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Abstract. In this paper, we study the localized rotating spots created by the spatially
inhomogeneous feedback. We adopt the wave front interaction model proposed by Zykov
and Showalter in 2005. The existence of rotating spots in the plane are shown by choosing
the spatially dependent feedbacks appropriately.
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1. Introduction

Spatially localized moving objects have attracted many researchers [6, 7, 10, 12, 9, 11, 2].
Especially, Sakurai et al. carried out experiments using the photosensitive BZ medium and
controlled wave behavior by the interactive feedback of the illuminated images [10]. They
designed wave behavior guided through a circle, a trochoid and a random walk.

In this paper, we focus on wave pattern in the plane moving along a (core) circle.
Mathematically, a wave pattern is called a rotating spot if it rotates along a circle with a
constant angular velocity. To formulate this setting, we borrow the wave front interaction
model introduced by Zykov and Showalter [13] in which they treat the traveling segment
patterns of the photosensitive BZ medium. The wave front interaction model is as follows:

V = a− bv± − κ(1.1)

where a, b are nonnegative constants and V, κ are the normal velocity and the curvature of
the interface respectively. We note that a, b correspond to the speed of one dimensional
traveling front and the feedback. The density of the inhibitor on the front and the back are
represented by v±. Here we set v+ = 0. For the traveling segment, v− can be taken as the
distance from the front and there is a unique traveling spot with speed c ∈ [0, a) for a given
constant a > 0, provided that a positive constant b is chosen appropriately ([13, 4]).

Later, Zykov applied the approach of [13] to the existence of rotating waves [14, 15].
He treated two types of rotating waves: (i) rotating waves on a disk which is stuck to the
boundary of the disk; (ii) rotating spirals in a plane. For these cases, v− is assumed to be
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determined by the angular distance from the front. The mathematical proof for rotating
waves on a disk and in the plane are obtained in [5, 1] respectively. For the case of a disk
with radius RD which is bigger than 1, there is a unique rotating spot with angular velocity
ω ∈ [0, 1/RD), provided that a constant b is chosen appropriately ([14, 5]). However, the
feedback is not necessary to be a constant as seen in [10].

To obtain localized rotating spots in the plane, we need to introduce the space-dependent
feedback as seen in [10]. In this paper, we consider the case where b depends on the space
variable as follows

(1.2) b(x, y) =

 b1, x2 + y2 < R̃2,

b2, x2 + y2 ≥ R̃2

for some positive radius R̃. This function (1.2) is the simplest case of inhomogeneous feed-
back. The main purpose of this paper is to show the existence of rotating spot in the wave
front interaction model by choosing appropriate b1 and b2. In this paper, we show the exis-
tence of rotating spots for any angular velocity below a certain constant. The fact that the
existence of the localized rotating waves comes from the inhomogeneity of the feedback can
be viewed in a different way as the following. Since the feedback determines the velocity of
the wave, we can expect that it begins to rotate clockwise if the velocity in right hand side
of the wave is higher than the left hand side. Thus the inhomogeneity of the feedback is
important for the existence of the rotating waves. The inhomogeneity is not necessary to be
a step function as in (1.2). This result suggests that the function with local minima as well
as the continuous function which is close to (1.2) may create the localized rotating waves for
some appropriate angular velocity with some appropriate radius. Since the feedback can be
regarded as the new component of the system, we can also expect the existence of localized
rotating waves in the three component system (see also [8]).

Our method to derive the existence of rotating spots in the wave front interaction model
is the same as that in the previous works ([4, 5, 1]), namely, to study both front and back
parts. However, the analysis here is more delicate. First, for the back of a rotating spot, we
need to treat two ordinary differential systems at the same time. By a shooting argument
with suitable match, we need to analyze the relationship between the corresponding solutions
starting from two tips of the spot for different parameters b1 and b2, respectively. However, it
is not trivial that these two trajectories will meet together for certain choices of parameters
b1 and b2. To overcome this difficulty, we utilize an idea from [1] to define two appropriate
sets of parameters b1 and b2 (see Section 4 for details) to guarantee the intersection of two
suitable trajectories shooting from both tips. But, this pair of trajectories may not match
smoothly. To overcome this further difficulty, we introduce a special set of parameter (b1, b2)
such that its corresponding trajectories meet together. Using some properties of this set
with the help of the comparison theorem and the continuous dependence on b1 and b2, we
are able to derive the existence of the back of a rotating spot. However, in comparing with
the homogeneous case ([4, 5, 1]), our analysis here is much more involved and complicated.
Lastly, due to some technical difficulty, we can only derive the existence of rotating spots
with core radii in a certain range. We leave the problem of the existence of rotating spots
with small core radii as an open problem.



ROTATING SPOTS 3

This paper is organized as follows. In Section 2, we give the mathematical setting of
the problem and present the main result. In Section 3, we prepare some auxiliary lemmas.
Section 4 is devoted to the proof of the main existence theorem stated in Section 2.

2. The problem setting and main result

A planar curve can be described by the Euclidean coordinates (x, y) and the angle θ of
the normal vector (right-hand to the tangent) measuring from the positive x-axis such that

dx

ds
= − sin θ,

dy

ds
= cos θ,

where s is the arc length parameter. Introducing the polar coordinates (r, γ), by the relation
(x, y) = (r cos γ, r sin γ), we have

(2.1)
dr

ds
= sinφ,

dγ

ds
=

1

r
cosφ,

where φ := γ − θ. In the sequel, we let κ be the (signed) curvature defined by κ := dθ/ds.

