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Abstract. This paper concerns about the existence, uniqueness, and global stability of trav-
eling waves in discrete periodic media for a system of ordinary differential equations exhibiting
bistable dynamics. Main tools used to prove the uniqueness and asymptotic stability of travel-
ing waves are comparison principle, spectrum analysis, and constructions of super/subsolutions.
For the existence of traveling waves, the system is converted to an integral equation which is
common in the study of monostable dynamics but quite rare in the study of bistable dynamics.
The main purpose of this paper is to introduce a general framework for the study of traveling
waves in discrete periodic media.

1. Introduction

In many mathematical models, evolution of chemical or biological substances are quite

often described by reaction-diffusion-convection equations. In the one space dimensional

setting, a typical example is

(1.1) ut = (a(x)ux)x + b(x)ux + f(u, x), x ∈ R, t > 0,

where u = u(x, t) is related to a phase indicator in phase transition models or a density

in population genetics with x and t being the space and time coordinates respectively.

For example, (1.1) arises in the model of thermo-diffusive premixed flame propagation

in which u represents the temperature; see [31, 46] for more physical background of this

equation.

A semi-discretization of (1.1) takes the form, for u(t) = {ui(t)}i∈Z,

(1.2) u̇i :=
dui

dt
=

ai+1/2[ui+1 − ui] − ai−1/2[ui − ui−1]

h2
+

bi[ui+1 − ui−1]

2h
+ fi(ui)

where h is the mesh size, ai+1/2 = a([i + 1/2]h), bi = b(ih) and fi(s) = f(s, ih). Indeed,

the system (1.2) can also be derived directly from many biological models such as that in

a patch environment (cf. [40, 42]). In population genetics, for example, ui(t) represents

a gene fraction or a population density at time t at position i of a habitat. The habitat

is divided into discrete regions or niches. Migration moves individuals to new niches
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according to the law (1.2) which can be interpreted as follows. The rate of change at

time t at position i is equal to the sum of fluxes, transports, and sources. Under the

assumption that only nearest neighbors can interact each other, the flux towards the

position i from the right is proportional to the gradient ui+1 − ui with proportional

constant ai+1/2/h
2. Similarly, the flux from the left is [ui−1−ui]ai−1/2/h

2. The transport

is represented by the term bi[ui+1 − ui−1]/h
2 and the source by fi(ui). See, e.g., the

work of Weinberger [44] for a general framework including continuous models and fully

discrete models. Additional references will be mentioned below.

Based on this prototype, we shall consider a general system, for u(·) := {ui(·)}i∈Z,

u̇i(t) =
∑

k

ai,k ui+k(t) + fi(ui(t)), t > 0, i ∈ Z,(1.3)

under the following assumptions.

(A1) Periodicity: There exists a positive integer n such that

ai+n,k = ai,k , fi+n(·) = fi(·) ∈ C2(R) ∀ i, k ∈ Z.

(A2) Existence of ordered steady states: There are Φ± = {φ±
i }i∈Z satisfying∑

k

ai,kφ
±
i+k + fi(φ

±
i ) = 0, φ±

i+n = φ±
i , φ−

i < φ+
i ∀ i ∈ Z.

It can be shown that after a normalization, i.e., a change of variable, the ordered

states take the canonical form

Φ+ = 1 := {1}i∈Z, Φ− = 0 := 01.

(A3) Ellipticity:

ai,k > 0 ∀ k 6= 0, ai,0 := −
∑
k 6=0

ai,k < 0 ∀ i ∈ Z.

Since a linear function can always be added to the function fi(·), the constant ai,0 can

be set at any preferable value. The particular choice of ai,0 that we set here is to obtain

the identity ∑
k

ai,k[ui+k − ui] =
∑

k

ai,kui+k =
∑

k

ai,k−i uk.

Without loss of generality, we shall assume that the system (1.3) cannot be decoupled

into independent subsystems. This amounts to the following

(A4) Non-decoupledness: For each integer i 6= j, there exist integers i0, · · · , im such

that i0 = i, im = j and
m−1∏
s=0

ais,is+1−is > 0.

The following technical condition will also be assumed.
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(A5) Finite Range Interaction: There exists an integer k0 > 1 such that

ai,k = 0 if |k| > k0.

We are interested in solutions that connect the two steady states in the sense that

lim
i→±∞

[ui(t) − φ±
i ] = 0 ∀t > 0.(1.4)

Among all solutions, we are looking for traveling waves, i.e., those solutions that

satisfy, for some constants c ∈ R and T > 0,

c T ∈ nZ, ui(T ) = ui−cT (0) ∀ i ∈ Z.(1.5)

For such a solution, we call c the wave speed since it represents the average number

of grid points that the wave marches per unit time. A traveling wave u(·) defined on

[0,∞) can be uniquely extended to be a traveling wave on R such that

ui(t + kT ) = ui−ckT (t) ∀ i, k ∈ Z, t ∈ R.

Among all the positive T ’s that satisfy (1.5), there is one that is minimal, which we

shall call the period. Later on we shall show that the period of a wave with speed c 6= 0

is indeed T = n/|c|.

The study of traveling waves in reaction-diffusion equations can be traced back to the

pioneering works of Fisher [20] and Kolmogorov, Petrovsky, and Piskunov [29] in 1937.

The main concerns are the existence, uniqueness, and stability of traveling waves. For

this, we refer the reader to, for example, [1, 2, 3, 9, 10, 17, 18, 19, 26, 27, 28, 35, 37, 43] and

the references cited therein. For the related spatial and/or temporal discrete versions,

we refer the reader to, for example, [4, 11, 12, 13, 14, 15, 32, 33, 44, 47, 53, 54, 55] and

the references cited in these papers.

In the above mentioned papers, the media in which the waves propagate are ho-

mogeneous. But, in many natural environments, such as noise effect in biology and

non-homogeneous porous media in transport theory, we often encounter heterogeneous

media; see, for example, [40, 42]. A typical heterogeneous medium that attracts research

interest is the one with certain periodicity. This can be seen in the earlier papers by

Gärtner & Freidlin [22], Freidlin [21], Shigesada, Kawasaki, & Teramoto [41], etc. In a

series of papers [48, 49, 50, 51, 52], Xin studied traveling waves in periodic media for

a reaction-diffusion-convection equation. See also the recent papers by Nakamura [36],

Shen [38, 39], Weinberger [45], Berestycki & Hamel [5], Berestycki, Hamel, & Nadirachvili

[6], Berestycki, Hamel, & Roques [7, 8], and Matano [34] for various heterogeneous me-

dia.

For the discrete version of a generalized Fisher’s equation in periodic media, the

existence of traveling waves was first obtained by Hudson & Zinner [24, 25]. Recently,

one of the authors and Hamel [23] provided a different proof for the existence of traveling

waves for all speeds c > cmin for some positive minimal speed cmin. Moreover, it was
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shown in [23] that the condition c > cmin is not only a sufficient condition but also a

necessary condition for the existence of traveling waves.

In this paper, we are mainly concerned with the existence, uniqueness, and stability

of traveling waves in the bistable case, i.e., under the assumption that both steady

states Φ+ and Φ− are stable under the dynamics of (1.3). A general study of traveling

waves for bistable dynamics which possesses a comparison principle can be found in

[10]. Although the method presented in [10] (see also [1]) is quite general, translation

invariance (equivalent to homogeneous media) is used, thereby providing a full usage of

the comparison principle. Here the main difficulty is the lack of spatial (grid) translation

invariance. In this article we intend to develop a general theory for the traveling wave

problem for the general dynamics (1.3).

The paper is organized as follows.

In §2, we provide a few basics for the ode system (1.3). First we state and prove a

comparison principle to be used throughout this paper. After introducing steady states

and their stability, we study an eigenvalue problem associated with a linearization of

(1.3) about a generic n-periodic steady state Φ = {φi}. The problem can be stated as

follows: Given λ ∈ R, find (µ, {ψi}) ∈ R × RZ such that{
µψi =

∑
k ai,ke

kλ ψi+k + Liψi ∀i ∈ Z,

ψi+n = ψi > 0 ∀i ∈ Z, maxi∈Z{ψi} = 1,

where Li = f ′
i(φi) for all i. The existence of a unique solution follows from a standard

Krein-Rutman theorem [30]. Our main result, Theorem 1, states that as a function

of λ, µ(λ) is strictly convex. This result is surprising since we do not need any specific

information about the (infinite) matrix {ai,k} and the vector {Li}. Such a convexity

result provides critical information about the real roots of the characteristic equation

µ(z)+ cz = 0 for any given c ∈ R. Also, in §2, we introduce and study attraction basins

of stable steady states. A few examples are also provided for illustration.

The rest of the sections can be grouped into two parts.

In part I, consisting of §3–§5, we establish the uniqueness and stability of traveling

waves, under the key assumption that Φ+ = 1 and Φ− = 0 are stable steady states and

that there exists at least one traveling wave, i.e., a solution to (1.3)–(1.5).

First, in §3, we show (Theorem 2) that a traveling wave must have exponential tails:

lim
i−ct→−∞

ui(t)

ψ0
i e(i−ct)Λ0 = h−, lim

i−ct→∞

1 − ui(t)

ψ1
i e(i−ct)Λ1 = h+,

where h+ and h− are certain positive constants, Λ0 is the unique positive root and Λ1

is the unique negative root of the characteristic equations associated with Ψ− = 0 and

Ψ+ = 1 respectively, and {ψ0
i } and {ψ1

i } are the solutions to the eigenvalue problem

with (λ, {Li}) = (Λ0, {f ′
i(0)}) and {λ, {Li}) = (Λ1, {f ′

i(1)}) respectively. The basic

idea of the proof is to construct sub-super solutions which are linear combinations of

three vector functions: {ψi(0)}, {ψi(Λ)eΛ(i−ct)} and {ψi(2Λ)e2Λ(i−ct)}, where {ψi(λ)} is
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the solution to the eigenvalue problem. Here the first one {ψi(0)} is to control the tail,

the second one {ψi(Λ)eΛ(i−ct)} is the expected asymptotic behavior, and the last one

{ψ(2Λ)e2Λ(i−ct)} is introduced to control the non-linearity of fi. A crucial key here is

the basic information about the sign of the characteristic function P (λ) = µ(λ) + cλ at

the three exponents: P (0) < 0 = P (Λ) < P (2Λ).

Next in §4 we prove the uniqueness result, Theorem 3, stating that non-zero speed

traveling waves are unique up to a time translation; namely, if (c,U) and (c̃, Ũ) are two

traveling waves, then c = c̃ and if c 6= 0, then U(·) = Ũ(· + τ) for some τ ∈ R. The

main idea is to use the exponential tail to show that a traveling wave is monotonic in t;

more precisely, if c 6= 0, then cU̇(t) < 0 for all t ∈ R.

Finally, in §5, we show (Theorem 4) that non-zero speed traveling waves are globally

exponentially stable. More precisely, if the left (near i = −∞) tail of an initial data

u(0) is in the attraction basin of 0 and its right tail (near i = ∞) is in the attraction

basin of 1, then for some constants K and τ ∗

‖u(t) − U(t + τ ∗)‖∞ ≤ Ke−νt ∀t > 0,

where ν is a positive constant depending only on {ai,k} and {fi}. The proof follows from

the original idea developed in [10], with new techniques introduced. In particular, from

a dynamical system point of view we introduced a new proof showing that a vaguely

resembling wave front (e.g. both tails in the attraction basin of the corresponding steady

states) will evolve to an asymptotically resembling wave front (e.g. asymptotically close

to the steady states at both tails).

Part II, consisting of §6-§8, is devoted to the existence of traveling waves.

In §6, we convert the traveling wave problem into an integral equation, which is quite

commonly used for monostable dynamics, but rare in the study of bistable dynamics.

Then in §7, we show under very general conditions, the existence of non-trivial solutions

to the integral equation (Theorem 5). Finally, in §8, we establish the existence of

a traveling wave under the assumption that 1 and 0 are the only stable steady states

(Theorem 6). Also, we establish in Theorem 7 the existence of a traveling wave for

the following special case:

u̇j = aj+1/2[uj+1 − uj] − aj−1/2[uj − uj−1] + bj[uj+1 − uj−1] + f(uj),

where f is a bistable nonlinearity.

Typically for bistable dynamics, the existence of a traveling wave is proven by a

homotopy method [16] or by taking the asymptotical limit, as t → ∞, of a solution

to (1.3) with an appropriate initial data [10]. Both methods are difficult to apply in

this case, since here spatial translation invariance is lost and spatial monotonicity of

the solution is not guaranteed. As one shall see in §6, the traveling wave problem

indeed corresponds to a system of equations with n unknown functions, instead of only

a scalar function for the homogeneous case. For monostable dynamics, Guo and Hamel

[23] used the sub-super-solution approach and a monotonic iteration for the differential



6 XINFU CHEN, JONG-SHENQ GUO, AND CHIN-CHIN WU

equation. For bistable dynamics, this approach faces the obvious challenge since the

speed is unknown. Here in this paper, we develop a framework (§§6,7) that unifies in a

certain sense the existence proof for both monostable and bistable dynamics.

2. Basics

In this section, we define and study linear stability of periodic steady states of (1.3).

This is equivalent to the study of an eigenvalue problem and a characteristic equation.

For reader’s convenience, we begin with one of the most important tools in the study of

parabolic equations—the comparison principle.

Throughout this paper, RZ is the normed space consisting of real bounded sequences

of the form v = {vi}i∈Z equipped with the norm ‖v‖∞ := supi |vi|.

2.1. The Comparison Principle. We shall use the following comparison principle for

the dynamical system (1.3). For convenience, we use the notation, for u(·) = {ui(·)}i∈Z,

Nu := {Niu}i∈Z, Niu(t) := u̇i(t) −
∑

k

ai,k ui+k(t) − fi(ui(t)).

Lemma 2.1. Let t0 ∈ R, c ∈ R and j ∈ Z ∪ {∞}. Assume that u(t) = {ui(t)} and

v(t) = {vi(t)} are bounded and continuous in the set

{(i, t) ∈ Z × R | t > t0, i 6 j + c t + k0}

and satisfy

Niu(t) > Niv(t) when t > t0, i < j + c t,

ui(t0) > vi(t0) when i < j + c t0,

ui(t) > vi(t) when t > t0, j + ct 6 i 6 j + ct + k0.

Then ui(t) > vi(t) for all t > t0 and integers i < j + ct.

In addition, if ui0(t0) > vi0(t0) for at least one integer i0 < j + c t0, then

ui(t) > vi(t) ∀ t > t0, i < j + c t.

Proof. Although this is a well-known result, for completeness, we provide a proof.

Set

M = sup
t>t0, i6j+c t

max{|ui(t)|, |vi(t)|}, L = max
16i6n

max
s∈[−M,M ]

|f ′
i(s)|.

