). The comparison principle implies that u1(·, t) ≥ u2(·, t)
for all t ≥ 0. Writing u1(x, t) ≥ u2(x, t) by

(4.4) Û(x− (c+ ĉ)t/2−M1 + (c− ĉ)t/2) ≥ U(x− (c+ ĉ)t/2 +M − (c− ĉ)t/2)

fixing ξ := x− (c+ ĉ)t/2 and letting t → ∞ in (4.4), it follows from c > ĉ that 0 = Û(∞) ≥
U(−∞) = 1, a contradiction to (1.7). Therefore, the proof is completed. �

5. Uniqueness

This section is devoted to the uniqueness of the traveling wave solution. We shall follow

the method developed in [5]. For a smooth function ϕ, we let

L[ϕ](x) := −cϕ′(x)−D2[ϕ](x)−
2∑

i=−2

J(i)[b(ϕ(x− i))− dϕ(x)].

First, we define the notion of super-sub-solutions as follows.

Definition 5.1. A non-constant smooth function ϕ : [a− 2, b+2] → (0, 1) is called a super-

solution (subsolution, resp.) of (1.6) on [a, b] for a wave speed c, if L[ϕ](x) ≥ 0 (L[ϕ](x) ≤ 0,

resp.) for x ∈ (a, b).

Definition 5.2. A non-constant smooth function ϕ : [a− 2,∞) → (0, 1) is called a superso-

lution (subsolution, resp.) of (1.6) on [a,∞) for a wave speed c, if L[ϕ](x) ≥ 0 (L[ϕ](x) ≤ 0,

resp.) for x ∈ (a,∞).

Lemma 5.1. Assume (H1). Let (c, U) be a solution of (P) and V (x) be a subsolution

(supersolution, resp.) of (1.6) on [a, b] for the same speed c, where a < b. If V (x) < U(x)

(V (x) > U(x), resp.) for x ∈ [a− 2, a) ∪ (b, b+ 2], then V (x) < U(x) (V (x) > U(x), resp.)

for x ∈ [a, b].
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Proof . Since the case for supersolution is similar, we only consider the case when V (x) is a

subsolution. We introduce

g(t) := max
x∈[a−2,b+2]

{V (x)− U(x− t)}.

Since U(∞) = 0 and U(−∞) = 1, we can choose ζ ∈ R such that g(ζ) = 0. Let y ∈
[a− 2, b+2] be the maximum value in [a− 2, b+2] such that V (y)−U(y− ζ) = 0. We claim

that y ∈ [a− 2, a) ∪ (b, b+ 2].

Suppose on the contrary that y ∈ [a, b]. Then we have

V (y) = U(y − ζ), V ′(y) = U ′(y − ζ), V (y − 1) ≤ U(y − 1− ζ),

V (y − 2) ≤ U(y − 2− ζ), V (y + 1) < U(y + 1− ζ), V (y + 2) < U(y + 2− ζ).

Hence we have L[V ](y) > L[U ](y − ζ). By the strictly inequality, without loss of generality

we may assume that y ∈ (a, b). This contradicts that U(x) is a solution of (1.6) and V (x) is

a subsolution of (1.6) on [a, b]. Therefore, y ∈ [a− 2, a) ∪ (b, b+ 2].

By hypothesis, we have U(y) > V (y) = U(y − ζ). It follows from the monotonicity of

U that ζ < 0. Hence U(x − ζ) < U(x) for all x ∈ R. Since g(ζ) = 0, we deduce that

V (x) < U(x) for all x ∈ [a, b]. The proof is completed. �

Lemma 5.2. Assume (H1). Let (c, U) be a solution of (P) and ϕ(x) be a subsolution (or

supersolution) of (1.6) with the same speed c on [a,∞) for some constant a. If

lim
x→∞

ϕ′(x)

ϕ(x)
= lim

x→∞

U ′(x)

U(x)
= Λ < 0,

then there exists A ∈ [−∞,∞] such that

lim
x→∞

W (ξ, x) = A+ Λξ, ∀ξ ∈ R,

where W (ξ, x) := ln[U(x+ ξ)]− ln[ϕ(x)].

Proof. Given a subsolution ϕ(x) of (1.6) on [a,∞) for some constant a. By the definition of

W (ξ, x), we obtain

(5.1) lim
x→∞

[W (ξ, x)−W (0, x)] = lim
x→∞

{ln[U(x+ ξ)]− ln[U(x)]} = lim
x→∞

∫ x+ξ

x

U ′(t)

U(t)
dt = Λξ

for all ξ ∈ R. It follows from (5.1) that either the limit limx→∞W (ξ, x) exists for all ξ ∈ R
or it does not exist for all ξ ∈ R.