In this paper, we are interested in the existence of a bounded localized rotating wave
pattern (or, rotating spot) in the plane which is rotating counter-clockwise with a constant
positive angular speed ω. Here a wave pattern corresponds to the excited region in the
media. Let the origin be the center of the rotation. Then we have the relations

(2.2) r(s, t) = r(s), γ(s, t) = γ(s) + ωt, θ(s, t) = θ(s) + ωt.

Then, using (2.2), the normal velocity V can be computed by

(2.3) V = −ωr sinφ.

Assume the radius function is monotone in s. This is the case if φ ∈ [nπ, (n + 1)π] for
some integer n. We call those points on the boundary of the excited region with vanishing
normal velocities as tips. It is clear that either φ = nπ or φ = (n+ 1)π for a tip. Note that
the set of tips might contain a connected circular arc (with the same radius). In this case
we call it a tipped arc. We shall call the tip with the largest angle among those points with
the minimal radius as the inner tip, and the one with the maximal radius and the largest
angle as the outer tip. Therefore, the radius function has its minimum at the inner tip and
the maximum at the outer tip. So that the front and the back of a rotating spot are realized
as dividing the wave boundary by its inner and outer tips. A rotating spot has two types (i)
tips consist of only two points; (ii) tips consist of a point and a tipped arc. To specify two
cases, we call them a point-tipped rotating spot and an arc-tipped rotating spot, respectively.

For clarity, the functions of the front curve and the back curve are denoted by

(r+, γ+, θ+, φ+, V+) and (r−, γ−, θ−, φ−, V−),

respectively. For the front, we normalize a = 1 in (1.1) and the equation for the front
becomes the following linear eikonal equation:

V+ = 1− κ+.
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Using (2.1) and (2.3), we obtain

(2.4)


dr+
ds

= sinφ+,

dφ+

ds
=

cosφ+

r+
− 1− ωr+ sinφ+.

We take the inner tip to be (r+, γ+)|s=0 = (R1, 3π/2) for some R1 > 0. Also, we choose
θ+(0) = π/2. Here the arc length is measured backward so that s < 0 for the front. Therefore,
(2.4) is equipped with the terminal condition

(2.5) r+|s=0 = R1, φ+|s=0 = π.

We denote the solution of (2.4) with (2.5) by (r+(s;ω), φ+(s;ω)), or simply (r+(s), φ+(s)).

Using the change of variables

X+(s) := ωr+(s) cosφ+(s), Y+(s) := 1 + ωr+(s) sinφ+(s),

we end up with

(2.6)


dX+

ds
= Y+(Y+ − 1),

dY+

ds
= ω −X+Y+, s < 0,

X+(0) = −ωR1, Y+(0) = 1.

Note that Y+ is the curvature function.

We look for solutions such that the radius function is monotone in s. Since φ+(0;ω) = π,
θ+(s;ω) < π/2, and γ+(s;ω) > 3π/2 for 0 < −s ≪ 1, we see from (2.4) that φ+ ∈ [π, 2π] for
the front. This gives us the condition that Y+ < 1 for the front, except when φ+ = π or 2π.

The following proposition for the existence of the front was shown in [3, Lemma 2.1 and
Theorem 1].

Proposition 2.1 ([3, Lemma 2.1 and Theorem 1]). There exists a positive constant ω∗ such
that for each ω ∈ (0, ω∗) there exist a unique positive constant R∗ := R∗(ω) and a unique
solution (X+, Y+) of (2.6) with the following properties:

X+(0) = −ωR∗, Y+(0) = 1, lim
s→−∞

X+(s) = ∞, lim
s→−∞

Y+(s) = 0,

and Y+(s) < 1 for all s < 0. Moreover, for any 0 < R1 < R∗ there exists a unique solution
(X+, Y+) of (2.6) such that Y+(−τ1) = 1 and 0 < Y+(s) < 1 for all −τ1 < s < 0 for some
positive constant τ1.

By Proposition 2.1, for any 0 < ω < ω∗ and 0 < R1 < R∗, there exist a solution (r, φ)
of (2.4) and a positive constant τ1 such that

r+(0) = R1, φ+(0) = π,

r+(−τ1) = R2 := R2(R1) =
X+(−τ1)

ω
, φ+(−τ1) = 2π.

Moreover, due to

d

ds

√
(X+(s)− ω)2 + (Y+(s)− 1)2 =

−ω(Y+(s)− 1)2√
(X+(s)− ω)2 + (Y+(s)− 1)2

< 0,
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we have |ω(R2 − 1)| > ω(R1 + 1) which implies that R2 > 1.

After solving (r+, φ+), we can solve γ+ from (2.1). Since r+ is strictly monotone in s,
the function Γ+(r) := γ+(s(r)) is well-defined for r ∈ [R1, R2] such that Γ+(R1) = 3π/2. In
the sequel, we denote γ∗ := γ+(−τ1) = Γ+(R2).

Next, we consider the back of a rotating spot. The back of a rotating spot is influenced
by the front through the inhibitor of the excitable medium. In [14], this influence is given
by

(2.7) v− = Γ+(r−)− γ−.

Thus the equation (1.1) for the back is written by

(2.8) V− = 1− κ− − b(r−)(Γ+(r−)− γ−),

where b is a nonnegative function to be determined. In [14], b is a constant, but it corresponds
to the light intensity. In [10], the light intensity depends on the position. Hence we may
consider the case

b(r−) =

{
b1, R1 ≤ r− < R̃,

b2, R̃ ≤ r− ≤ R2.

where R1 and R2 are defined as in Proposition 2.1, and R̃ ∈ [R1, R2] is an unknown constant
to be determined.