For each fixed ε satisfying

0 < ε < min
16i6n

1∑
k ai,kk2 + (

∑
k ai,kk)2

,

let

Tε = sup{τ > t0 | ui(t) + εe(L+1)t(1 + εi2) > vi(t) ∀t ∈ [t0, τ ], i 6 j + ct}.
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We claim that Tε = ∞. Suppose not. Since both ‖u‖∞ and ‖v‖∞ are bounded and

continuous, there exists a finite integer l 6 j + cTε such that

ul(Tε) + εe(L+1)Tε(1 + εl2) − vl(Tε) = 0 6 ui(t) + εe(L+1)t(1 + εi2) − vi(t)

for all t ∈ [t0, Tε] and i 6 j + c t + k0. The initial and boundary values of u and v

indicate that Tε > t0 and l < j + cTε. Also,

u̇l(Tε) − v̇l(Tε) = lim
t↗Tε

ul(Tε) − vl(Tε) − [ul(t) − vl(t)]

Tε − t
6 −(L + 1)εe(L+1)Tε(1 + εl2).

Hence

0 6 Nlu(Tε) −Nlv(Tε)

= u̇l − v̇l +
∑

k

al,k{[vl+k − vl] − [ul+k − ul]} + fl(vl) − fl(ul)
∣∣∣
t=Tε

6 −(L + 1)εe(L+1)Tε(1 + εl2) +
∑

k

al,k{2lk + k2}ε2e(L+1)Tε + Lεe(L+1)Tε(1 + εl2)

= εe(L+1)Tε

{
− 1 − εl2 + 2εl

∑
k

al,kk + ε
∑

k

al,kk
2
}

6 εe(L+1)Tε

{
− 1 + ε

( ∑
k

al,kk
)2

+ ε
∑

k

al,kk
2
}

< 0

and we obtain a contradiction. Thus, we must have Tε = ∞; i.e.,

ui(t) + εeLt(1 + εi2) > vi ∀ t > t0, i 6 j + c t.

Sending ε ↘ 0 we obtain ui > vi for all t > t0, i 6 j + c t.

Now suppose ui0(t0) > vi0(t0) for some i0 < j + ct0. Then using ui > vi and the

non-negativity of ai,k for k 6= 0, we have

d

dt
(ui0 − vi0) = Ni0u −Ni0v +

∑
k

ai0,k[ui0+k − vi0+k] + fi0(ui0) − fi0(vi0)

> −(|ai0,0| + L) (ui0 − vi0) when t > t0, i0 < j + ct.

Gronwall’s Inequality then implies that

ui0(t) − vi0(t) ≥ (ui0(t0) − vi0(t0))e
−(|ai0,0|+L)(t−t0)

for all t satisfying t > t0 and i0 < j + ct. Now let i1 be an integer such that ai1,i0−i1 > 0.

A similar calculation as above gives

d

dt
(ui1 − vi1) > −(|ai1,0| + L) (ui1 − vi1) + ai1,i0−i1 [ui0 − vi0 ].

This implies that ui1 > vi1 for every t satisfying t > t0 and i1 < j + ct. Using the

non-decoupledness assumption, we can inductively show that ui > vi for all t > t0 and

integer i satisfying i < j + ct. This completes the proof. ¤
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Remark 2.1. The proof of the strong comparison can be refined to show that there

exists a sequence of positive functions {δi(t)}i∈Z on (0,∞) that depends only on M ,

{ai,k} and {fi} such that under the assumption of Lemma 2.1 with j = ∞,

ul+i(t) − vl+i(t) > [ul(0) − vl(0)]δi(t) ∀ l, i ∈ Z, t > 0.

2.2. Steady States and Their Stability. A steady state (or equilibrium) of (1.3)

is a vector Φ = {φi}i∈Z satisfying∑
k

ai,kφi+k + fi(φi) = 0 ∀ i ∈ Z.(2.1)

It is called periodic (or more precisely n-periodic) if φi+n = φi for every i ∈ Z.

The linearization of (1.3) around a steady state Φ = {φi} is, for v = v(t) = {vi(t)},

v̇i(t) =
∑

k

ai,k vi+k(t) + f ′
i(φi)vi(t), t > 0, i ∈ Z.(2.2)

In the sequel, a vector Ψ = {ψi}i∈Z ∈ RZ is called bounded if ‖Ψ‖∞ := supi |ψi| < ∞.

Definition 2.1. A steady state Φ = {φi}i∈Z is called stable if any solution to (2.2) with

bounded initial data approaches zero as t → ∞. It is called unstable if (2.2) admits an

unbounded solution for some bounded initial data.

To investigate the stability, we consider solutions of (2.2) that have the form v(t) =

{ψie
µt+iλ} and satisfy vi+cT (T ) = vi(0) > 0 for all i ∈ Z, where µ is a real number, T is

a positive constant, and c is a nonzero constant such that cT is an integer multiple of n.

If λ and µ are related by µ + cλ = 0, then {ψi} is periodic. This leads to the following

eigenvalue problem: Given λ ∈ R, find (µ, {ψi}) ∈ R × RZ such that{
µψi =

∑
k ai,ke

kλ ψi+k + Liψi ∀i ∈ Z,

ψi+n = ψi > 0 ∀i ∈ Z, maxi∈Z{ψi} = 1,
(2.3)

where Li = f ′
i(φi). The following result will play a fundamental role in our analysis.

Theorem 1. Suppose Li+n = Li ∈ R for every i ∈ Z. Then for each λ ∈ R, (2.3)

admits a unique solution (µ = µ(λ), Ψ = Ψ(λ)). In addition, as a function of λ ∈ R,

µ(·) and Ψ(·) are analytic, µ(·) is strictly convex,

min
i

Li 6 µ(0) 6 max
i

Li,

and lim inf |λ|→∞ µ(λ) e−|λ| > 0. Consequently, for any c ∈ R, there are at most two real

roots to the characteristic equation

P (c, ·) = 0 where P (c, λ) := cλ + µ(λ).(2.4)

Furthermore, suppose Φ = {φi} is an n-periodic steady state and Li = f ′
i(φi) for all i.

Then Φ is stable if and only if µ(0) < 0, and Φ is unstable if and only if µ(0) > 0.
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Proof. We divide the proof into several steps.

1. Decomposing i + k as j + mn where j ∈ {1, · · · , n} and m ∈ Z and using

ψi+k = ψj, we obtain∑
k

ai,k ekλψi+k =
n∑

j=1

∑
m∈Z

ai,j+mn−ie
(j+mn−i)λψj =:

n∑
j=1

Aijψj,

where

Aij = Aij(λ) :=
∑
m∈Z

ai,j+mn−ie
(j+mn−i)λ.

Thus, (2.3) is equivalent to, for unknown µ ∈ R and x = (x1, · · · , xn)T ∈ Rn,

µx = Bx, x > 0, ‖x‖∞ = 1,(2.5)

where

B = B(λ) := ( Aij(λ) )n×n + diag(L1, · · · , Ln).

Here x = (x1, · · · , xn)T > 0 or (> 0) means that xi > 0 (or > 0) for all i = 1, · · · , n.

Also, ‖x‖∞ = maxi{|xi|}. One can verify that all the non-diagonal entries of the ma-

trix B are non-negative. In addition, for κ := max16i6n{|Aii| + |Li|} + 1, the non-

decoupledness condition implies that

x > 0,x 6= 0 ⇒ [κ I + B]nx > 0.

2. The eigen-problem (2.5) can be solved as follows. Define

X = {x ∈ Rn | x > 0, ‖x‖∞ = 1}, µ∗ = sup
x∈X

sup {h ∈ R | hx 6 Bx}.

One can show that there exists x∗ ∈ X such that µ∗x∗ 6 Bx∗. We claim that µ∗x∗ =

Bx∗. Indeed, if Bx∗ 6= µ∗x∗, then, since Bx∗ − µ∗x∗ > 0,

0 < [κ I + B]n[Bx∗ − µ∗x∗] = B[κ I + B]nx∗ − µ∗[κ I + B]nx∗.

This implies, for y := [κ I + B]nx∗/‖[κ I + B]nx∗‖∞, that y ∈ X and µ∗y < By, i.e.,

(µ∗ + ε)y 6 By for some small positive ε, contradicting the definition of µ∗. Thus,

µ∗x∗ = Bx∗ and we obtain a solution to (2.5).

3. For uniqueness, suppose (µ,x) is an arbitrary solution to (2.5). Then

[κ + µ]nx = [κ I + B]nx > 0,

i.e., x > 0. Also, by the definition of µ∗, µ 6 µ∗. Set K = min{k > 0 | x∗ 6 kx}. Then

x∗ 6 Kx. We claim that x∗ = Kx. Indeed, if it is not true, then, since Kx − x∗ > 0,

0 < [κI + B]n(Kx − x∗)

= K(κ + µ)nx − (κ + µ∗)nx∗

6 K(κ + µ∗)nx − (κ + µ∗)nx∗

= (κ + µ∗)n(Kx − x∗)

which implies that Kx > x∗. This contradicts to the minimality of K. Thus, x∗ = Kx,

which implies that K = 1 and µ = µ∗.
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4. Using an idea similar to that in the previous step one can show that µ is a simple

eigenvalue of B, so that µ is a simple zero of the determinant of the matrix µI − B.

Since B is analytic in λ, we see that µ = µ(λ) is also an analytic function of λ ∈ R.

Let ψj = 1. Using aj,k > 0 for k 6= 0 and (2.3), we have

µ(0) 6
∑

k

aj,k + Lj = Lj 6 max
i

Li.

Set ψl = mini ψi. Note that ψl > 0. Then from (2.3) it follows that

µ(0)ψl >
∑

k

al,kψl + Llψl = Llψl ⇒ µ(0) > min
i

Li.

Finally, one derives from the equation

(µ − ai,0 − Li)ψi =
∑
k 6=0

ai,ke
kλψi+k

and the non-decoupledness condition that µ has an order at least e|λ| as ±λ → ∞; that

is, lim inf |λ|→∞ µ(λ)e−|λ| ∈ (0,∞) ∪ {∞}.
5. We now show that µ(λ) is strictly convex. Let λ1 and λ2 be any different real

numbers and t ∈ (0, 1). Consider λ = tλ1 + (1 − t)λ2. We shall use the inequality

xtz1−t < tx + (1 − t)z ∀x > 0, z > 0, x 6= z.

For all i ∈ Z, set

ψ̃i(λ2) :=
[ ψi(λ)

ψt
i(λ1)

]1/(1−t)

⇒ ψi(λ) = [ψi(λ1)]
t[ψ̃i(λ2)]

1−t.

Then

µ(λ) − ai,0 − Li =
1

ψi(λ)

∑
k 6=0

ai,ke
kλψi+k(λ)

=
∑
k 6=0

ai,k

[
ekλ1

ψi+k(λ1)

ψi(λ1)

]t[
ekλ2

ψ̃i+k(λ2)

ψ̃i(λ2)

]1−t

6 t
∑
k 6=0

ai,ke
kλ1

ψi+k(λ1)

ψi(λ1)
+ (1 − t)

∑
k 6=0

ai,ke
kλ2

ψ̃i+k(λ2)

ψ̃i(λ2)

= t{µ(λ1) − ai,0 − Li} + (1 − t)
∑
k 6=0

ai,ke
kλ2

ψ̃i+k(λ2)

ψ̃i(λ2)
.

The inequality must be strict for at least one i, since otherwise we would have

ekλ1
ψi+k(λ1)

ψi(λ1)
= ekλ2

ψ̃i+k(λ2)

ψ̃i(λ2)
whenever ai,k > 0.

By non-decoupledness condition, this implies that

ψj(λ1) =
ψ0(λ1)

ψ̃0(λ2)
e(λ2−λ1)jψ̃j(λ2)

for all j, which is impossible since both {ψi(λ1)} and {ψ̃i(λ2)} are n-periodic.
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Thus, for x := (ψ̃1(λ2), · · · , ψ̃n(λ2))
T , (1 − t)B(λ2)x > (6=){µ(λ) − tµ(λ1)}x. Con-

sequently, by the characterization of the eigenvalue, we see that (1 − t)µ(λ2) > µ(λ) −
tµ(λ1), i.e., µ(λ) < tµ(λ1) + (1 − t)µ(λ2). Hence µ(·) is strictly convex.

6. Suppose Li = f ′
i(φi) where Φ = {φi} is periodic. We show that Φ is stable if and

only if µ(0) < 0.

(i) Suppose µ(0) < 0. Let v(·) = {vi(·)} be a solution to (2.2) with bounded initial

data. Set M = supi |vi(0)|/ψi(0). Then by the comparison principle, −Mψi(0)eµ(0)t 6
vi(t) 6 Mψi(0)eµ(0)t for all i ∈ Z and all t > 0. It then follows that, uniformly in i ∈ Z,

vi(t) decays to zero exponentially fast as t → ∞. Thus Φ is stable.

(ii) Suppose µ(0) > 0. Then v := {ψi(0)eµ(0)t} is a solution to (2.2) with bounded

initial data, so that Φ is not stable.

The above two arguments imply that Φ is stable if and only if µ(0) < 0. In a similar

manner, one can show that Φ is unstable if and only if µ(0) > 0. This completes the

proof of Theorem 1. ¤

2.3. An Example for Steady State. Suppose there exist constants M± such that

fi(·) < 0 in (M+,∞), fi(·) > 0 in (−∞,M−) ∀ i ∈ Z.

Pick an arbitrary constant M > M+. Consider the initial value problem of the ode

system (1.3) subject to the initial condition

ui(0) = M ∀ i ∈ Z.

Simple comparison shows that ui+n(·) ≡ ui(·) and

u̇i(t) 6 0, M− 6 ui(t) 6 M ∀ i ∈ Z.

It follows that for each i ∈ Z, there exists the limit φ∗
i := limt→∞ ui(t). One can show

that Φ∗ := {φ∗
i } is an equilibrium of (1.3). This equilibrium is n-periodic and is maximal

in the sense that if Φ = {φi} is a bounded equilibrium, then Φ 6 Φ∗, i.e., φi 6 φ∗
i for

every i ∈ Z.

Similarly, one can show that there exists an equilibrium Φ∗ = {φ∗i} that is n-periodic

and is minimal in the sense that if Φ is a bounded equilibrium, then Φ > Φ∗.

Notice that if u(t) = {ui(t)}, t > 0, is a solution to (1.3) with bounded initial data,

then, by the comparison principle,

φ∗i 6 lim inf
t→∞

ui(t) 6 lim sup
t→∞

ui(t) 6 φ∗
i uniformly in i ∈ Z.
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2.4. Normalization. Suppose Φ± = {φ±
i } are two ordered periodic steady states.

Introduce a change of variable u = {ui} 7→ Θ = {θi} :

ui = θi φ
+
i + [1 − θi] φ

−
i ∀ i ∈ Z.