Suppose that the limit limx→∞W (ξ, x) does not exist for all ξ ∈ R. By (5.1), we can

choose an appropriate ξ such that

(5.2) A := lim sup
x→∞

W (ξ, x) > 0 > B := lim inf
x→∞

W (ξ, x).

Indeed, we can divide into the following three cases.
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Case 1. If both lim supx→∞W (0, x) and lim infx→∞W (0, x) are finite, then ξ can be

chosen as

ξ = −[lim sup
x→∞

W (0, x) + lim inf
x→∞

W (0, x)]/(2Λ).

For this choice of ξ, we have

lim sup
x→∞

W (ξ, x) ≥ lim sup
x→∞

W (0, x)− lim sup
x→∞

[W (0, x)−W (ξ, x)]

= lim sup
x→∞

W (0, x) + Λξ

=
1

2
[lim sup

x→∞
W (0, x)− lim inf

x→∞
W (0, x)] > 0.

Similarly, we can show that lim infx→∞W (ξ, x) < 0.

Case 2. Either

lim supx→∞W (0, x) = ∞ and lim infx→∞W (0, x) is finite,

or

lim infx→∞W (0, x) = −∞ and lim supx→∞W (0, x) is finite.

We only treat the former case. The latter case is similar. For the former case, we take

ξ = − lim inf
x→∞

W (0, x)/Λ + 1.

Then, recalling that Λ < 0, we have

lim inf
x→∞

W (ξ, x) ≤ lim inf
x→∞

W (0, x)− lim inf
x→∞

[W (0, x)−W (ξ, x)]

= lim inf
x→∞

W (0, x) + Λξ

= Λ < 0.

It is clear that lim supx→∞W (ξ, x) = ∞.

Case 3. If lim supx→∞W (0, x) = ∞ and lim infx→∞W (0, x) = −∞, then we can take

ξ = 0. Hence (5.2) holds in any case.

Now take α, β such that B < β < 0 < α < A. Then we may choose two sequences {xi}
and {yi} such that

lim
i→∞

xi = ∞, a− 2 ≤ xi < yi < xi+1, W (ξ, xi) = α, W (ξ, yi) = β, ∀i ∈ N.

Since

lim
x→∞

Wx(ξ, x) = lim
x→∞

{
U ′(x+ ξ)

U(x+ ξ)
− ϕ′(x)

ϕ(x)

}
= 0,

we can choose a fixed integer i large enough such that

W (ξ, x) > 0, if x ∈ [xi − 2, xi] ∪ [xi+1, xi+1 + 2],
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i.e., U(x + ξ) > ϕ(x) for all x ∈ [xi − 2, xi] ∪ [xi+1, xi+1 + 2]. Since W (ξ, yi) = β < 0, we

obtain that U(yi + ξ) < ϕ(yi). But, by Lemma 5.1, it is impossible, since yi is between

xi and xi+1. Therefore, the limit limx→∞W (ξ, x) exists for all ξ ∈ R. We conclude that

limx→∞W (ξ, x) = A+ Λξ for all ξ ∈ R, where A := limx→∞W (0, x).

The case when ϕ(x) is a supersolution is similar, the lemma follows. �

With this lemma, we are ready to prove Theorem 5.

Proof of Theorem 5. Suppose that the roots of Φ(· ; c) = 0 are given by Λ and λ with Λ > λ.

We choose ω < 0 such that max{λ, (1 + α)Λ} < ω < Λ, where the constant α is defined in

(H2). Since Φ(λ; c) is a convex function in λ, we have Φ(ω; c) < 0. Following [5], we define

ϕ±(x; ϵ, δ) := δ((1∓ ϵ)eΛx ± ϵeωx),

where δ > 0, ϵ ∈ (0, eω], x ≥ −2. We may easily check

0 < ϕ±(x; ϵ, δ) < 2δeΛx, if δ > 0, ϵ ∈ (0, eω], x ≥ 0.(5.3)

By a simple computation, we have

ϕ′
±

ϕ±
=

Λ(1∓ ϵ)eΛx ± ωϵeωx

(1∓ ϵ)eΛx ± ϵeωx
= Λ+

±(ω − Λ)ϵ

(1∓ ϵ)e(Λ−ω)x ± ϵ
.