For the case b(r−) = b1, from (2.1), (2.3) and (2.8), the equations for the back lead

(2.9)



dr1,−
ds1

= sinφ1,−,

dγ1,−
ds1

=
cosφ1,−

r1,−
,

dφ1,−

ds1
=

cosφ1,−

r1,−
− 1− ωr1,− sinφ1,− + b1(Γ+(r1,−)− γ1,−).

Here the arc length is measured forward so that s1 ≥ 0 and the initial condition is given by

(2.10) r1,−|s1=0 = R1, γ1,−|s1=0 =
3

2
π, φ1,−|s1=0 = π.

The solution of (2.9) with (2.10) is denoted by (r1,−(s1; b1), γ1,−(s1; b1), φ1,−(s1; b1)).

Similarly, when b(r−) = b2, we consider the back from the terminal point of the front
and the arc length is measured backward so that s2 ≤ 0. Then the solution, denoted by
(r2,−, γ2,−, φ2,−)(s2; b2), should satisfy

(2.11)



dr2,−
ds2

= sinφ2,−,

dγ2,−
ds2

=
cosφ2,−

r2,−
,

dφ2,−

ds2
=

cosφ2,−

r2,−
− 1− ωr2,− sinφ2,− + b2(Γ+(r2,−)− γ2,−).
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and the terminal condition is given by

(2.12) r2,−|s2=0 = R2, γ2,−|s2=0 = γ+(−τ1) := γ∗, φ2,−|s2=0 = 2π.

To ensure the existence of the back of a rotating spot, we need to impose some restriction
on the inner radius R1. For this, we shall define two new special radii R0, R3 as follows.

When b1 = b2 = 0, we introduce

X1(s1) := ωr1(s1) cosφ1(s1), Y1(s1) := 1 + ωr1(s1) sinφ1(s1),

X2(s2) := ωr2(s2) cosφ2(s2), Y2(s2) := 1 + ωr2(s2) sinφ2(s2).

Then

(X1, Y1)(0) = (−ωR1, 1), (X2, Y2)(0) = (ωR2, 1),

and (X1, Y1) and (X2, Y2) satisfy 
dX

ds
= Y (Y − 1),

dY

ds
= ω −XY.

For each R1 ∈ (0, R∗), there exist τ1, τ2 > 0 such that (X1, Y1)(τ1) = (ωR0, 1) and
(X2, Y2)(−τ2) = (−ωR3, 1) which means Φ1(R0; 0) = 0 and Φ2(R3; 0) = 3π for some R0 :=
R0(R1) and R3 := R3(R1). Since

1

2

d

ds
[(X − ω)2 + (Y − 1)2] = (X − ω)

dX

ds
+ (Y − 1)

dY

ds
= (X − ω)Y (Y − 1) + (Y − 1)(ω −XY ) = −ω(Y − 1)2 < 0,

we have (R0 − 1)2 < (R1 + 1)2 < (R2 − 1)2 < (R3 + 1)2. It is easy to see that R0 − R1 < 2
and R2 −R3 < 2.

Now, we give a sufficient condition for R1 such that R0 < R3.

Lemma 2.2. For each ω ∈ (0, ω∗), there exists a R∗ := R∗(ω) such that for any R1 ∈
[R∗, R

∗), we have R0(R1) < R3(R1).

Proof. By Proposition 2.1, we know that R2(R1) → +∞ as R1 → R∗. Hence, there exists a
R∗ ∈ (0, R∗) such that R2(R∗)−R∗ > 4. Also, from the result of the Lemma 2.5 (iii) in [3],
we obtain that R2(R1)−R1 is increasing in R1 ∈ (0, R∗). This implies that R2(R1)−R1 > 4
for any R1 ∈ [R∗, R

∗). So we have

R0(R1)−R3(R1) = [R0(R1)−R1] + [R1 −R2(R1)] + [R2(R1)−R3(R1)]

< 4− [R2(R1)−R1] < 0

for any R1 ∈ [R∗, R
∗). The lemma is proved. �

The following main theorem of this paper gives the existence of a rotating spot (see
Figure 1 and Figure 2).
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j+HsL Hr+HsL,Γ+HsLL

j1,-HsL
Hr1,-HsL,Γ1,-HsLL

j2,-HsL-2Π
Hr2,-HsL,Γ2,-HsLL

Figure 1. An example of point-tipped rotating spot: numerical solutions of
system (2.4) with initial condition (2.5) (solid curve), system (2.9) with initial
condition (2.10) (dashed curve) and system (2.11) with initial condition (2.12)
(dotted curve).

Figure 2. An example of arc-tipped rotating spot: numerical solutions of
system (2.4) with initial condition (2.5) (solid curve) and system (2.9) with
initial condition (2.10) (dashed curve) with a tipped arc (gray curve).
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Theorem 1. There exists a rotating spot for any ω ∈ (0, ω∗) and R1 ∈ [R∗, R
∗), where R∗

and R∗ are defined in Proposition 2.1 and Lemma 2.2, respectively.