Then the system (1.3) is equivalent to the new system, for Θ(t) = {θi(t)},

θ̇i =
∑
k 6=0

ãi,k[θi+k − θi] + f̃i(θi)

where

f̃i(s) =
fi(sφ

+
i + [1 − s]φ−

i ) − sfi(φ
+
i ) − [1 − s]fi(φ

−
i )

φ+
i − φ−

i

∀ i ∈ Z,

ãi,k =
φ+

i+k − φ−
i+k

φ+
i − φ−

i

ai,k ∀ i ∈ Z, k 6= 0.

Notice that f̃i+n(·) = f̃i(·), ãi+n,k = ãi,k and f̃i(0) = 0 = f̃i(1) for all i, k.

Observe that the transformation does not change the stability of any equilibrium. In

particular, the stability of the equilibria Φ+ and Φ− of the original system (1.3) are the

same as that of 1 := {1}i∈Z and 0 := 01 of the new system. This can be verified by using

the transformation from ṽ(t) = {ṽi(t)} to v(t) = {vi(t)} via vi(t) = φ−
i + (φ+

i −φ−
i )ṽi(t)

for the corresponding linearized equations.

2.5. An Example for Stability.

Lemma 2.2. Suppose fi = f for all i ∈ Z, f ∈ C1(R), and f(a) = 0. Then a1 is a

stable steady state if and only if f ′(a) < 0; it is unstable if and only if f ′(a) > 0.

Proof. The assertion follows from Theorem 1 by observing that Li = f ′
i(a) = f(a) for

all i ∈ Z. ¤

2.6. Attraction Basin of Stable Steady States. Note that our Definition 2.1 of

stability for steady states is in the sense of linear stability. Here, we shall show that

the linear stability implies a form of non-linear stability. For this purpose, we denote by

u(t) = Stv the solution to (1.3) with initial value u(0) = v.

Suppose Φ ∈ RZ is an n-periodic steady state of (1.3). Its attraction basin consists

of all vectors v ∈ RZ such that the solution u to (1.3) with initial value u(0) = v satisfies

limt→∞ ‖u(t) − Φ‖∞ = 0. More precisely,

A(Φ) := {v ∈ RZ | lim
t→∞

‖Stv − Φ‖∞ = 0}.

In the sequel, we shall assume that

|f ′
i(s)| 6 L, |f ′′

i (s)| 6 M ∀s ∈ R, i ∈ Z.
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Lemma 2.3. Assume that Φ = {φi} is an n-periodic steady state and is stable in the

sense of Definition 2.1. Then the following statements hold:

(i) Φ is non-linearly stable in the sense that there exists η > 0 satisfying

A(Φ) ⊃ {v ∈ RZ | ‖v − Φ‖∞ 6 η}.

(ii) Suppose v = {vi} ∈ A(Φ). Then for every ε > 0, there exist positive constants δ

and τ such that the solutions w+ and w− to

Nw±(t) = ±δ1 ∀t > 0, w±(0) = v ± δ1(2.6)

satisfy

Φ − ε1 6 w−(t) < w+(t) 6 Φ + ε1 ∀t > τ.

Proof. (i) Let Ψ = {ψi} be the solution to (2.3) with Li = f ′
i(φi), λ = 0 and µ = µ(0).

Since Φ is a stable steady state, µ < 0. Consider for η > 0 the function

u±(t) = Φ ± ηeµt/2Ψ.

We can calculate

Niu
+(t) = ηeµt/2

{
1
2
µψi −

∑
k

ai,kψi+k − f ′
i(φi)ψi

}
+

{
fi(φi) + f ′

i(φi)ηψie
µt/2 − fi(φi + ηψie

µt/2)
}
.

Using the equation for Ψ and the boundedness of f ′′
i , we obtain

Niu
+(t) > −1

2
µηeµt/2ψi − Mη2eµtψ2

i = 1
2
ηψie

µt/2
{
− µ − 2Mηeµt/2ψi

}
> 0

provided η < |µ|/(2M). Thus u+ is a supersolution. Similarly, we can show that u−(t)

is a subsolution. Thus, whenever −ηΨ 6 v−Φ 6 ηΨ, u−(t) 6 Stv 6 u+(t) for all t > 0.

Consequently, ‖Stv − Φ‖∞ 6 ηeµt/2 for all t > 0. This proves the assertion (i).

(ii) Let ε ∈ (0, η] be an arbitrarily fixed small positive number. It is clear that

w−(t) < w+(t) for all t > 0. We prove the assertion (ii) in two steps. In the first step

we consider a special v and in the second step a general v.

1. Since Φ + η1 ∈ A(Φ), there exists τ1 > 0 such that ‖St(Φ + η1) − Φ‖∞ < ε/2 for

all t > τ1. Now by continuity, there exists δ1 > 0 such that the solution w = {wi} to

Nw(t) = δ11 ∀ t > 0, w(0) = Φ + η1

satisfies w(t) ≤ St(Φ + η1) + 1
2
ε1 for all t ∈ [0, 2τ1]. Consequently, this implies that

w(t) 6 Φ + ε1 for all t ∈ [τ1, 2τ1]; in particular, as ε 6 η, w(τ1) 6 Φ + η1 = w(0),

so that by the comparison principle, w(t + τ1) 6 w(t) for all t > 0. Starting from

w(t) ≤ Φ + ε1 for all t ∈ [τ1, 2τ1], an induction then implies that w(t) 6 Φ + ε1 for all

t ∈ [kτ1, (k + 1)τ1] and for all positive integer k. Hence w(t) 6 Φ + ε1 for all t > τ1.

2. Now suppose v ∈ A(Φ). Then there exists τ2 > 0 such that Stv ≤ Φ+ 1
2
η1 for all

t > τ2. Consequently, there exists δ ∈ (0, min{η, δ1}] such that the solution w+ to (2.6)

satisfies w+(τ2) 6 Φ + η1. As δ 6 δ1, we then have w+(t + τ2) 6 w(t) for all t > 0.

Thus, w+(t) 6 w(t − τ2) 6 Φ + ε1 for all t > τ1 + τ2 =: τ .
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Similarly, we can estimate the lower bound. This completes the proof. ¤

The following special case provides us an idea about the size of A(Φ).

Lemma 2.4. Assume that for some a ∈ R and positive constants α and β,

fi(z) > 0 = fi(a) > fi(s) ∀z ∈ [a − β, a), s ∈ (a, a + α], i ∈ Z.

Then {v ∈ RZ | − β1 6 v − a1 6 α1} ⊂ A(a1).

Proof. Set

f+(s) = max
16i6n

fi(s), f−(z) = min
16i6n

fi(z).

Then f+(s) < 0 = f±(a) < f−(z) for all z ∈ [a − β, a) and s ∈ (a, a + α]. Denote by

w±(t) the solution to

ẇ±(t) = f±(w±(t)), w+(0) = a + α, w−(0) = a − β.

It is easy to show that limt→∞ w±(t) = a and that w+(t)1 is a supersolution and w−(t)1

is a subsolution to (1.3). Hence, if v ∈ RZ satisfies (a − β)1 6 v 6 (a + α)1, then

w−(t)1 6 Stv 6 w+(t)1 for all t > 0. This implies that limt→∞ ‖Stv − a1‖∞ = 0,

thereby completing the proof. ¤

The rest of the paper is divided into two parts. In the first part, consisting of §§3–

5, we shall study the uniqueness and globally asymptotic stability of traveling waves,

under the assumption that the steady states Φ+ and Φ− are stable. In the second part,

remaining sections, we consider the existence of traveling waves.

Part I: Uniqueness and Global Stability

3. Exponential Tail Near Stable States

For a traveling wave, its asymptotic behavior near i = ±∞ determines its stability

and other important properties of the wave. In this section, we investigate the rate of

approach to steady state as i → ∞ or i → −∞ of a generic traveling wave. We shall

only consider the case that the steady state is stable.

3.1. The Exponential Tails. Suppose (c,u) solves (1.3)–(1.5). Since u is a traveling

wave, it is natural to postulate that, for some positive constants h±,

ui(t) − φ−
i ≈ h− eλ−(i−ct)ψ−

i as i → −∞,

φ+
i − ui(t) ≈ h+eλ+(i−ct)ψ+

i as i → ∞

where λ+ < 0 < λ− and {ψ±
i } are n-periodic. This leads to the system (2.3), together

with the characteristic equation µ(λ) + cλ = 0.

By the normalization mentioned in §2.4, in the sequel, we assume without loss of

generality that Φ+ = 1 and Φ− = 0. For each λ ∈ R, we denote by (µ0(λ), Ψ0(λ)) the
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solution to (2.3) with Li := f ′
i(0), and by (µ1(λ), Ψ1(λ)) the solution with Li = f ′

i(1).

The characteristic equations associated with 0 and 1 are, respectively,

P 0(c, λ) := µ0(λ) + cλ = 0, λ > 0;(3.1)

P 1(c, λ) := cλ + µ1(λ) = 0, λ 6 0.(3.2)

If 0 is a stable steady state, then (3.1) has exactly one root, which is positive, denoted

by Λ0. We denote by {ψ0
i } the corresponding eigenvector to (2.3). Analogously, if 1

is a stable steady state, then (3.2) has exactly one root, which is negative, denoted by

Λ1. The corresponding eigenvector to (2.3) will be denoted by {ψ1
i }. We shall prove the

following:

Theorem 2. Assume that (c,u) is a solution to (1.3)–(1.5) with Φ+ = 1 and Φ− = 0.

If 0 is a stable steady state, then there exists a positive constant h− such that

lim
i−ct→−∞

ui(t)

ψ0
i e(i−ct)Λ0 = h−.

Similarly, if 1 is a stable steady state, there exists a positive constant h+ such that

lim
i−ct→∞

1 − ui(t)

ψ1
i e(i−ct)Λ1 = h+.

This theorem will be proved in the subsequent subsections, by the comparison principle

and construction of sub/super solutions.

3.2. Sub/Supersolutions. Assume that Φ = {φi} is a stable n-periodic steady state.

For each λ ∈ R, denote by (µ(λ), Ψ(λ)) the unique solution to (2.3) with Li = f ′
i(φi)

for all i ∈ Z. Let P (c, λ) = cλ + µ(λ) be the characteristic function. That Φ is a stable

equilibrium means that µ(0) < 0, so that P (c, λ) = 0 has exactly two roots, one positive

and the other negative. For definiteness, we shall study the solution as i → −∞. For

this, we denote by Λ the positive root to P (c, ·) = 0.

Consider the function u± = {u±
i } defined by

u±
i (ε1, θ, ε3, t) := φi ± ε1ψ1i + θψ2ie

(i−ct)Λ ∓ ε3ψ3ie
2(i−ct)Λ(3.3)

where ε1 > 0, θ ∈ R, ε3 > 0 are parameters and

ψ1i = ψi(0), ψ2i = ψi(Λ), ψ3i = ψi(2Λ).

Since P (c, Λ) = 0 and
∑

k ai,kφi+k + fi(φi) = 0,

Niu
±(t) := u̇±

i −
∑

k

ai,ku
±
i+k − fi(u

±
i )

= u̇±
i −

∑
k

ai,k[u
±
i+k − φi+k] − f ′

i(φi)[u
±
i − φi] − R±

i

= ∓ε1P (c, 0)ψ1i ± ε3 P (c, 2Λ)ψ3ie
2(i−ct)Λ − R±

i
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where R±
i := fi(u

±
i ) − fi(φi) − f ′

i(φi)[u
±
i − φi] and can be estimated, when i 6 ct and

ε3ψ3i 6 |θ|ψ2i, by

|R±
i | 6 M |u±

i − φi|2 6 M [ε1ψ1i + 2|θ|ψ2ie
(i−ct)Λ]2 6 2Mε2

1ψ
2
1i + 8Mθ2e2(i−ct)Λψ2

2i.

It then follows that, when i 6 ct and ε3ψ3i 6 |θ|ψ2i,

±Niu
±(t) > ε1ψ1i[−P (c, 0) − 2Mε1ψ1i] + e2(i−ct)Λ[P (c, 2Λ)ε3ψ3i − 8Mθ2ψ2

2i].

As P (c, 0) < 0 = P (c, Λ) < P (c, 2Λ), ±Niu
± > 0 if

0 6 ε1 6 E1, ε3 = E3θ
2, |θ| 6 E2,(3.4)

where

E1 := min
i

−P (c, 0)

2Mψ1i(0)
, E2 :=

1

E3

min
i

ψ2i

ψ3i

, E3 := max
i

8Mψ2
2i

P (c, 2Λ)ψ3i

.

Therefore, we have proved the following lemma.

Lemma 3.1. Assume that Φ = {φi} is a stable n-periodic steady state. Let u± be defined

as (3.3). Then there exist positive constants E1, E2, E3 such that, in the parameter range

(3.4),

Niu
+(t) > 0 > Niu

−(t) ∀ t ∈ R, i 6 c t.

3.3. Proof of Theorem 2. Let (c,u) be a solution to (1.3)-(1.5) with Φ+ = 1 and

Φ− = 0. Using the transformation

ũi(t) = 1 − u−i(t) ∀ t ∈ R, i ∈ Z,

if necessary, we need only consider the behavior of the solution as i → −∞. Hence we

assume that 0 is a stable steady state. For simplicity, we write (µ0, Ψ0, {ψ0
i }, Λ0) as

(µ, Ψ, {ψi}, Λ). For each m ∈ Z, we define

δm := max
−k06i−ct60, t∈[0,T ]

umn+i(t)

ψi(Λ)eΛ(i−ct)
= max

−k06i−ct60, t∈R

umn+i(t)

ψi(Λ)eΛ(i−ct)
.

Here the second equality is derived from the fact that ui+kcT (t + kT ) = ui(t) for all

integers i, k and t ∈ R. Since limj→−∞ uj(t) = 0, we have limm→−∞ δm = 0.

When δm 6 E2/4, we define

θm =
2δm

1 +
√

1 − 4δm/E2

, ε3m = E3θ
2
m.

Then δm = θm(1 − θm/E2) so that, when −k0 6 i − ct 6 0,

umn+i(t) 6 δmψi(Λ)e(i−ct)Λ = θm[1 − θm/E2]ψi(Λ)e(i−ct)Λ

6 θmψi(Λ)e(i−ct)Λ − E3θ
2
mψi(2Λ)e2(i−ct)Λ

= u+
i (0, θm, ε3m, t).

Now define

ε1m = min{ε > 0 | umn+i(0) 6 u+
i (ε, θm, ε3m, 0) for all i 6 0}.
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Since u+
i (ε, θm, ε3m, 0) > εψi(0) and limj→−∞ uj = 0, there exists m0 ¿ −1 such that

for every integer m 6 m0, there holds 0 6 ε1m < E1, 0 < θm < E2. This implies, by the

comparison principle, that for each integer m 6 m0,

umn+i(t) 6 u+
i (ε1m, θm, ε3m, t) ∀t > 0, i 6 c t.

We claim that ε1m = 0. Suppose not. Then, by the strong comparison principle,

umn+i(T ) < u+
i (ε1m, θm, ε3m, T ) ∀ i 6 cT.