It follows that

(5.4) max
−2≤x≤0

ϕ′
+

ϕ+

= Λ + ϵ(ω − Λ), min
−2≤x≤0

ϕ′
−

ϕ−
= Λ− ϵ(ω − Λ), lim

x→∞

ϕ′
±

ϕ±
= Λ.

Next, we compute

L[ϕ+](x)

= −{δ(1− ϵ)eΛx[cΛ +D(eΛ + e−Λ − 2)− d] + δϵeωx[cω +D(eω + e−ω − 2)− d]

+
2∑

i=−2

J(i)b(ϕ+(x+ i))}

= −{δ(1− ϵ)eΛxΦ(Λ; c) + δϵeωxΦ(ω; c) +
2∑

i=−2

J(i)[b(ϕ+(x+ i))− b′(0)ϕ+(x+ i)]}

= −δϵeωxΦ(ω; c)−
2∑

i=−2

J(i)[b(ϕ+(x+ i))− b′(0)ϕ+(x+ i)].

On the other hand, by (5.3), we have

0 < ϕ+(x+ i; ϵ, δ) < 2δeΛ(x+i) ≤ 2δe−2ΛeΛx,
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if x ≥ 2, δ > 0, ϵ ∈ (0, eω], i ∈ {±1,±2, 0}. Hence, if 2δe−2ΛeΛx ≤ 1, then, by (H2), we have

L[ϕ+](x) ≥ −δϵeωxΦ(ω; c)−M
2∑

i=−2

J(i)[ϕ+(x+ i)]1+α

≥ −δϵeωxΦ(ω; c)−M(2δe−2ΛeΛx)1+α

= δeωx{−ϵΦ(ω; c)− 21+αδαMe−2Λ(1+α)e[(1+α)Λ−ω]x}.

Therefore, we can easily deduce the following facts.

(a1) For every ϵ ∈ (0, eω], there exists δϵ > 0 such that ϕ+(x; ϵ, δ) is a supersolution on

[2,∞), if δ ∈ (0, δϵ].

(a2) For every ϵ ∈ (0, eω] and δ = 1, there exists xϵ ≥ 0 such that ϕ+(x; ϵ, 1) is a superso-

lution on [xϵ,∞).

Now, we consider ϕ(x) := ϕ+(x; ϵ, δ) with ϵ = eω and δ = 1. By Lemma 5.2, there exists

A ∈ [−∞,∞] such that

lim
x→∞

{ln[U(x+ ξ)]− ln[ϕ(x)]} = A+ Λξ, ∀ξ ∈ R.

We claim that A > −∞. Suppose not. Then we have

lim
x→∞

{ln[U(x+ ξ)]− ln[ϕ(x)]} = −∞, ∀ξ ∈ R.(5.5)

Fix ϵ = eω > 0, let δϵ be the constant defined in (a1). Then it follows from Theorem 2 and

U(∞) = 0 that there exists η > 0 such that U(η) < δϵ and

(5.6)
U ′(x)

U(x)
> Λ + ϵ(ω − Λ), if x ≥ η − 2.

By the fact (a1), the function ϕ̂(x) := ϕ+(x; ϵ, U(η)) is a supersolution on [2,∞).

Note that ϕ̂(0) = ϕ+(0; ϵ, U(η)) = U(η). Also, from (5.4) and (5.6) it follows that

ϕ̂′(x)

ϕ̂(x)
≤ Λ + ϵ(ω − Λ) <

U ′(x+ η)

U(x+ η)
, ∀x ∈ [−2, 0].

By an integration, we obtain ϕ̂(x) > U(x + η), if x ∈ [−2, 0). On the other hand, since

[ϕ̂(x)/ϕ(x)] ≡ U(η), it follows from (5.5) that

lim
x→∞

{ln[U(x+ η)]− ln[ϕ̂(x)]} = −∞.

So we can choose T > 0 such that ϕ̂(x) > U(x+ η), ∀x ∈ [T,∞). Therefore, by Lemma 5.1,

we have ϕ̂(x) > U(x + η) for all x ∈ [−2,∞). This contradicts ϕ̂(0) = U(η). Therefore, we

conclude that A > −∞. Thus

lim
x→∞

ln

[
U(x)

ϕ(x)

]
= lim

x→∞
{ln[U(x)]− ln[ϕ(x)]} = A.

It follows from the definition of ϕ(x) that the limit L := limx→∞[U(x)e−Λx] exists and L > 0.
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Moreover, using the function ϕ−, (5.4) and (H2), we can prove, by a similar reasoning as

above, that L < ∞. This proves the theorem. �
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