In fact, a point-tipped rotating spot can be derived, if two backs starting from the inner
tip and the outer tip intersect such that

r1,−(ξ1; b1) = r2,−(−ξ2; b2) = R̃, γ1,−(ξ1; b1) = γ2,−(−ξ2; b2),

φ2,−(−ξ2; b2)− φ1,−(ξ1; b1) = 2π

for some constants ξ1, ξ2, b1, b2 and R̃ ∈ [R1, R2]. If the back starting from the inner tip
intersects the outer circle satisfying

r1,−(ξ1; b1) = R2, γ1,−(ξ1; b1) < γ∗, φ1,−(ξ1; b1) = 0,

for some positive constants b1 and ξ1, then the rotating spot has a tipped arc with radius R2

for angles lying between γ1,−(ξ1; b1) and γ∗. Similarly, it becomes an arc-tipped rotating spot
with a circular arc with radius R1, if the solution of (2.11)-(2.12) for s2 ∈ [−ξ2, 0] satisfies

r2,−(−ξ2; b2) = R1, γ2,−(−ξ2; b2) <
3π

2
, φ2,−(−ξ2; b2) = 3π

for some positive constants b2 and ξ2.

Remark 2.3. From the numerical simulation, we can find (b1, b2, R̃) = (1.105, 4.295, 4.6)
and (0.5, 4.04, 3) such that Proposition 2.1 and Theorem 1 hold for ω = 0.2 and R1 = 1.305
(see (a) and (b) in Figure 3). For ω = 0.1 and R1 = 3, we also observe that there are rotating

spots for the different b1, b2 and R̃ (see (c) and (d) in Figure 3). These results show us that
the rotating spots are not unique even we fix the angular speed ω and core radius R1.

3. Preliminaries

In this section, we provide some preliminaries in order to show the existence of a rotating
spot in the next section. By Proposition 2.1, we have the front of a rotating spot. For
convenience, from now on we ignore the subscript minus sign for the back of a rotating spot.
Since all results of this section can be found in [5], we only state them (without proof) here
for the reader’s convenience.

First, we consider the solution (r1, γ1, φ1)(s1) = (r1, γ1, φ1)(s1; b1) of (2.9)-(2.10) for a
given b1 ≥ 0.

Lemma 3.1 ([5, Lemma 4.2]). Let b1 > 0. Then the following statements hold:

(i) If φ1(s∗) = 0 for some s∗ > 0 and 0 < φ1(s) < π for s∗ > s > 0, then φ1(s) < 0 for
s > s∗ with s− s∗ small.

(ii) If φ1(s∗) = π for some s∗ > 0 and 0 < φ1(s) < π for s∗ > s > 0, then φ1(s) > π for
s > s∗ with s− s∗ small.

Let Q1 := (R1, R2)×R×(0, π). It follows from Lemma 3.1 that the following exit-length
S1 = S1(b1) and the exit-point (re1, γ

e
1, φ

e
1)(b1) are well-defined.
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Figure 3. Solid circles: r = R1 (inner); r = R2 (outer); dotted circle:

r = R̃. Examples of point-tipped rotating spot for (a) (ω,R1, b1, b2, R̃) =

(0.2, 1.305, 1.105, 4.295, 4.6), (b) (ω,R1, b1, b2, R̃) = (0.2, 1.305, 0.5, 4.04, 3),

(c) (ω,R1, b1, b2, R̃) = (0.1, 3, 1.1, 2, 4.5), (d) (ω,R1, b1, b2, R̃) =
(0.1, 3, 1.4, 1.7, 5.75).

(i) if there is a positive number ŝ1 such that the orbit stays in Q1 for 0 < s1 < ŝ1 and
r1(ŝ1) = R2, then S1 = S1(b1) = ŝ1 and (re1, γ

e
1, φ

e
1)(b1) = (R2, γ1(S1), φ1(S1));

(ii) if there is a positive number s1 such that the orbit stays in Q1 for 0 < s1 <
s1, φ1(τ) > π for any τ close to s1 with τ > s1, then S1 = S1(b1) = s1 and
(re1, γ

e
1, φ

e
1)(b1) = (r1(S1), γ1(S1), π);

(iii) if there is a positive number s1 such that the orbit stays in Q1 for 0 < s1 <
s1, φ1(τ) < 0 for any τ close to s1 with τ > s1, then S1 = S1(b1) = s1 and
(re1, γ

e
1, φ

e
1)(b1) = (r1(S1), γ1(S1), 0).

Note that the solution (r1, γ1, φ1)(s; b1) is continuous in b1 for b1 ≥ 0.
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Since r1(s1) is increasing in s1 when the trajectory (r1, γ1, φ1) stays in the region Q1, we
consider Φ1(r) := φ1(s(r)) and Γ1(r) := γ1(s(r)). Then (Φ1,Γ1) is a solution of the system

(3.1)


dΓ1

dr
=

cosΦ1

r sinΦ1

,

dΦ1

dr
=

cosΦ1

r sinΦ1

− 1

sinΦ1

− ωr +
b1(Γ+(r)− Γ1)

sinΦ1

.

Moreover, we have the following monotonicity property.

Lemma 3.2 ([5, Lemma 4.8]). Let (Γ1,j(r),Φ1,j(r)) := (Γ1(r; b1,j),Φ1(r; b1,j)) be the solution
of (3.1) with Γ1,j(R1) = 3π/2 and Φ1,j(R1) = π defined on [R1, r1(S1(b1,j))], j = 1, 2. If
0 < b1,1 < b1,2, then

Γ1,1(r) > Γ1,2(r), Φ1,1(r) < Φ1,2(r)

on (R1,min{r1(S(b1,1)), r1(S(b1,2))}] as long as Γ+(r) > Γ1,1(r).

For the solution (r2, γ2, φ2)(s2; b2) of (2.11)-(2.12) for a given b2 ≥ 0, we have the
following property similar to Lemma 3.1.