Since limi→−∞ ui(T ) = 0, these strict inequalities imply the existence of ε ∈ (0, ε1m)

such that

umn+i(T ) < u+
i (ε, θm, ε3m, T ) ∀ i 6 cT.

Since ui(0) = ui+cT (T ) and u+
i (0) = u+

i+cT (T ) for all i ∈ Z, the above inequality implies

that umn+i(0) 6 u+
i (ε, θm, ε3m, 0) for all i 6 0, contradicting the definition of ε1m.

Thus, ε1m = 0 when m 6 m0. Consequently, by the comparison principle, umn+i(t) 6
u+

i (0, θm, ε3m, t) for all t > 0 and integers i 6 ct. By the definition of u+
i and periodicity,

we then obtain

umn+i(t) 6 2δm ψi(Λ) e(i−ct)Λ

1 +
√

1 − 4δm/E2

∀ t ∈ R, i 6 ct.

In a similar manner, define

δ̂m := min
−k06i−ct60, t∈[0,T ]

umn+i(t)

ψi(Λ)e(i−ct)Λ
= min

−k06i−ct60, t∈R

umn+i(t)

ψi(Λ)e(i−ct)Λ
.

We can show that, when m 6 m0,

umn+i(t) > 2δ̂mψi(Λ) e(i−ct)Λ

1 +

√
1 + 4δ̂m/E2

∀ t ∈ R, i 6 ct.

To tighten the upper and lower bounds, we consider the function

wi(t) := ui(t)/[ψi(Λ)e(i−ct)Λ].

Note that

wi(T ) = wi−cT (0), ui(t) = wi(t)ψi(Λ)e(i−ct)Λ.

Then the established upper and lower bound estimates can be written as

2ĥm

1 +

√
1 + 4δ̂m/E2

6 wmn+i(t) 6 2hm

1 +
√

1 − 4δm/E2

∀ t ∈ R, i 6 ct,m 6 m0,(3.5)

where

hm := e−mnΛδm = max
−k06i−ct60, t∈[0,T ]

wmn+i(t),

ĥm := e−mnΛδ̂m = min
−k06i−ct60, t∈[0,T ]

wmn+i(t).



18 XINFU CHEN, JONG-SHENQ GUO, AND CHIN-CHIN WU

The estimates (3.5) and the definitions of ĥm and hm imply that

0 < h := lim inf
i−ct→−∞

wi(t) 6 lim sup
i−ct→−∞

wi(t) =: H < ∞.

We now show that h = H. Writing ψi(Λ) as ψi, we have

Liw := ψi ẇi(t) −
∑

j

ai,je
jΛψi+j [wi+j − wi]

= e−(i−ct)Λ{fi(ui) − f ′
i(0)ui}

> −Mu2
i e

−(i−ct)Λ = −Mw2
i ψ

2
i e

(i−ct)Λ.

Since maxi ψi = 1 and wi(t) 6 2hm+1 when i 6 ct + mn + 1 (and m 6 m0 − 1), we have

Lmn+iw > −ηmψi ∀i 6 ct + 1, ηm := 4Mh2
m+1e

n(m+1)Λ.

We shall construct subsolutions with respect to the linear operator L. For this, we

define wm := infi−ct6k0+1 wmn+i(t). Then wm 6 h and limm→−∞ wm = h. Also, for

each τ ∈ [0, T ] and each integer k in [−|c|T − n,−|c|T ], we define an auxiliary function

Wk,τ (t) := {W k,τ
i (t)}i∈Z as the solution to the initial “boundary” value problem

LiW
k,τ (t) = 0 ∀ t > τ, i < ct + 1,

W k,τ
k (τ) = 1, W k,τ

i (τ) = 0 ∀i 6= k,

W k,τ
i (t) = 0 ∀ t > τ, i > ct + 1.

One can show that W k,τ
i (t) > 0 for all t > τ, i < ct + 1.

Now suppose that h < H. Then there exist an integer k ∈ [−n − |c|T,−|c|T ], a

sequence {tl}∞l=0 in [0, T ], and an integer sequence {ml}∞l=0 such that liml→∞ ml = −∞
and wmln+k(tl) > 1

2
(H + h). For each integer l > 0, consider the function W = {Wi}

defined by

Wi(t) = wml
− (t − tl)ηml

+ 1
2
(H − h)W k,tl

i (t).

We have

LiW(t) = −ηml
ψi 6 Lmln+iw(t) ∀ t > tl, i < ct + 1,

Wi(tl) 6 wmln+i(tl) ∀ i 6 c tl + 1,

Wi(t) 6 wmln+i(t) ∀t > tl, ct + 1 6 i 6 ct + k0 + 1.

It then follows by the comparison principle that Wi(t) 6 wmln+i(t) when t > tl and

i 6 ct + k0 + 1. In particular,

wmln+i(t) > wml
+

(H − h)δ

2
− 3Tηml

∀ t ∈ [2T, 3T ],−k0 6 i − ct 6 0,

where

δ := min{W k,τ
i (t) | − k0 6 i − ct 6 0,−n 6 k + |c|T 6 0, τ ∈ [0, T ], t ∈ [2T, 3T ]}.

This implies that

ĥml
> wml

− 3Tηml
+

(H − h)δ

2
.
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Consequently, it follows from (3.5) that

h > lim sup
l→−∞

ĥml
> h +

(H − h)δ

2
,

since limm→−∞ wm = h and limm→−∞[ηm + δ̂m] = 0. This contradicts the assumption

that H > h. Hence H = h > 0. This completes the proof of Theorem 2. ¤

4. Uniqueness of Traveling Waves

It is well-known that standing waves (i.e., traveling waves with c = 0) are not nec-

essarily unique (cf. [10]). Hence we consider the uniqueness problem only when c 6= 0.

We shall prove the following.

Theorem 3. Assume that Φ− = 0 and Φ+ = 1 are stable steady states of (1.3). Suppose

(c,u) is a traveling wave with c 6= 0. Then it is unique in the sense that if (c̃, ũ) is

another traveling wave, then c̃ = c and, for some τ > 0, ũ(t) = u(t + τ) for all t ∈ R.

In addition, cu̇i(t) < 0 for all i ∈ Z and t > 0. Furthermore, its period is n/|c|; that is,

ui

(n

c
+ t

)
= ui−n(t) ∀ t ∈ R, i ∈ Z.

This theorem implies that if (1.3)–(1.5) admits a solution (c,u) with c = 0, then any

other solution (c̃, ũ) to (1.3)-(1.5) must satisfy c̃ = 0. Hence, for bistable dynamics,

traveling wave speeds are unique.

The theorem will be proven in the following subsections.

4.1. Monotonicity in t. One key to show the uniqueness of the traveling waves is the

monotonicity in t of the wave, stated in the following lemma.

Lemma 4.1. Assume that Φ− = 0 and Φ+ = 1 are stable steady states and (c,u) is a

solution to (1.3)–(1.5). The following statements hold:

(1) If c < 0, then u̇i(t) > 0 for all i ∈ Z, t ∈ R;

(2) If c > 0, then u̇i(t) < 0 for all i ∈ Z, t ∈ R;

(3) If c = 0, then there exists a stationary wave U = {Ui} ∈ RZ satisfying∑
k

ai,kUi+k + fi(Ui) = 0 ∀ i ∈ Z, lim
i→∞

Ui = 1, lim
i→−∞

Ui = 0.

Remark 4.1. We do not know if a zero speed wave has to be stationary. We did not

find any evidence against the existence of such a zero speed non-stationary wave.

Proof. Applying Theorem 2, we have

lim
i→−∞

ui−n(0)

ui(0)
= e−nΛ0

lim
i→−∞

ui−n(0)

ψ0
i e(i−n)Λ0 lim

i→−∞

ψ0
i eiΛ0

ui(0)
= e−nΛ0

< 1,

lim
i→∞

1 − ui−n(0)

1 − ui(0)
= e−nΛ1

lim
i→∞

1 − ui−n(0)

ψ1
i e(i−n)Λ1 lim

i→∞

ψ1
i eiΛ1

1 − ui(0)
= e−nΛ1

> 1.
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It then follows that there exists a large integer i1 such that

ui−n(0) < ui(0) ∀ |i| > i1.

Consequently, as limi→−∞ ui(0) = 0 and limi→∞ ui(0) = 1, there is an integer K such

that

ui−mn(0) 6 ui(0) ∀ i ∈ Z,m > K.

Now we consider the case c > 0. By (1.5), there exists T > 0 such that cT is a multiple

of n and ui+cT (T ) = ui(0). Set k = cT/n. We have uj(T ) = uj−kn(0) for every integer

j. Thus,

ui(KT ) = ui−kKn(0) 6 ui(0) ∀ i ∈ Z.

We now define

τ ∗ = inf{τ 6 KT | ui(t) 6 ui(0) ∀ i ∈ Z, t ∈ [τ,KT ]}.

Since u is differentiable in t, we see that ui(t) 6 ui(0) for all i ∈ Z and t ∈ [τ ∗, KT ].

We claim that τ ∗ = 0. Suppose not. Then τ ∗ > 0. Since c > 0, we cannot have

u(0) = u(τ ∗). Thus, by the strong comparison principle, u(T ) > u(τ ∗ +T ), which, after

using ui(t + T ) = ui−cT (t), implies that u(0) > u(τ ∗).

Note that

lim
i→−∞

ui(t)

ui(0)
= e−cΛ0t lim

i−ct→−∞

ui(t)

ψ0
i e(i−ct)Λ0 lim

i→−∞

ψie
iΛ0

ui(0)
= e−cΛ0t

uniformly in t ∈ [0, KT ]. It then follows that there exists a large integer i2 such that

ui(t) < ui(0) ∀i 6 −i2, t ∈ [1
2
τ ∗, KT ].

Similarly, using the limiting behavior of ui(t) as i → ∞, we have

ui(t) < ui(0) ∀i > i2, t ∈ [1
2
τ ∗, KT ].

When i ∈ [−i2, i2], using continuity and ui(τ
∗) < ui(0), we see that there exists ε ∈

(0, 1
2
τ ∗] such that ui(t) < ui(0) for all t ∈ [τ ∗ − ε, τ ∗] for every integer i ∈ [−i2, i2]. In

conclusion, ui(t) < ui(0) for all i ∈ Z and t ∈ [τ ∗ − ε,KT ], contradicting the definition

of τ ∗. Thus we must have τ ∗ = 0.

That τ ∗ = 0 implies that ui(t) 6 ui(0) for all t ∈ [0, KT ]. Consequently, u̇i(0) 6 0,

for every i ∈ Z. Note that u̇ satisfies

d

dt
u̇i =

∑
j

ai,j[u̇i+j − u̇i] + f ′
i(ui)u̇i ∀ i ∈ Z, t > 0.

A strong maximum principle then implies that u̇i < 0 for all i ∈ Z and t > 0. The

relation ui(t + T ) = ui−cT (t) then also implies that u̇i < 0 for all t ∈ R and i ∈ Z.

The case c < 0 can be treated similarly.

Finally, we consider the case c = 0. This implies by (1.5) that for some T > 0,

u(T ) = u(0) or ui(t + T ) = ui(t) ∀ i ∈ Z, t ∈ R.
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By Theorem 2 and the limit of ui(0) as i → ±∞, there exists a large integer m such

that

ui(t) < ui+mn(0) ∀ i ∈ Z, t ∈ [0, T ].

Now consider the initial value problem

ẇi =
∑

k

ai,kwi+k(t) + fi(wi(t)) ∀i ∈ Z, t > 0,

with the initial data wi(0) = max0≤τ≤T ui(τ) for i ∈ Z. By the comparison principle,

one can show that

ui+mn(t) > wi(t) > ui(t + τ) ∀ i ∈ Z, t > 0, τ ∈ [0, T ].

It then follows that for any ε > 0, wi(ε) > max0≤τ≤T ui(ε + τ) = wi(0) for all i ∈ Z.

Consequently, by the comparison principle, w(t + ε) > w(t) for all t > 0. Hence,

ẇ(t) > 0 for all t > 0. Also, note that

max
τ∈[0,T ]

ui+mn(τ) > wi(t) > max
τ∈[0,T ]

ui(τ) ∀i ∈ Z, t ∈ R.

Now, set U = limt→∞ w(t). It is not difficult to show that U is a stationary wave. This

completes the proof. ¤

4.2. Uniqueness of Traveling Waves. We are now ready to show the uniqueness of

traveling waves. Theorem 3 follows from Lemma 4.1 and the following lemma.

Lemma 4.2. Suppose (c,u) is a traveling wave with c 6= 0, where Φ− = 0 and Φ+ = 1

are stable. If (c̃, ũ) is another traveling wave, then c̃ = c and, for some τ > 0, ũ(t) =

u(t + τ) for all t ∈ R. In addition, the period is T = n/|c|, i.e.,

ui

(n

c
+ t

)
= ui−n(t) ∀ t ∈ R, i ∈ Z.

Proof. Suppose ũ is a solution to (1.3)-(1.4) and for some T̃ > 0, c̃ ∈ R,

c̃T̃ ∈ nZ, ũi(T̃ ) = ũi−c̃T̃ (0) ∀i ∈ Z.

First we show that c = c̃. Suppose not. Then, by exchanging the roles of c and c̃ if

necessary, we may assume that c > c̃. Since µ0(·) is convex and µ0(0) < 0, we see that

the unique positive roots to

µ0(Λ) = −cΛ, µ0(Λ̃) = −c̃Λ̃

satisfy 0 < Λ < Λ̃. Thus, near i = −∞, ui(0) decays to zero slower than ũi does.

Namely, ui(0) > ũi(0) for all i ¿ −1.

Similarly, the unique negative roots to

µ1(Λ) = −cΛ, µ1(Λ̃) = −c̃Λ̃
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satisfy Λ < Λ̃ < 0, so that 1 − ui(0) decays to zero faster than 1 − ũi(0) does. Thus,

ui(0) > ũi(0) for all sufficiently large i. Hence, after a sufficiently large translation, there

exists an integer m such that

umn+i(0) > ũi(0) ∀i.

This implies by comparison that umn+i(t) > ũi(t) for all t > 0 and i ∈ Z. Intuitively

this is impossible, since u travels faster than ũ does. Here is the detail. Setting i = kcT

and t = kT we obtain

umn(0) = umn+kcT (kT ) > ũkcT (kT ) = ũkcT−k̃c̃T̃ (kT − k̃T̃ ) ∀k̃ ∈ Z.

Take k̃ ∈ Z such that kT − k̃T̃ := τk ∈ [0, T̃ ). Then

umn(0) > ũ(c−c̃)kT+c̃τk
(τk).

Sending k → ∞, we obtain umn(0) > limk→∞ ũ(c−c̃)kT+c̃τk
(τk) = 1, a contradiction. Thus

we must have c = c̃.

Next we prove that u differs from ũ by a time translation. We have to assume that

c 6= 0. Consider, for definiteness, that c < 0. From the tail expansion, there exists a

large integer K such that

ui(KT ) > ũi(0) ∀i ∈ Z.

Set

τ ∗ = inf{τ 6 KT | ui(t) 6 ũi(0) ∀i ∈ Z, t ∈ [τ,∞)}.

Following the same proof as before, we can show that u(τ ∗) = ũ(0). This completes the

uniqueness proof.

Finally, we show that the period is n/|c|, namely, ui+n(n/c) = ui(0). Since ũ =

{ui+n}i∈Z is a traveling wave, we see that for some τ , ui+n(τ + t) = ui(t). This also

implies that ui(mτ + t) = ui−mn(t) for any m ∈ Z. By (1.5), there exists an integer k

such that cT = kn and ui−kn(t) = ui(T + t); that is, ui(T + t) = ui(kτ + t). Since u̇i > 0,

we derive that kτ = T , i.e., τ = T/k = n/c. Thus, the period is n/|c|. The case c < 0

can be proven in a similar manner. This completes the proof. ¤

5. Globally Exponential Stability

In this section, we shall study the asymptotic stability of non-zero speed traveling

waves. For this purpose, let (c,U), where c 6= 0 and U = {Ui}, be a traveling wave

solution. For definiteness, we assume Φ+ = 1 and Φ− = 0 so that (c,U) satisfies
NiU := U̇i(t) −

∑
k ai,kUi+k(t) − fi(Ui(t)) = 0 ∀ i ∈ Z, t ∈ R,

Ui(t + n/c) = Ui−n(t) ∀ i ∈ Z, t ∈ R,

limi→−∞ Ui(t) = 0, limi→∞ Ui(t) = 1 ∀ t ∈ R.

(5.1)
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We shall show that any solution u to (1.3) with an initial data that “vaguely resembles” a

wave profile (to be defined in §5.1) will approach exponentially fast to a time translation

of the traveling wave.

5.1. Initial Datum Resembles Vaguely A Wave Front. We recall from §2.6 that

the attraction basin A(Φ) of a steady state Φ is composed of all those v ∈ RZ such that

with initial data u(0) = v, the solution u := Stv to (1.3) satisfies limt→∞ ‖Stv−Φ‖∞ = 0.

Definition 5.1. Assume that 0 and 1 are two stable steady states. A vector v = {vi} ∈
RZ is vaguely resembling a wave front if there exist a positive integer N and vectors

Ψ±
0 = {ψ±

0i} ∈ A(0) and Ψ±
1 = {ψ±

1i} ∈ A(1) such that

vi 6 ψ+
0i ∀i 6 −N, vi > ψ−

1i ∀i > N, ψ−
0i 6 vi 6 ψ+

1i ∀ i ∈ Z.

Example. Assume that fi+n = fi ∈ C2(R) for all i ∈ Z and that for some α, β ∈ (0, 1)

there holds

fi(z) > fi(0) = 0 = fi(1) > fi(s) ∀z ∈ (−∞, 0) ∪ [β, 1), s ∈ (0, α] ∪ (1,∞), i ∈ Z.

If v = {vi} ∈ RZ is a vector satisfying

∞ > lim sup
i→∞

vi > lim inf
i→∞

vi > β > α > lim sup
i→−∞

vi > lim inf
i→−∞

vi > −∞,

then v resembles vaguely a wave front; see Lemma 2.4 for a proof.

5.2. Evolution from A Vaguely Resembling Front to An Asymptotic Front.

In this subsection we shall prove the following:

Lemma 5.1. Assume that 0 and 1 are stable steady states of (1.3) and that v ∈ RZ

resembles vaguely a wave front. Then for every ε, there exist a positive integer N̄ and a

positive constant τ such that the solution u = {ui} of (1.3) with initial value u(0) = v

satisfies

−ε1 6 u(t) 6 (1 + ε)1 ∀t > τ,

ui(τ) 6 ε ∀i 6 −N̄ , ui(τ) > 1 − ε ∀ i > N̄ .

Proof. Let ε > 0 be given. We divide the proof into two steps.

1. First we establish global upper and lower bounds. By the assumption, there exist

Ψ−
0 ∈ A(0) and Ψ+

1 ∈ A(1) such that Ψ−
0 6 v 6 Ψ+

1 . By the comparison principle,

StΨ−
0 ≤ u(t) ≤ StΨ+

1 for all t ≥ 0. It then follows from the definition of Ψ−
0 ∈ A(0) and

Ψ+
1 ∈ A(1) that there exists τ0 > 0 such that −ε1 6 u(t) 6 (1 + ε)1 for all t > τ0.

2. Next we establish an upper bound for ui(t) for all sufficiently large negative i. By

the assumption, there exist Ψ+
0 ∈ A(0) and integer N such that vi 6 ψ+

0i for all i 6 −N .

Also, we have v 6 Ψ+
1 ∈ A(1).
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First of all, by Lemma 2.3(ii), there exist δ > 0 and τ1 > 0 such that the solutions to

Nw0(t) = δ1 ∀t > 0, w0(0) = δ1 + {min{ψ+
1i, ψ

+
0i}}i∈Z,

Nw1(t) = δ1 ∀t > 0, w1(0) = δ1 + Ψ+
1

satisfy

w0(t) 6 1

2
ε1, w1(t) 6 (1 + ε)1 ∀t > τ1.

In addition, w0(t) < w1(t) for all t > 0.

We define

L := max
i

‖f ′
i‖∞, M1 := sup

t≥0
‖w0(t) − w1(t)‖∞, ζ(s) :=

1

2

(
1 + tanh

s

2

)
.

Note that ζ ′ = ζ(1 − ζ) on R. For a small positive constant η and a large positive

constant N1 to be defined later, we consider the function w := {wi} defined by

wi(t) := ζi(t) w1i(t) + [1 − ζi(t)]w0i(t), ζi(t) := ζ(N1 + iη + 2Lt).

Denote ζ ′
i = ζ ′(N1 + iη + 2Lt). We can calculate

Niw(t) = ζiNiw1 + (1 − ζi)Niw0 + 2Lζ ′
i[w1i − w0i] + hi + gi

= δ + 2Lζ ′
i[w1i − w0i] + hi + gi,

where

hi = −
∑

k

ai,k[w1 i+k − w0 i+k]
{
ζ(N1 + [i + k]η + 2Lt) − ζ(N1 + iη + 2Lt)

}
,

gi = −fi(ζiw1i + [1 − ζi]w0i) + ζifi(w1i) + [1 − ζi]fi(w0i).

First of all, since 0 6 ζ ′ 6 1, by the mean value theorem,

|hi| 6 A1M1η, A1 := sup
1≤i≤n

∑
k

|ai,kk|.

Secondly, writing

gi = ζi

{
fi(w1i) − fi(w1i − [1 − ζi][w1i − w0i])

}
+ (1 − ζi)

{
fi(w0i) − fi(w0i + ζi[w1i − w0i])

}
,

we see that

|gi| ≤ 2Lζi(1 − ζi)[w1i − w0i] = 2Lζ ′
i[w1i − w0i].

It then follows that Niw(t) ≥ δ − A1M1η. Taking η := δ/(A1M1), we obtain Niw > 0.

Finally, notice that

wi(0) − vi ≥ min{w1i(0), w0i(0)} − vi > δ + min{ψ+
1i, ψ

+
0i} − vi > 0 ∀i ≤ −N,

wi(0) − vi = {w1i(0) − vi} − [1 − ζi][w1i(0) − w0i(0)]

≥ δ − [1 − ζi]M1 > 0 ∀i ≥ −N,

provided that we take N1 satisfying 1 − ζ(N1 − Nη)] = min{1/2, δ/M1}.
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Thus, with such η and N1, we have, by the comparison principle, u(t) = Stv 6 w(t)

for all t > 0. Since limi→−∞[wi(t) − w0i(t)] = 0 for all t and supi w0i(t) ≤ 1
2
ε for all

t ≥ τ1, we then see that for every t > τ1, there exists N̄(t) such that ui(t) ≤ ε for all

i ≤ −N̄(t).

The lower bound can be proven similarly. This completes the proof. ¤

5.3. Sub/super Solutions Based on a Traveling Wave. Let (µ0(0), Ψ0 = {ψ0
i })

((µ1(0), Ψ1 = {ψ1
i })) be the unique solution to the linearized equation (2.3) with λ = 0

and {Li} = {f ′
i(0)} ({Li} = {f ′

i(1)}, respectively). We set

β := 1
2
min{−µ1(0),−µ0(0)} min

1≤i≤n

{
min{ψ0

i , ψ1
i }

}
.

As 0 and 1 are assumed to be stable, β > 0.

For a small positive constant η to be chosen later, we define

Ψ(η, t) = {ψi(η, t)}, ψi(η, t) = ζi(t)ψ
1
i + [1 − ζi(t))]ψ

0
i , ζi(t) := ζ([i − ct]η).

Since both Ψ1 and Ψ0 are n-periodic, we see that

ψi(η, t + n/c) = ψi−n(η, t) ∀i ∈ Z, t ∈ R.

Assume that (c,U) is a traveling wave with c 6= 0. For definiteness, we assume that

c < 0 so that U̇ > 0. For a fixed (large) positive constant K0 to be chosen, we consider,

for every small positive constant ε and every ξ ∈ R, the function

U±(ε, ξ, t) = U(ξ + t ∓ K0εe
−βt) ± εe−βtΨ(η, ξ + t ∓ K0εe

−βt), t > 0.(5.2)

We shall show that U+ is a supersolution and U− is a subsolution.

Write t1 = ξ + t − K0εe
−βt, U = U(t1), U̇ = U̇(t1), and Ψ = Ψ(η, t1). For t > 0, we

can use NU(t1) = 0 to estimate

NU+(t) > K0εβe−βtU̇ + εe−βt{−βΨ + LΨ} − Mε2e−2βt1

> εe−βt
{
K0βU̇ + LΨ − βΨ − Mε1

}
,

where M = maxi ‖f ′′
i ‖∞ and LΨ = {LiΨ},

LiΨ := [1 + K0εβe−βt]ψ̇i(t1) −
∑

k

ai,kψi+k(t1) − f ′
i(Ui(t1))ψi(t1).

Denoting ζ ′
i = ζ ′([i − ct1]η), we can write LiΨ = hi1 − hi2 − hi3 − hi4, where

hi1 := [1 + K0εβe−βt]ψ̇i(t1) = cη[1 + εK0βe−βt]ζ ′
i[ψ

0
i − ψ1

i ],

hi2 := ζi

{ ∑
k

ai,kψ
1
i+k + f ′

i(1)ψ1
i

}
+ [1 − ζi]

{ ∑
k

ai,kψ
0
i+k + f ′

i(0)ψ0
i

}
,

hi3 :=
∑

k

ai,k[ψ
1
i+k − ψ0

i+k][ζi+k − ζi],

hi4 := f ′
i(Ui)ψi − ζif

′
i(1)ψ1

i − [1 − ζi]f
′
i(0)ψ0

i .
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First of all, by the definition of Ψ1 and Ψ0,

−hi2 = −ζiψ
1
i µ1(0) − [1 − ζi]ψ

0
i µ0(0) ≥ 2β > βψi + β.

Next, the “bad term” hi1 and hi3 can be estimated by

|hi1| + |hi3| ≤ C(εK0β)η

where C(·) is an increasing positive linear function on [0,∞). The “bad term” hi4 can

be estimated by

|hi4| ≤ ζi|f ′
i(Ui) − f ′

i(1)| + [1 − ζi]|f ′
i(Ui) − f ′

i(0)| ≤ M
{
ζi[1 − Ui] + [1 − ζi]Ui

}
.

Thus,

NU+(t) ≥ εe−βt
{
K0βU̇ + [β − Mε − C(εK0β)η]1 − M{ζ[1 − U] + (1 − ζ)U}

}
.

Note that there exists an integer N such that when t1 ∈ R and |i − ct1| > N ,

ζi[1 − Ui] + [1 − ζi]Ui < β/(4M).

Now we fix K0 by

K0 =
2M

β mint1∈R,|i−ct1|<N U̇i(t1)
.

It then follows that

M
{
ζ[1 − U] + [1 − ζ]U

}
≤ 1

4
β + K0βU̇.

Finally, taking η = β/(4C(1)) we conclude that there exists ε0 ∈ (0, 1/(4K0β)] such that

NU+(t) > 0 for all t ≥ 0, ε ∈ (0, 2ε0], and ξ ∈ R.

Similarly, we can consider the function U−. Thus, we have the following lemma.

Lemma 5.2. Suppose 1 and 0 are two stable steady states and that (c,U) is a traveling

wave with c < 0. Then there exist positive constants η, β,K0 and ε0 such that for every

ε ∈ (0, 2ε0] and ξ ∈ R, the function U±(ε, ξ, ·) defined in (5.2) is a super/subsolution.

5.4. Exponential Stability. Now we can state and prove our main result.

Theorem 4. Suppose 1 and 0 are two stable steady states and that (c,U) is a traveling

wave with c 6= 0. Then it is globally exponentially stable; that is, for any initial data

v = u(0) that resembles a wave front (cf. Definition 5.1), there exist constants K and

τ ∗ such that the solution u(t) = Stv to (1.3) satisfies

‖u(t) − U(t + τ ∗)‖∞ ≤ Ke−νt ∀ t > 0

where ν is a positive constant depending only on {ai,k} and {fi}.
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Proof. The proof is based on the techniques developed in [10].

Without lose of generality, we assume that c < 0 so that U̇ > 0.

1. First of all, by using Lemma 5.1, we need only consider those initial data satisfying

−1
2
ε01 ≤ v = u(0) ≤ (1 + 1

2
ε0)1, vi 6 1

2
ε0 ∀i < −N, vi ≥ 1 − 1

2
ε0 ∀i ≥ N.

This implies that there exist ξ0 ¿ −1 and τ0 À 1 such that

U−(ε0, ξ0, 0) 6 u(0) 6 U+(ε0, ξ0 + τ0, 0).

By taking smaller ε0 if necessary, we can assume that 4K0ε0 6 1.

2. For each t > 0, we denote

D(t) :=
{

(ε, ξ, τ) ∈ (0, 2ε0] × R × [0,∞) | U−(ε, ξ, 0) ≤ u(t) ≤ U+(ε, ξ + τ, 0)
}
.

If (ε, ξ, τ) ∈ D(t), then by the comparison principle,

U−(ε, ξ, t̂) 6 u(t + t̂) 6 U+(ε, ξ + τ, t̂) ∀ t̂ > 0.

Upon noting that

U±(ε, ξ, t̂) = U±(εe−βt̂, ξ + t̂, 0) ∀ε ∈ (0, ε0], ξ ∈ R, t̂ > 0,

we conclude that

(ε, ξ, τ) ∈ D(t) =⇒ (εe−βt̂, ξ + t̂, τ) ∈ D(t + t̂) ∀t̂ > 0.