Lemma 3.3. Let b2 > 0. Then the following statements hold:

(i) If φ2(s∗) = 2π for some s∗ < 0 and 2π < φ2(s) < 3π for s∗ < s < 0, then φ2(s) < 2π
for s < s∗ with s∗ − s small.

(ii) If φ2(s∗) = 3π for some s∗ < 0 and 2π < φ2(s) < 3π for s∗ < s < 0, then φ2(s) > 3π
for s < s∗ with s∗ − s small.

Let Q2 := (R1, R2) × R × (2π, 3π). Again, by Lemma 3.3, the following exit-length
S2 = S2(b2) and the exit-point (re2, γ

e
2, φ

e
2)(b2) are well-defined.

(i) if there is a positive number ŝ2 such that the orbit stays in Q2 for −ŝ2 < s2 < 0 and
r2(−ŝ2) = R1, then S2 = S2(b2) = ŝ2 and (re2, γ

e
2, φ

e
2)(b2) = (R1, γ2(−S2), φ2(−S2));

(ii) if there is a positive number s2 such that the orbit stays in Q2 for −s2 < s2 <
0, φ2(−τ) < 2π for any τ close to s2 with τ > s2, then S2 = S2(b2) = s2 and
(re2, γ

e
2, φ

e
2)(b2) = (r2(−S2), γ2(−S2), 2π);

(iii) if there is a positive number s2 such that the orbit stays in Q2 for −s2 < s2 <
0, φ2(−τ) > 3π for any τ close to s2 with τ > s2, then S2 = S2(b2) = s2 and
(re2, γ

e
2, φ

e
2)(b2) = (r2(−S2), γ2(−S2), 3π).

Moreover, the solution (r2, γ2, φ2)(s; b2) is continuous in b2 for b2 ≥ 0.

Also, we can regard the orbit as a function of r instead of s. Namely, let Φ2(r) :=
φ2(s(r)) and Γ2(r) := γ2(s(r)). Then (Φ2,Γ2) is a solution of the system

(3.2)


dΓ2

dr
=

cosΦ2

r sinΦ2

,

dΦ2

dr
=

cosΦ2

r sinΦ2

− 1

sinΦ2

− ωr +
b2(Γ+(r)− Γ2)

sinΦ2

.

Furthermore, we have the following monotonicity property as [5, Lemma 4.8].
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Lemma 3.4. Let (Γ2,j(r),Φ2,j(r)) := (Γ2(r; b2,j),Φ2(r; b2,j)) be the solution of (3.2) with
Γ2,j(R2) = γ∗ and Φ2,j(R2) = 2π defined on [r2(−S2(b2,j)), R2], j = 1, 2. If 0 < b2,1 < b2,2,
then

Γ2,1(r) > Γ2,2(r), Φ2,1(r) > Φ2,2(r)

on [ max{r2(−S(b2,1)), r2(−S(b2,2))}, R2) as long as Γ+(r) > Γ2,1(r).

4. Proof of the main theorem

This section is devoted to the proof of Theorem 1. For the reader’s convenience, we
provide a rough guideline of the proof here. First, we determine the constant R∗ in Theorem 1
to guarantee no intersection of the extended trajectories of the front from two tips. This
is shown in Lemma 2.2. Next, for shooting we need to find two solution trajectories of the
back meeting together smoothly. For this, using the ideas from [1], we first define two sets
(B1 and B2 as below) such that the corresponding solution trajectories of the supremum of
these two sets have “convex-intersection” in the sense (4.3) stated in Proposition 4.4 (see
Figure 4). This also ensures that the set B (defined below) is not empty. However, the
connection of these trajectories is not smooth. In order to obtain a smooth solution of the
back, we then prepare Lemma 4.6 which plays a key role in the proof of Theorem 1. Namely,
the existence of trajectories with “concave-intersection” implies that of a smooth solution.
Since it is difficult to show the existence of such trajectories directly, we introduce the set B
which consists of trajectories with “convex-intersection”. Finally, we derive some properties
of B in Proposition 4.7, from which Theorem 1 can be readily proved.

Recall from Lemma 2.2 that there is no r ∈ [R1, r
e
1(0)]∩ [re2(0), R2] such that Γ1(r; 0) =

Γ2(r; 0) when R1 ∈ [R∗, R
∗), since re1(0) = R0 and re2(0) = R3.

For a fix ω ∈ (0, ω∗) and R1 ∈ [R∗(ω), R
∗(ω)), we define the following sets:

B1 :=

{
b1 ≥ 0

∣∣∣∣∣ There exists a constant Rp(b1) ∈ (R1, r
e
1(b1)) such that

Φ1(Rp(b1); b1) = Φ+(Rp(b1))− π and
Φ+(r)− π < Φ1(r; b1) < π for any r ∈ (R1, Rp(b1))

}
,

B2 :=

{
b2 ≥ 0

∣∣∣∣∣ There exists a constant Rp(b2) ∈ (re2(b2), R2) such that
Φ2(Rp(b2); b2) = Φ+(Rp(b2)) + π and
Φ+(r) + π > Φ2(r; b2) > 2π for any r ∈ (Rp(b2), R2)

}
,

where Φ+(r) := φ+(s(r)).

By a similar argument as in [1, Lemma 3.5, Proposition 3.7], we obtain the following
properties for the sets B1 and B2.

Proposition 4.1. If b1 ∈ B1, then we have

d(Γ+ − Γ1)

dr
(r) > 0 for any r ∈ (R1, Rp(b1))



12 YAN-YU CHEN, JONG-SHENQ GUO, AND HIROKAZU NINOMIYA

and
d(Γ+ − Γ1)

dr
(r) ≤ 0, (Φ+ − Φ1)(r) > π for any r ∈ [Rp(b1), r

e
1(b1)].