Since D(0) is non-empty, so is D(t) for each t > 0. Also, one can show that for each

t > 0, the set D(t) is closed.

3. Next we define a distance between u(t) and the manifold {U(s)}s∈R by

d(t) := inf
(ε,ξ,τ)∈D(t)

{
K0ε + 2τ

}
∀ t > 0.

By continuity, for every t > 0, there exists (ε(t), ξ(t), τ(t)) ∈ D(t) such that

d(t) = K0ε(t) + 2τ(t).

4. Suppose ε(t) > min{ε0, τ(t)/(4K0)}. Since (ε(t)e−β, ξ(t) + 1, τ(t)) ∈ D(t + 1),

d(t + 1) 6 K0ε(t)e
−β + 2τ(t) = d(t) − [1 − e−β]K0ε(t).

5. Suppose ε(t) 6 min{ε0, τ(t)/(4K0)}. For simplicity, we write (ε(t), ξ(t), τ(t)) as

(ε, ξ, τ). Let j = j(t) be the integer such that

−1
2

6 j − c ξ < 1
2
.

At least one of the following holds:

(i) uj(t) > Uj(ξ + τ/2), (ii) uj(t) 6 Uj(ξ + τ/2).
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Suppose (i) holds. Let τ1 := min{1, τ/4). Note that, when τ > 4, we have τ1 = 1 >
K0ε0 > K0ε; when τ < 4, we have τ1 = τ/4 > K0ε. Hence, using U̇ > 0, |j − cξ| 6 1/2,

and 0 6 K0ε 6 τ1 6 1, we obtain

uj(t) − U−
j (ε, ξ, 0) > Uj(ξ + 2τ1) − U−

j (ε, ξ, 0)

> Uj(ξ + 2τ1) − Uj(ξ + K0ε) + ε

> κ0

{
2τ1 − K0ε

}
> κ0τ1,

where

κ0 := min
s∈R,|l−cs|63

U̇l(s).

Since U−(ε, ξ, ·) is a subsolution and U−(ε, ξ, 0) 6 u(t), by the strong comparison

principle (cf. §2), we have

uj+i(t + 1) > U−
j+i(ε, ξ, 1) + τ1δi = U−

j+i(εe
−β, ξ + 1, 0) + κ0τ1δi ∀ i ∈ Z,

where {δi}i∈Z is positive and depends only on {ai,k} and maxi ‖f ′
i‖∞.

For all s ∈ (0, ε0], we calculate

d

ds
U−

j+i(εe
−β + s, ξ + 1 + 2K0s, 0) = −ψj+i + O(1)U̇j+i + O(1)ηζ ′

j+i < 0

when |i| > N2 for some universal constant N2, since minl ψl(η, 0) > 0 and

lim
N→∞

max
z∈R,|l−cz|>N

{
|U̇l(z)| + ζ ′(η(l − cz))

}
= 0.

Hence

U−
j+i(εe

−β, ξ + 1, 0) > U−
j+i(εe

−β + s, ξ + 2K0s + 1, 0) ∀|i| > N2, s ∈ (0, ε0].

Since min|i|<N2 δi > 0, there exists a universal constant κ1 > 0 such that

U−
j+i(εe

−β, ξ + 1, 0) + κ0τ1δi > U−
j+i(εe

−β + κ1τ1, ξ + 1 + 2K0κ1τ1, 0) ∀ i ∈ Z.

Taking smaller κ1 if necessary, we can assume that K0κ1 6 1. Thus

u(t + 1) > U−(εe−β + κ1τ1, ξ + 1 + 2K0κ1τ1, 0).

On the other hand,

u(t + 1) 6 U+(εe−β, ξ + τ + 1, 0) 6 U+(εe−β + κ1τ1, ξ + 1 + τ + K0κ1τ1, 0),

where the first inequality follows from the comparison principle and the second one from

the definition of U+. Hence, by the definition of D(t + 1),

(εe−β + κ1τ1, ξ + 1 + 2K0κ1τ1, τ − K0κ1τ1) ∈ D(t + 1).

This implies that

d(t + 1) 6 K0[εe
−β + κ1τ1] + 2(τ − K0κ1τ1)

= d(t) − K0[1 − e−β]ε(t) − K0κ1 min{1, τ(t)/4}.

The same inequality holds also for the case (ii). That is, the estimate holds whenever

ε(t) 6 min{ε0, τ(t)/(4K0)}.
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6. Finally, combining the conclusion from the previous two steps, we see that for

every t > 0,

d(t + 1) 6 d(t) −



(1 − e−β)K0ε0 if ε(t) > ε0,

K0κ1 if ε(t) < ε0, τ(t) > 4,

1
9
(1 − e−β)

{
K0ε(t) + 2τ(t)

}
if ε(t) < ε0, τ(t) 6 4K0ε(t),

K0κ1

4
τ(t) + K0(1 − e−β)ε(t) if ε(t) < ε0, 4K0ε(t) < τ(t) < 4,

6 d(t) − min{δ0, δ1d(t)},

where

δ0 := min{(1 − e−β)K0ε0, K0κ1}, δ1 :=
δ0

9
.

From this, it is then easy to show that

d(t) 6 Ke−νt ∀t ≥ 0,

where ν = − ln(1 − δ1). Finally, one can show that there exists τ ∗ such that

ξ(t) − t = τ ∗ + O(1)e−νt.

See [10] for the details and we omit it here.

As U−(ε, ξ, 0) − U(ξ) = O(ε) and U+(ε, ξ + τ, 0) − U(ξ) = O(ε) + O(τ), we then

obtain the assertion of Theorem 4. ¤

Part II: Existence

In this part, we shall establish the existence of traveling waves under the following

basic assumptions, for all i ∈ Z,
ai+n,k = ai,k ∀ k ∈ Z;

∑
k ai,k = 0; ai,k > 0 ∀ k 6= 0;

ai,1 > 0, ai,−1 > 0;
∑

k ai,k(e
k + e−k − 2) < ∞,

fi+n = fi ∈ C1([0, 1]), fi(0) = fi(1) = 0.

Since these assumptions are not sufficient, more technical assumptions will be given

later.

6. An Integral Formulation

Here in this section, we shall reformulate the problem of finding traveling waves. For

the existence of traveling waves, we pay attention to only those “special” ones that have

periods n/|c| when c 6= 0 and are stationary when c = 0. Note that stationary solutions

are merely vectors in RZ. Sometimes it is necessary to discuss the cases c = 0 and c 6= 0

separately.
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6.1. The case c 6= 0. When c 6= 0, our uniqueness result reveals that a traveling wave

with speed c should have a period T = n/|c|. That is,

ui(t + n/c) = ui−n(t).(6.1)

For such a wave, it is convenient to introduce

wi(x) := ui(t)
∣∣∣
ct=i−x

= ui

(i − x

c

)
∀x ∈ R, i ∈ Z.

It is easy to derive from (6.1) that wi+n(x) = wi(x) for all x ∈ R and i ∈ Z. Hence, we

have a total of n unknown functions.

Also, the limits in (1.4) (with Φ+ = 1 and Φ− = 0) imply that for each i ∈ Z

wi(∞) := lim
x→∞

wi(x) = lim
ct→−∞

ui(t) = 1,

wi(−∞) := lim
x→−∞

wi(x) = lim
ct→∞

ui(t) = 0.

Thus w := {wi} ∈ X, where

X :=
{
{wi}

∣∣∣ wi(−∞) = 0 6 wi(x) = wi+n(x) 6 1 = wi(∞) ∀x ∈ R, i ∈ Z
}
.

Finally, equation (1.3) becomes

−cw′
i(x) =

∑
k

ai,kwi+k(x + k) + fi(wi(x)), wi(x) = wi+n(x) ∀x ∈ R.(6.2)

Instead of studying the differential equation, we shall work on its integral form. For

this, we let

ν := 1 + max
i

|ai,0| + max
i

max
s∈[0,1]

|f ′
i(s)|.

Via the integrating factor e−νx/c, (6.2) can be re-written as

wi(x) =

∫ x

c·∞

eν(x−y)/c

−c

{
νwi(y) + fi(wi(y)) +

∑
k

ai,kwi+k(y + k)
}
dy

=

∫ 0

−∞
eνt

{
ν wi(x − ct) + fi(wi(x − ct)) +

∑
k

ai,kwi+k(x − ct + k)
}
dt.

Here the factor eνt is introduced for two purposes: (i) the integral is uniformly conver-

gent; (ii) the integrand is monotonically increasing in each wi+k, k ∈ Z, i ∈ Z.

For convenience, we use the following notation:

w = {wi}, W[w] = {Wi[w]}, Tc[w] = {Tc
i [w]},

Wi[w](x) = ν wi(x) + fi(wi(x)) +
∑

k

ai,kwi+k(x + k),

Tc
i [w](x) =

∫ 0

−∞
Wi[w](x − ct)eνtdt.

Therefore, to find a traveling wave, it is sufficient to find (c,w) ∈ R × X such that

w = Tc[w].(6.3)
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Lemma 6.1. A pair (c,w) ∈ R×X solves (6.2) if and only if it solves (6.3). In addition,

if (c,w) ∈ R × X solves (6.2), then the function u = {ui} defined by ui(t) = wi(i − ct)

for all i ∈ Z and t ∈ R satisfies (1.3), (1.4), as well as (6.1) when c 6= 0.

The proof follows from direct calculation.

6.2. The Case c = 0. In this case, (6.2) and (6.3) are identical. Also, we have the

following observations.

(i) If w satisfies (6.2) with c = 0, then for each z ∈ [0, n), the vector Φz = {φz
i } ∈ RZ

defined by φz
i = wi(i+ z), i ∈ Z, is a steady state of (1.3) (i.e., a solution to (2.1)). Note

that if w0(·) is non-decreasing and w0(0) < w0(z) < w0(n), then Φ0, Φz are two different

steady states that cannot be obtained from one to the other by a grid translation.

(ii) If Φ ≡ {φi} is a steady state of (1.3), then the following w = {wi} is a solution to

(6.2) with c = 0:

wi(x) = φi+n[(x−i)/n] ∀x ∈ R, i ∈ Z.

Here [y] denotes the maximum integer no larger than y.

(iii) It is a well-known fact that stationary solutions to (1.3) and (1.4), if they exist,

are in general not unique (modulo the grid translation invariance).

For steady states, it is convenient to work on the following equations∑
k

ai,kwi+k(x + k) + fi(wi(x)) = 0, wi+n(x) = wi(x) a.e. x ∈ R.(6.4)

Lemma 6.2. Suppose w = {wi} satisfies (6.4). Then for a.e. z ∈ R, the vector

Φz = {φz
i }, where φz

i = wi(i + z) for all i ∈ Z, is a steady state of (1.3).

6.3. Wave Profile. In the sequel, for c ∈ R, a solution w(·) = {wi(·)} to (6.2) in the

set X will be called a wave profile. By the periodicity, a wave profile consists of n

unknown functions. A traveling wave (c,u) can be obtained from a wave profile w via

ui(t) := wi(z + i − ct) ∀i ∈ Z, t ∈ R

where z ∈ R is any fixed constant. Note that in general when c = 0 wave profiles are

not continuous, whereas when c 6= 0, wave profiles are always smooth.

In the sequel, we shall frequently use the following Helly’s Lemma:

Lemma 6.3. Let {wl(·)}l∈N be a sequence of uniformly bounded non-decreasing functions

on R. Then there exist a non-decreasing function w and a sequence of integers {li}i∈N

such that

lim
i→∞

li = ∞, lim
i→∞

wli(x) = w(x) ∀x ∈ R.
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7. Existence of A Non-trivial Solution

Without any structural assumption on the {fi(·)}, in this section, we shall prove the

following:

Theorem 5. Let a = {ai} be a vector satisfying 0 < a < 1. Then there exist c ∈ R and

w(·) = {wi(·)} that satisfies (6.2) if c 6= 0 and (6.4) if c = 0, as well as

0 < w(x) 6 w(y) < 1 ∀x 6 y,(7.1) {
either c > 0, max{wi(0) − ai} = 0,

or c 6 0, min{wi(0) − ai} = 0.
(7.2)

Note that if a is not a steady state, then the solution in the theorem is non-trivial (i.e.

non-constant vector). In the next section, a sufficient condition on {fi} will be supplied

to guarantee the limits w(−∞) = 0 and w(∞) = 1.

7.1. A Truncation. We approximate (6.2) by the related problem on finite interval
−cw′

i(x) =
∑

k ai,kwi+k(x + k) + fi(wi(x)), −m < x < m, i ∈ Z,

wi+n(x) = wi(x) ∀x ∈ R, i ∈ Z,

wi(x) = 0 ∀x < −m, i ∈ Z, wi(x) = 1 ∀x > m, i ∈ Z.

(7.3)

Here m ∈ N := {1, 2, 3, · · · } is a parameter. Eventually, we shall take the limit as

m → ∞. We remark that the solution is discontinuous at x = ±m. Due to this, it is

convenient to consider (7.3) in its integral forms. For this we define a projection operator

Pm by

Pmw(x) :=

 0 if x < −m,
w(x) if x ∈ [−m,m],
1 if x > m.

Note that for every c ∈ R, w solve (7.3) if and only if

w ∈ X, w = PmTc[w].(7.4)

Since P2
m = Pm, the solution automatically satisfies w = Pmw.

Lemma 7.1. Let m ∈ N.

(1) For every c 6= 0, (7.4) admits a unique solution w = wm,c. In addition, the

solution satisfies 0 < w(x) < 1 for all x ∈ [−m,m] and w′(x) > 0 for all x ∈ (−m,m).

(2) When c = 0, (7.4) admits a minimal solution, denoted by wm
∗ , and a maximal

solution, denoted by w = w∗m, in the sense that any solution w to (7.4) with c = 0

satisfies

0 < wm
∗ (x) 6 w(x) 6 w∗m(x) < 1 ∀x ∈ [−m,m].

In addition, both wm
∗ (·) and w∗m(·) are non-decreasing on R and are constant (n-periodic

vectors) on each interval (l, l + 1) for all l ∈ Z.
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Proof. 1. Existence. Fix c ∈ R. The operator PmTc is monotonic on X:

w, w̃ ∈ X, w 6 w̃ =⇒ PmTc[w] 6 PmTc[w̃].

Consider the sequences {w∗j}∞j=0 and {w∗
j}∞j=0 defined by

w∗0 := 0, w∗j := PmTc[w∗ j−1] ∀ j ∈ N,

w∗
0 := 1, w∗

j := PmTc[w∗
j−1] ∀ j ∈ N.

Since Tc[1] = 1 and Tc[0] = 0, an induction shows that

0 6 w∗ j−1(x) 6 w∗j(x) 6 w∗
j (x) 6 w∗

j−1(x) 6 1 ∀j ∈ N, x ∈ R.

Thus, there exist the limits

w∗(x) := lim
j→∞

w∗j(x), w∗(x) := lim
j→∞

w∗
j (x) ∀x ∈ R.

Using Lebesgue’s dominated convergence theorem, it is easy to show that both w = w∗

and w = w∗ are solutions to (7.4).

2. Basic Properties of the Solution.

First of all, if w is a solution to (7.4), then 0 6 w 6 1. Inductively, we derive that

w∗j 6 w 6 w∗
j for all j ∈ N so that w∗ 6 w 6 w∗.

Next we show that

0 < w∗(x) 6 w∗(x) < 1 ∀x ∈ [−m,m].

Consider w = w∗. Suppose, for a contradiction argument, that there exists x ∈ [−m,m]

such that wi(x) = 1 for some i ∈ Z. By taking smaller x if necessary, we may assume

that w(y) < 1 for all y 6 x− 1/2. As ai,k > 0 for at least one integer k < 0, we see that

Wi[w](z) < Wi[1] ≡ ν for every z < x + 1/2. Consequently,

1 = Tc
i [w](x) =

∫ 0

−∞
eνtWi[w](x − ct)dt <

∫ 0

−∞
νeνtdt = 1,

which is impossible. Thus, we must have w∗ < 1 on (−∞,m]. In a similar manner, we

can show that w∗ > 0 on [−m,∞).

Note that for each j ∈ N, both w∗j and w∗
j are non-decreasing. It follows that

w′
∗ > 0 and w∗′ > 0 on R in the distribution sense. Also, w′(m) = (1 − w(m))δ and

w′(−m) = w(−m)δ for any solution w of (7.4), where δ is the Dirac mass.

When c = 0, Tc[w](x) = 1
ν
W[w](x). One can inductively show that both w∗j(·) and

w∗
j (·) are constant vectors on each interval (l, l + 1) for all l ∈ Z. It follows that both

w∗ and w∗ are constant vectors on each interval (l, l + 1), l ∈ Z.

When c 6= 0, for either w = w∗ or w = w∗, w is Lipschitz continuous on [−m,m]. At

any x ∈ (−m, m), differentiating w = PmTc[w] = Tc[w] and using the definition of ν,

one derives that

w′(x) >
∫ 0

−∞
w′(x − ct)eνtdt >

{
[1 − w(m)]eν(x−m)/c if c > 0,

w(−m)eν(x+m)/c if c < 0.

Thus w′ > 0 on (−m,m).
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3. Uniqueness. Suppose c 6= 0. We want to show that w∗ = w∗. For this, let

h := inf{ξ > 0 | w∗(· + ξ) > w∗(·)}.

Since w∗(x + 2m+ ε) > w∗(x) > w∗(x) for every ε > 0 and x ∈ R, h is well-defined and

h ∈ [0, 2m]. We claim that h = 0. Suppose, on the contrary, that h > 0. Since w∗ and

w∗ are continuous on R \ {m,−m}, by the definition of h, we have

0 6 lim sup
ξ→h

{
Tc[w∗](x + ξ) − Tc[w∗](x)

}
= Tc[w∗](x + h) − Tc[w∗](x)

for every x ∈ R. After projection, we obtain w∗(· + h) > w∗(·) on R. Consequently, by

the definition of ν, W[w∗](x + h)−W[w∗](x) > w∗(x + h)−w∗(x) > 0 for all x ∈ R. It

then follows that for every x ∈ R,

w∗(x + h) − w∗(x) >
∫ 0

−∞
eνt{w∗(x + h − ct) − w∗(x − ct)}dt.

Consider x ∈ [−h/2 − m,m − h/2]. Since w∗(y) = 0 < w∗(y + h) when y = x − ct ∈
[−h−m,−m) and w∗(y) < 1 = w∗(y + h) when y = x− ct ∈ (m− h,m], the integrand

is positive when ct ∈ (x + m,x + m + h] ∪ (x − m,x − m + h]. As c 6= 0, we see that

w∗(x + h) > w∗(x) for all x ∈ [−h/2 − m,m − h/2]. Hence, by continuity, there exists

ε ∈ (0, h/2) such that w∗(x + h − ε) − w∗(x) > 0 for all x ∈ [−h/2 − m,m − h/2]

and therefore also for all x ∈ R, contradicting the definition of h. This contradiction

shows that h = 0. Since Tc is continuous from L∞(R) to C(R), we also have, for every

x ∈ [−m, m],

0 6 lim sup
ξ↘0

{
Tc[w∗](x + ξ) − Tc[w∗](x)} = Tc[w∗](x) − Tc[w∗](x).

This completes the proof. ¤

7.2. Monotonicity in c.

Lemma 7.2. Let m ∈ N, c1 < c2, and wm,ci, i = 1, 2, be a solution to (7.4) with c = ci.

Then wm,c1(x) < wm,c2(x) for all x ∈ [−m,m]. In addition, denoting by w∗m and wm
∗

the maximal and minimal solution to (7.4) with c = 0 respectively, we have

lim
c↗0

wm,c(x) = wm
∗ (x), lim

c↘0
wm,c = w∗m(x) ∀x ∈ R \ Z.(7.5)

Proof. 1. First consider the case c2 > c1 6= 0. Since wm,c1(·) is strictly increasing on

[−m,m],
∑

k>0 ai,k > 0 and
∑

k<0 ai,k > 0, we have, for every x ∈ [−m,m],

Tc2 [wm,c1 ](x) =

∫ 0

−∞
eνtW[wm,c1 ](x − c2t)dt

>

∫ 0

−∞
eνtW[wm,c1 ](x − c1t)dt

= Tc1 [wm,c1 ](x) = wm,c1(x).



TRAVELING WAVES 35

Now starting from w0 = wm,c1 and defining wj+1 := PmTc2 [wj] for all j > 0, one can

show that {wj} is an increasing sequence and approaches a limit ŵ, being a solution

to ŵ = PmTc2 [ŵ]. When c2 6= 0, we have ŵ = wm,c2 so that wm,c1 < w1 6 wm,c2 on

[−m,m]. When c2 = 0, one can show directly by the sliding method used in the Step 3

in the previous subsection to show that wm,c1 < w∗; here the key for the sliding method

to work is the continuity of wm,c1 on [−m,m].

In a similar manner, we can consider the case c1 < c2 6= 0.

2. The monotonicity of wm,c in c implies the existence of the limit

w̃(x) := lim
c↘0

wm,c(x).

Since wm,c > w∗m for each c > 0, we have w̃ > w∗m. Furthermore, since wm,c(·) is

non-decreasing, w̃(·) is also non-decreasing. Thus, there is a countable set Σ0 such that

w̃ is continuous on R \ Σ0. Consequently,

lim sup
y→x,c↘0

|w̃(x) − wm,c(y)| = 0 for all x ∈ R \ Σ0.

Define Σ = {k + x | k ∈ Z, x ∈ Σ0}. Note that Σ is a countable and grid-translation

invariant set. Also for every x ∈ [−m,m] \ Σ,

w̃(x) = lim
c↘0

wm,c(x) = lim
c↘0

∫ 0

−∞
W[wm,c](x − ct)eνtdt

= W[w̃](x)

∫ 0

−∞
eνtdt.

This implies, writing w̃ = {w̃i}, that
∑

k ai,kw̃i+k(x + k) + fi(w̃i(x)) = 0 for every

x ∈ [−m, m] \ Σ. Finally, define

ŵ(x) :=

{
w̃(x) x ∈ R \ Σ,

w∗m(x) x ∈ Σ.

One can verify that ŵ is a solution to (7.4) with c = 0. By the maximality, we must

have ŵ 6 w∗m. Since w̃ > w∗m, we have that w̃ = w∗m on R \ Σ. Finally, since w̃ is

non-decreasing and w∗m is constant on each interval (l, l + 1), l ∈ Z, we conclude that

w̃ = w∗m on R \ Z. That is, limc↘0 wm,c = w∗m on R \ Z.

In a similar manner, we can show that limc↗0 wm,c = wm
∗ on R \ Z. This completes

the proof. ¤

7.3. Two Useful Bounds. For convenience, we use notation, for w = {wi},

N c
i [w](x) := −cw′

i(x) −
∑

k ai,kwi+k(x + k) − fi(wi(x)).

Introduce the following constants

c∗ = L +
∑
k<0

ai,k(e
−k − 1), c∗ := −L −

∑
k>0

ai,k(e
k − 1), L := max

i
max
s∈[0,1]

|f ′
i(s)|.
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For each m ∈ N, we consider w(x) := w(x)1 with w(x) := min{1, ex−m}. When

x > m, we have w(x) = 1 > w(y) for all y ∈ R. Thus,

N c
i [w](x) = −

∑
k

ai,kw(x + k) =
∑

k

ai,k[w(x) − w(x + k)] > 0 ∀x > m.

When c 6 c∗ and x < m, using |fi(s)| 6 L|s| and −ai,kw(x + k) > −ai,ke
x+k−m for

k 6= 0, we obtain

N c
i [w](x) > ex−m

{
− c∗ −

∑
k

ai,k(e
k − 1) − L

}
> 0.

Hence, after integrating e−νy/cN c
i [w](y) > 0 over (−∞, x], we obtain

w(x) > Tc[w](x) ∀x ∈ R, c 6 c∗.

Moreover, since 0 ≤ w and w(x) = 1 for all x ≥ m, we have

PmTc[0](x) ≤ PmTc[w](x) ≤ Pmw(x) ≤ w(x)

for c 6 c∗. By a similar argument as the Step 1 of Lemma 7.1, we have wm,c(x) ≤ w(x)

for all x ∈ R, if c 6 c∗. Hence we obtain

(7.6) wm,c∗(0) ≤ e−m1 ∀m ∈ N.

Similarly, by considering w(x) := w(x)1 with w(x) := max{0, 1− e−(x+m)}, we obtain

the following lower bound

(7.7) wm,c∗(0) > (1 − e−m)1 ∀m ∈ N.

7.4. Proof of Theorem 5. Fix a vector a satisfying 0 < a < 1. There are three

possibilities:

(1) lim infm→∞ w∗m(0) 6 a;

(2) lim supm→∞ wm
∗ (0) > a;

(3) lim infm→∞ maxi{w∗m
i (0) − ai} > 0 > lim supm→∞ mini{wm

∗i(0) − ai}.
First, we consider the case (1). Suppose lim infm→∞ w∗m(0) 6 a. Then, by (7.7),

there exists a sequence of positive integers {ml}l∈N such that for each l ∈ N

ml > l, w∗ml(0) < a +
1

l
, wml,c

∗
(0) > (1 − e−ml)1 > a +

1

l
.

By continuity, there exists cl ∈ (0, c∗) such that maxi{wml,cl
i (0) − (ai + 1

l
)} = 0.

Now consider the sequence {(cl,w
ml,cl)}∞l=1. Since each wm,c(·) is monotonic, by taking

a subsequence if necessary, we have the limits

c := lim
l→∞

cl ∈ [0, c∗], w(x) = {wi(x)} := lim
l→∞

wml,cl(x) ∀x ∈ R.

By Lebesgue’s dominated convergence theorem, w satisfies (6.2) when c > 0. It satisfies

(6.4) when c = 0, cf. Step 2 in the proof in §7.2. Finally, by the definition of cl and also

by the strong maximum principle, w has the property (7.1) and (7.2).
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Next, we consider the case (2). Suppose lim supm→∞ wm
∗ (0) > a. Using (7.6), this

case can be treated similarly as above to obtain the existence of a solution to either (6.2)

with c < 0 or (6.4) with c = 0.

Finally, we consider the case (3):

lim inf
m→∞

max
i

{w∗m
i (0) − ai} > 0 > lim sup

m→∞
min{wm

∗i(0) − ai).

This implies that there exists m0 À 1 such that

max
i

{w∗m
i (0) − ai} > 0 > min

i
{wm

∗i(0) − ai}

for all integer m > m0. Set

xm := sup{x | w∗m(x) 6 a}, w̃∗m(x) := w∗m(xm + x),

ym := sup{x | wm
∗ (x) > a}, w̃m

∗ (x) := wm
∗ (ym + x).

Since wm
∗ and w∗m are constant on each interval (l, l + 1), l ∈ Z, we see that when

m > m0, xm is a non-positive integer and ym is a positive integer. There are three cases:

(i) lim supm→∞{m + xm} = ∞;

(ii) lim supm→∞{m − ym} = ∞;

(iii) lim supm→∞{m + xm} < ∞ and lim supm→∞{m − ym} < ∞.

(i) Suppose lim supm→∞{m + xm} = ∞. Since each w̃∗m is monotonic, there exists a

sequence of integers {ml}l∈N tending to infinity and a function w = {wi} such that

lim
l→∞

{ml + xml
} = ∞, lim

l→∞
w̃∗ml(x) = w(x) ∀x ∈ R.

From the definition of xm we see that w satisfies (7.2). In addition, since w̃∗m satisfies

(6.4) for all x ∈ [−m − xm,m − xm] with xm 6 0, we can derive that w satisfies (6.4)

for all x ∈ R. The strong maximum principle gives (7.1).

(ii) Suppose lim supm→∞{m− ym} = ∞. Similar to the above case, we can show that

along a subsequence w̃m
∗ approaches a limit which satisfies (6.4), (7.1), and (7.2).

(iii) Finally suppose lim supm→∞{m + xm} < ∞ and lim supm→∞{m − ym} < ∞.

Since both m + xm and m− ym are integers, there exist finite integers A, B > 0 and a

sequence of integers {ml}l∈N such that liml→∞ ml = ∞, ml +xml
= A and ml − yml

= B

for all l ∈ N. Same as before, by taking a subsequence if necessary, we have, for some

w1 and w2,

lim
l→∞

w̃∗ml(x) = w1(x), lim
l→∞

w̃ml
∗ (x) = w2(x) ∀x ∈ R.
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Since w̃∗ml satisfies (6.4) on [−A, 2ml − A] and w̃ml
∗ satisfies (6.4) on [−2ml + B,B]

respectively, we see that∑
ai,kw

1
i+k(x + k) + fi(w

1
i (x)) = 0 ∀ x > −A;∑

ai,kw
2
i+k(x + k) + fi(w

2
i (x)) = 0 ∀x 6 B;

w1(x) = 0 ∀x < −A, w2 = 1 ∀x > B.

w1(x) 6 a, mini{w2
i (x) − ai} 6 0 ∀x < 0,

maxi{w1
i (x) − ai} > 0, w2(x) > a ∀x > 0.

That is to say, w2 is a supersolution and w1 is a subsolution to the stationary problem

(6.3) with c = 0. In addition, w2(·) > w1(· − A − B − 1) since w2(x) = 1 when x > B

and w1(x − A − B − 1) = 0 for x < B + 1.

Finally, consider {wl}l∈N defined by

w0 = w2, wl = T0wl−1 ∀l ∈ N.