If b2 ∈ B2, then we have

d(Γ+ − Γ2)

dr
(r) < 0 for any r ∈ (Rp(b2), R2)

and
d(Γ+ − Γ2)

dr
(r) ≥ 0, (Φ2 − Φ+)(r) > π for any r ∈ [re2(b2), Rp(b2)].

Proposition 4.2. There are positive constants b1 and b2 such that B1 = [0, b1) and B2 =
[0, b2).

By [1, Proposition 4.1], we also have

(4.1) re1(b1) = R2, re2(b2) = R1.

Moreover, we have the next proposition.

Proposition 4.3. The following hold:

(i) For any b1 ∈ B1, we have either re1(b1) < R2 with φe
1(b1) = 0 or re1(b1) = R2 with

0 ≤ φe
1(b1) < π.

(ii) For any b2 ∈ B2, we have either re2(b2) > R1 with φe
2(b2) = 3π or re2(b2) = R1 with

2π < φe
2(b2) ≤ 3π.

Proof. For the case (i), since b1 ∈ B1, we have Φ+(r
e
1(b1))−Φ1(r

e
1(b1); b1) > π. If re1(b1) = R2,

we have φe
1(b1) < Φ+(R2) − π = π. Otherwise, by the definition of re1(b1), we know that

re1(b1) < R2 with φe
1(b1) = 0. For the case (ii), Φ2(r

e
2(b2); b2) − Φ+(r

e
2(b2)) > π holds for

b2 ∈ B2. Thus, Φ2(r
e
2(b2); b2) > Φ+(r

e
2(b2)) + π = 2π if re2(b2) = R1. If r

e
2(b2) > R1, it follows

from the definition of re2(b2) that φ
e
2(b2) = 3π. �

Recall that b1 = supB1, b2 = supB2. Now, we consider the corresponding solutions of
(3.1) and (3.2), which are denoted by

(Γ1(r),Φ1(r)) := (Γ1(r; b1),Φ1(r; b1)), (Γ2(r),Φ2(r)) := (Γ2(r; b2),Φ2(r; b2)),

respectively. Then, by (4.1), we have

0 < (Φ+ − Φ1)(r) < π, 0 < (Φ2 − Φ+)(r) < π for all r ∈ (R1, R2)(4.2)

and

(Φ+ − Φ1)(R2) = π, (Φ2 − Φ+)(R1) = π.

Moreover, we obtain the next proposition.

Proposition 4.4. There exists a positive constant R ∈ (R1, R2) such that

Γ1(R) = Γ2(R) and Φ2(R)− Φ1(R) < 2π(4.3)

Moreover, we have Γ1(r) > Γ2(r) for r ∈ [R1, R) and Γ1(r) < Γ2(r) for r ∈ (R,R2].
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b1=b1

b2=b2

-6 -4 -2 2 4 6
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-4
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Figure 4. The solutions of (3.1)-(3.2) for b1 = b1 and b2 = b2, respectively,
with ω = 0.1 and R1 = 3.

Proof. From (4.2), it is easy to see that (Γ+−Γ1)(r) > 0 for all r ∈ (R1, R2] and (Γ+−Γ2)(r) >
0 for all r ∈ [R1, R2). Then we obtain that

Γ2(R1) < Γ+(R1) = Γ1(R1) and Γ2(R2) = Γ+(R2) > Γ1(R2).

Therefore, there is a positive constant R ∈ (R1, R2) such that Γ1(R) = Γ2(R). By (4.2), we
also derive that Φ2(R)− Φ1(R) < 2π.

Since Φ+(r)−Φ1(r) < π for all r ∈ [R1, R2) and Φ2(r)−Φ+(r) < π for any r ∈ (R1, R2],
Γ+(r)− Γ1(r) is increasing on [R1, R2) and Γ+(r)− Γ2(r) is decreasing on (R1, R2]. Hence

Γ1(r)− Γ2(r) = [Γ1(r)− Γ+(r)] + [Γ+(r)− Γ2(r)]

> [Γ1(R)− Γ+(R)] + [Γ+(R)− Γ2(R)] = 0

for r ∈ [R1, R) and

Γ1(r)− Γ2(r) = [Γ1(r)− Γ+(r)] + [Γ+(r)− Γ2(r)]

< [Γ1(R)− Γ+(R)] + [Γ+(R)− Γ2(R)] = 0

for r ∈ (R,R2]. The proof of the proposition is completed. �

Motivated by the proof of [5, Lemma 4.9], we obtain the following result.

Lemma 4.5. The following hold:

(i) For any given R ∈ (R1, R2), there exists a unique b
u
1(R) > b1 such that Φ1(R; bu1(R)) =

π.
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(ii) For any given R ∈ (R1, R2), there exists a unique b
u
2(R) > b2 such that Φ2(R; bu2(R)) =

2π.

Proof. Since the proofs of statements (i) and (ii) are similar, we only give the proof of the
statement (i).

Let R ∈ (R1, R2) be fixed. By Lemma 3.2, Proposition 4.3 (i) and the definition of b1,
if there is a bu1(R) such that the corresponding solution of (3.1) satisfies Φ1(R; bu1(R)) = π
for R ∈ (R1, R2), then bu1(R) > b1 and it is unique.

Next, for this given R ∈ (R1, R2), we let

b∗1(R) := max

{
b1,

4(π − φ0)

R
+

1

R1

+ 1 + ωR

Γ+(R/2)− γ0

}
,

where

φ0 := Φ1

(
R

2
; b1

)
, γ0 := Γ1

(
R

2
; b1

)
.