One can derive that w2(x) > wl−1(x) > wl(x) > w1(x − A − B − 1) for all l ∈ N and

x ∈ R. It then follows that w := liml→∞ wl is a solution to w = T0w, and hence also a

solution to (6.4).

By the strong comparison principle, we have w2(x) > w(x) > w1(x−A−B−1), and

so w(·) is not a constant vector. Hence w(x) 6 w(y) for all x < y and

w(x) < a ∀x < 0, w(x) > a ∀x > A + B + 1.

After a translation, w becomes an n-periodic solution to (6.4), (7.1) and (7.2). This

completes the proof of Theorem 5.

8. A Bistable Case

In this section, we shall first construct a traveling wave under the following assumption

(BS) The constant vectors 0 and 1 are steady states of (1.3). Any other n-periodic

steady state, if exists, is unstable.

Then we shall consider a special example where although the condition (BS) might

be very hard to check, we can still modify the method presented in subsection 8.1 to

show the existence of a traveling wave.

8.1. Existence of A Traveling Wave. Set a = 1
2
1. Let w be a solution established

in Theorem 5 with the given a. As w(x) is non-decreasing in x, there exist the limits

w(∞) and w(−∞). From (6.2), one can show that both w(∞) and w(−∞) are steady

states. In addition, by (7.2), we have w(∞) > 0 and w(−∞) < 1.

It remains to show that w(∞) = 1 and w(−∞) = 0. To do this, we assume, by

contradiction, that Φ (= w(∞) or w(−∞)) is a steady state satisfying 0 < Φ < 1.
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Denote by (µ, Ψ = {ψi}) the unique solution to eigen-problem (2.3) with Li = f ′
i(φi).

Since
∑

k ai,k = 0, we have

µψi =
∑

k

ai,k[ψi+k − ψi] + f ′
i(φi)ψi, ψi = ψi+n ∀ i ∈ Z.

Let

β :=
µ

2M
, M := max

i
max
s∈[0,1]

|f ′′
i (s)|.

For the solution wm,c of (7.3), where it is taken either w∗m or wm
∗ when c = 0, we set

xm,c := min{x | wm,c(x) > Φ − β1};
ym,c := max{x | wm,c(x) 6 Φ + β1}.

` := lim sup
m→∞

sup
c∈[c∗,c∗]

(ym,c − xm,c).

Then the following lemma holds.

Lemma 8.1. Assume that Φ is an unstable steady state in the sense that the unique

solution to (2.3) with Li = f ′
i(φi) has the property that µ > 0. Then ` < ∞.

Proof. Suppose on the contrary that ` = ∞. Then, in view of (7.5), there exists a

sequence {ml, cl}l∈N satisfying cl ∈ [c∗, 0) ∪ (0, c∗] for all l ∈ N, and

lim
l→∞

ml = ∞, lim
l→∞

[yml,cl − xml,cl ] = ∞.

By taking a subsequence if necessary, we may assume that there exist the limits

c := lim
l→∞

cl ∈ [c∗, c
∗],

w1(x) := lim
l→∞

wml,cl(x + xml,cl) ∀x ∈ R,

w2(x) := lim
l→∞

wml,cl(x + yml,cl) ∀x ∈ R,

A := lim
l→∞

(xml,cl + ml) ∈ (0,∞) ∪ {∞},

B := lim
l→∞

(ml − yml,cl) ∈ (0,∞) ∪ {∞}.

Since ` = ∞, taking the limit of the corresponding equation (7.4) we have

w1 = Tcw1 a.e. x > −A, w1 = 0 ∀x < −A;

w2 = Tcw2 a.e. x < B, w2 = 1 ∀x > B,

‖w1(x) − Φ‖∞ 6 β ∀x > 0, ‖w1(x) − Φ‖∞ > β ∀x < 0,

‖w2(x) − Φ‖∞ 6 β ∀x 6 0, ‖w2(x) − Φ‖∞ > β ∀x > 0.

This implies that w1 is strictly increasing in (−A,∞) and w2 is strictly increasing in

(−∞, B). Hence there exists a positive constant η such that

w1(x + 1) − w1(x) > 2η1 ∀x ∈ [0, k0],

w2(x + 1) − w2(x) > 2η1 ∀x ∈ [−k0 − 1,−1].
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Consequently, for all sufficiently large l, writing (ml, cl) simply as (m, c),

wm,c(x + 1) − wm,c(x) > η1

for all x ∈ [xm,c, xm,c + k0] ∪ [ym,c − k0 − 1, ym,c − 1]. Define

zi(x) =
wm,c

i (x + 1) − wm,c
i (x)

ψi

, z(x) = min
i

zi(x).

Note that zi+n = zi. Also, as c = cl 6= 0, wm,c is continuous in [xm,c, ym,c]. There exist

j ∈ Z and x∗ ∈ [xm,c, ym,c − 1] such that

η̂ := min{z(x) | xm,c 6 x 6 ym,c − 1} = zj(x∗).

There are two cases:

(1) xm,c + k0 < x∗ < ym,c − k0 − 1;

(2) x∗ ∈ [xm,c, xm,c + k0] ∪ [ym,c − k0 − 1, ym,c − 1].

Suppose xm,c + k0 < x∗ < ym,c − k0 − 1. Then x∗ is a local minimum point of zj(·) so

that cz′j(x∗) = 0. Thus, using (6.2), it implies that

0 = −cz′j(x∗)ψj = −c[wm,c
j

′(x∗ + 1) − wm,c
j

′(x∗)]

=
∑

k

aj,k[ψj+kzj+k(x∗ + k) − ψjzj(x∗)] + [fj(wj(x∗ + 1)) − fj(wj(x∗))]

> zj(x∗)
{ ∑

k

aj,k[ψj+k − ψj] + f ′
j(ξ)ψj

}
by the assumption that zj+k(x∗ + k) > zj(x∗) for all k ∈ [−k0, k0] and the mean value

theorem. Note that ξ ∈ [wj(x∗), wj(x∗ + 1)] so that |ξ − φj| 6 β. Hence we have

0 >
∑

k

aj,k[ψj+k − ψj] + f ′
j(ξ)ψj =

{
µ + f ′

j(ξ) − f ′
j(φj)

}
ψj > 0

which is impossible. Here we used the fact that |f ′
j(ξ)− f ′

j(φj)| 6 M |ξ−φj| 6 Mβ < µ.

Thus, case (1) cannot happen.

Hence, we have case (2) so that η̂ > η. Consequently, taking i such that ψi = 1 we

have

η 6
∑K

k=0{w
m,c
i (xm,c + k + 1) − wm,c

i (xm,c + k)}∑K
k=0 1

6 2β

ym,c − xm,c − 1
,

where K := [ym,c − xm,c − 1] is the maximum integer no larger than ym,c − xm,c − 1.

This implies that yml,cl −xml,cl 6 1+ (2β)/η for all sufficiently large l, contradicting the

assumption that liml→∞(yml,cl−xml,cl) = ∞. This completes the proof of the lemma. ¤

With this lemma, we can prove the following theorem.

Theorem 6. Assume (BS). Then the problem (6.2) admits a solution (c,w) satisfying

w(−∞) = 0 < w(x) < 1 = w(∞) ∀x ∈ R.(8.1)
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Proof. Let (c,w) be a solution established in Theorem 5 with a = 1/2. If w(∞) 6= 1

(or w(−∞) 6= 0), then Φ := w(∞) (or Φ := w(−∞)) is a steady state satisfying

0 < Φ < 1.

Since wi(x) ↑ φi as x → ∞ for all i, there exists x0 À 1, independent of i (by the

periodicity), such that φi − β/2 6 wi(x) 6 φi for all x > x0 for all i ∈ Z. Since

wml,cl
i (x) → wi(x) as l → ∞ for all x ∈ R, there exists l0 À 1 such that

wml,cl
i (x0) > wi(x0) − β/2 > φi − β

for all l > l0 for all i ∈ Z. Then wml,cl
i (x) > φi − β for all x > x0, l > l0, i ∈ Z. This

implies that xml,cl 6 x0 for all l > l0.

On the other hand, for each i, since wml,cl
i (x) → wi(x) as l → ∞ for all x ∈ R, we

have wml,cl(x) 6 Φ + β1 for each x ∈ R for some l À 1. This means that yml,cl → ∞ as

l → ∞, a contradiction to Lemma 8.1. Hence w(−∞) = 0, w(∞) = 1, and the theorem

is proven. ¤

Remark 8.1. Note that in (BS), no information about the stability of the steady

states 0 and 1 is needed. For monostable dynamics, e.g., fi(0) = fi(1) = 0 < fi(s) for

all s ∈ (0, 1) and all i ∈ Z, one can show that if (1.3) is a discretization of a divergence

operator (i.e., b(x) ≡ 0), then there are no steady states other than 0 and 1, so that

(BS) is automatically satisfied.

8.2. Example. Consider the system

u̇j = aj+1/2[uj+1 − uj] − aj−1/2[uj − uj−1] + bj[uj+1 − uj−1] + f(uj),(8.2)

where we assume the following.

(Ha) aj+1/2 + bj > 0, aj−1/2 − bj > 0, aj+1/2+n = aj+1/2, bj+n = bj for all j ∈ Z;

(Hf) There exists a ∈ (0, 1) such that f(0) = f(1) = f(a) = 0 and

f > 0 in (a, 1), f < 0 in (0, a), f ′(0) < 0, f ′(1) < 0, f ′(a) > 0.

We notice the following:

1. The system has three constant steady states: 0, a1, and 1. The corresponding

eigen-problems (2.3) with {Li} = f ′(0)1, {Li} = f ′(a)1, and {Li} = f ′(1)1 admit

explicit solutions given by Ψ = 1 and µ = f ′(0), µ = f ′(a), and µ = f ′(1) respectively.

Since f ′(0) < 0, f ′(1) < 0 and f ′(a) > 0, we conclude that 0 and 1 are stable steady

states, whereas a1 is an unstable steady state.

2. In general there are an unknown numbers of periodic steady states Φ satisfying

0 < Φ < 1. It may not be an easy task to show that these periodic steady states are

unstable. On the other hand, without showing the instability of these steady states, we

cannot directly apply Theorem 6. Nevertheless, we have the following observation.

3. Notice that if Φ = {φi} is a non-constant periodic steady state and 0 < Φ < 1,

then, as a sequence, {φi} oscillates. On the other hand, under (Ha) and (Hf), we can
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show that the solution to (8.2) with a monotonic initial data remains monotonic (in the

grid index i for each fixed t). This special property will be sufficient for the existence of

a traveling wave, which, in particular, is monotonic in the grid index.

Lemma 8.2. Consider the dynamics (8.2).

(1) If u(t) = {ui(t)}, t > 0, is a solution to (8.2) with initial data satisfying 0 6
ui(0) 6 ui+1(0) 6 1 for all i ∈ Z, then

ui(t) 6 ui+1(t) ∀t > 0, i ∈ Z.

(2) Each solution w = wm,c to (7.4) satisfies

wi(i + x) 6 wj(j + x) ∀i 6 j, x ∈ R.

Proof. (1) Suppose u = {ui} is a solution to (8.2) with initial data satisfying

0 6 ui(0) 6 ui+1(0) 6 1 for all i ∈ Z. Set vi(t) = [ui+1(t) − ui(t)]e
Mt where

M = ‖f ′‖∞ + max
i

|bi+1 − bi| + 2 max
i

|ai+1/2|.

Writing f(ui+1(t)) − f(ui(t)) = di(t)[ui+1(t) − ui(t)], where

di(t) =

∫ 1

0

f ′(sui(t) + [1 − s]ui+1(t))ds.

Then v = {vi} satisfies

v̇i = [ai+3/2 + bi+1]vi+1 + [ai−1/2 − bi]vi−1 + [M + di + bi+1 − bi − 2ai+1/2]vi

for all t > 0 and i ∈ Z. Note that the coefficients of vi, vi+1, and vi−1 on the right-hand

side are all positive. Since v(0) > 0, one can use a comparison to show that v(t) > 0

for all t > 0. In addition, if v(0) 6= 0, then v(t) > 0 for all t > 0. This proves the first

assertion.

(2) To prove the second assertion, we work on the space

X̂ := {w = {wi} ∈ X | wi(i + x) 6 wj(j + x) ∀ i < j, x ∈ R}.

We need only show that PmTc maps X̂ to X̂.

For this, suppose w = {wi} ∈ X̂ and let v := PmTc[w]. We want to show that

v = {vi} ∈ X̂, i.e., vi(i + x) 6 vi+1(i + 1 + x). This is equivalent to showing that

vi(x) 6 vi+1(x + 1) for all i ∈ Z and x ∈ R.

(a) If x > m − 1, we have, by definition, vi+1(x + 1) = 1 so that vi+1(x + 1) > vi(x).

(b) If x < −m, then vi(x) = 0 and so we also have vi(x) 6 vi+1(x + 1).

(c) Suppose −m 6 x 6 m − 1. Then x, x + 1 ∈ [−m,m]. Again, writing

f(wi+1(x − ct + 1)) − f(wi(x − ct)) = di(x − ct)[wi+1(x − ct + 1) − wi(x − ct)],
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by choosing ν large enough it follows that

vi+1(x + 1) − vi(x) = Tc
i+1[w](x + 1) − Tc

i [w](x)

=

∫ 0

−∞
eνt

{
[ai+3/2 + bi+1][wi+2(x − ct + 2) − wi+1(x − ct + 1)]

+[ai−1/2 − bi][wi(x − ct) − wi−1(x − ct − 1)]

+[ν − 2ai+1/2 + di(x − ct) + bi+1 − bi][wi+1(x − ct + 1) − wi(x − ct)]
}
dt

> 0,

since w ∈ X̂. Thus, v ∈ X̂. Namely, X̂ is invariant under the operator PmTc.

Following the proof of the existence of wm,c, we see that wm,c ∈ X̂. This completes

the proof. ¤

Theorem 7. Assume (Ha) and (Hf) and consider (1.3) in the special form of (8.2).

Then there is a traveling wave satisfying (1.3), (1.4) and (1.5) for some c ∈ R. In

addition, the wave satisfies

(8.3) ui(t) < ui+1(t) ∀i ∈ Z, t ∈ R.

Proof. The solution w = {wi} established in Theorem 5 has the additional property

that w ∈ X̂; that is, wi+1(x + 1) > wi(x) for all x ∈ R and i ∈ Z.

Note that for each 1 6 i < j 6 n, wi(x + n) = wi+n(x + n) > wj(x + j) > wi(x + i)

for every x ∈ R. Sending x → ∞, we see that w(∞) = α1 for some constant α ∈ (0, 1].

Consequently, if w(∞) 6= 1, we must have w(∞) = a1. Since a1 is unstable, following

the same proof as that of Theorem 6, we see that is impossible. Hence, w(∞) = 1.

Similarly, w(−∞) = 0. Finally, (8.3) follows from Lemma 8.2. Hence the theorem is

proven. ¤
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