Then we shall claim that

re1(b1) < R and φe
1(b1) = π for b1 ≥ b∗1(R).(4.4)

For this, by the first inequality in (4.2), we have Γ+(r)− Γ1(r; b1) > 0 for r ∈ (R1, R2].
Then we apply Lemma 3.2 and derive that

Γ1(r; b1) ≥ Γ1(r; b1) and Φ1(r; b1) ≤ Φ(r; b1)(4.5)

for any b1 ≥ b1 and r ∈ [R1,min{R2, r
e
1(b1)}].

Now, we divide our discussion into two cases: re1(b1) ≤ R/2 and re1(b1) > R/2. If
re1(b1) ≤ R/2 < R < R2, then by (4.5) we have

Φ1(r
e
1(b1); b1) ≥ Φ1(r

e
1(b1); b1) > 0

which implies that Φ1(r
e
1(b1); b1) = π by the definition of re1(b1). Hence (4.4) holds. On the

other hand, if re1(b1) > R/2, then by (4.5) we have

Γ+(r)− Γ1(r; b1) > Γ+(R/2)− Γ1(R/2; b1) ≥ Γ+(R/2)− γ0

for r > R/2. Moreover, we compute that

dΦ1

dr
=

1

sinΦ1

[cosΦ1

r
− 1− rω sinΦ1 + b1(Γ+(r)− Γ1(r))

]
≥ 1

sinΦ1

[cosΦ1

r
− 1− rω sinΦ1 +

4(π−φ0)
R

+ 1
R1

+ 1 + ωR

Γ+(R/2)− γ0
(Γ+(r)− Γ1(r))

]
≥ 1

sinΦ1

[4(π − φ0)

R

]
≥ 4(π − φ0)

R
> 0

for b1 ≥ b∗1(R) and R/2 < r < R. Hence Φ1(r; b1) reaches to π for some r ∈ (R/2, 3R/4),
which implies that re1(b1) < 3R/4 < R. Hence (4.4) holds.
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Finally, the statement (i) follows from the continuous dependence on b1, (4.4) and
(re1, φ

e
1)(b1) = (R2, π). Therefore, the proof of this lemma has been completed. �

Now we give a key lemma of this paper as below.

Lemma 4.6. Suppose that there exist b̃1 ≥ 0, b̃2 ≥ 0 and R̃ ∈ (R1, R2) such that

(4.6) Γ1(R̃; b̃1) = Γ2(R̃; b̃2), Φ2(R̃; b̃2)− Φ1(R̃; b̃1)≥ 2π,

Then a point-tipped rotating spot exists.

Proof. It is clear that a point-tipped rotating spot exists when Φ2(R̃; b̃2) − Φ1(R̃; b̃1) = 2π
holds in (4.6) (in this case, R̃ can be in [R1, R2]). Hence we may assume without loss of

generality that Φ2(R̃; b̃2) − Φ1(R̃; b̃1) > 2π in (4.6) for some R̃ ∈ (R1, R2). Then we have
either

Φ+(R̃)− Φ1(R̃; b̃1) > π(4.7)

or

Φ2(R̃; b̃2)− Φ+(R̃) > π.(4.8)

Suppose that (4.7) holds. Then b̃1 belongs to B1, which implies that b̃1 < b1 and

Rp(b̃1) < R̃. Lemma 3.2 implies that Γ1(r; b̃1) > Γ1(r; b1) for r ∈ (R1, Rp(b̃1)].

By Proposition 4.1 and b1 ̸∈ B1, we have Φ+(r)−Φ1(r; b̃1) > π and Φ+(r)−Φ1(r; b1) < π

for r ∈ (Rp(b̃1), r
e
1(b̃1)]. This implies that

Γ+(r)− Γ1(r; b1) > Γ+(Rp(b̃1))− Γ1(Rp(b̃1); b1)

> Γ+(Rp(b̃1))− Γ1(Rp(b̃1); b̃1) > Γ+(r)− Γ1(r; b̃1)

for r ∈ (Rp(b̃1), r
e
1(b̃1)). Therefore, we obtain that

Γ1(r; b̃1) > Γ1(r; b1) for any r ∈ (R1, r
e
1(b̃1)).(4.9)

Now, we show that a point-tipped rotating spot exists under the assumption of the
lemma.

Case 1. R̃ = R, where R defined as in Proposition 4.4. We have b̃2 < b2 by Lemma 3.4
and

Γ2(R; b2) = Γ1(R; b1) < Γ1(R̃; b̃1) = Γ2(R̃; b̃2).

Hence it follows from the continuous dependence on both b1 and b2, Lemmas 3.2 and 3.4

that there exist b1 ∈ (b̃1, b1) and b2 ∈ (b̃2, b2) such that

(4.10) Γ1(R̃; b1) = Γ2(R̃; b2), Φ2(R̃; b2)− Φ1(R̃; b1) = 2π.

Indeed, for a given b1 ∈ (b̃1, b1), it follows from Lemma 3.2 that

Γ1(R̃; b1) < Γ1(R̃; b1) < Γ1(R̃; b̃1).
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Also, by Lemma 3.4, we have

Γ1(R̃; b1) = Γ2(R̃; b2) < Γ2(R̃; b2) < Γ2(R̃; b̃2) = Γ1(R̃; b̃1)

for b2 ∈ (b̃2, b2). The continuous dependence on b2 implies that there exists a unique b2 =

b2(b1) such that Γ1(R̃; b1) = Γ2(R̃; b2). Note that b2(b1) = b2 and b2(b̃1) = b̃2. It follows from

Φ2(R̃; b2(b̃1))− Φ1(R̃; b̃1) > 2π, Φ2(R̃; b2(b1))− Φ1(R̃; b1) < 2π,

and the continuous dependence on b1 that (4.10) holds for some b1 ∈ (b̃1, b1) and b2 = b2(b1) ∈
(b̃2, b2). Hence a point-tipped rotating spot exists.

Case 2. R̃ < R. In this case, it suffices to show that there exist b1 and b2 such that

Γ1(R̃; b1) = Γ2(R̃; b2) and Φ2(R̃; b2)− Φ1(R̃; b1) ≤ 2π.(4.11)

Then we are done, if Φ2(R̃; b2)− Φ1(R̃; b1) = 2π. Otherwise, it reduces to Case 1.

For this, we first claim that b̃2 < b2. By the contradiction argument, we assume that

b̃2 ≥ b2. Since Φ2(R̃; b̃2) − Φ1(R̃; b̃1) > 2π, we have d(Γ1 − Γ2)(R̃)/dr > 0. This implies

that Γ1(R̃− η; b̃1) < Γ2(R̃− η; b̃2) for η > 0 sufficiently small. By Lemmas 3.2 and 3.4 with

b̃1 < b1 and b̃2 ≥ b2, we obtain that

Γ1(R̃− η; b1) < Γ1(R̃− η; b̃1) < Γ2(R̃− η; b̃2) ≤ Γ2(R̃− η; b2).

Then it follows from Proposition 4.4 that R̃ > R̃ − η > R, a contradiction. Hence b̃2 < b2,

and we have Γ2(r; b̃2) > Γ2(r; b2) for any r ∈ [re2(b̃2), R2), by the similar argument as that
for (4.9).

By using Proposition 4.4, we know that

Γ2(R̃; b2) < Γ1(R̃; b1) < Γ1(R̃; b̃1) = Γ2(R̃; b̃2).(4.12)

By the inequality (4.12) and the continuous dependence on b2, there is a unique b′2 ∈ (b̃2, b2)

such that Γ1(R̃; b1) = Γ2(R̃; b′2). If Φ2(R̃; b′2)− Φ1(R̃; b1) ≤ 2π, then we are done.

Otherwise, we assume that Φ2(R̃; b′2) − Φ1(R̃; b1) > 2π. By Lemma 4.5 (i), there exist

a bu1(R̃) > b1 such that Φ1(R̃; bu1(R̃)) = π. If Γ1(R̃; bu1(R̃)) ≤ Γ2(R̃; b2), then there exist a

b∗1 ∈ (b1, b
u
1(R̃)] such that

Γ1(R̃; b∗1) = Γ2(R̃; b2)

by the continuous dependence on b1, Lemma 3.2 and Γ2(R̃; b2) < Γ1(R̃; b1). Since b∗1 > b1,
we know that

Φ+(R̃)− Φ1(R̃; b∗1) < Φ+(R̃)− Φ1(R̃; b1) < π

Also, we have Φ2(R̃; b2)− Φ+(R̃) < π. Hence we obtain that Φ2(R̃; b2)− Φ1(R̃; b∗1) < 2π.

On the other hand, when Γ1(R̃; bu1(R̃)) > Γ2(R̃; b2), by the continuous dependence on b2
and the inequality Γ1(R̃; bu1(R̃)) < Γ1(R̃; b1) = Γ2(R̃; b′2), there exists a b∗2 ∈ (b′2, b2) such that

Γ1(R̃; bu1(R̃)) = Γ2(R̃; b∗2).
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Moreover, we obtain that

Φ2(R̃; b∗2)− Φ1(R̃; bu1(R̃)) = Φ2(R̃; b∗2)− π ≤ 2π

which implies that (4.11) holds.

Case 3. R̃ > R. We divide this case into two subcases: b̃2 < b2 and b̃2 ≥ b2.

For the case b̃2 < b2, by Proposition 4.4 and Lemma 3.4, we know that

Γ1(R̃; b1) <Γ2(R̃; b2) < Γ2(R̃; b̃2) = Γ1(R̃; b̃1).(4.13)

Then there is a unique b′1 ∈ (b̃1, b1) such that

Γ1(R̃; b′1) = Γ2(R̃; b2),

by (4.13) and the continuous dependence on b1. If Φ2(R̃; b2) − Φ1(R̃; b′1) ≤ 2π, then we are

done. Otherwise, we suppose that Φ2(R̃; b2)−Φ1(R̃; b′1) > 2π. By Lemma 4.5 (ii), there is a

bu2(R̃) such that Φ2(R̃; bu2(R̃)) = 2π. Using the similar argument as that for the case R̃ < R,

there exist a b∗2 ∈ (b2, b
u
2(R̃)) such that (4.11) holds, if Γ2(R̃; bu2(R̃)) ≤ Γ1(R̃; b1), and there

exists a b∗1 ∈ (b′1, b1) such that (4.11) holds, if Γ2(R̃; bu2(R̃)) > Γ1(R̃; b1).

For the other case b̃2 ≥ b2, it is easy to see that Φ2(R̃; b̃2) > 2π + Φ1(R̃; b̃1) ≥ 2π. By

Lemma 4.5 (ii) and Lemma 3.4, there exists a bu2(R̃) > b̃2 with Φ2(R̃; bu2(R̃)) = 2π. Then

(4.11) holds by the similar argument as the case R̃ > R and b̃2 < b2.

Therefore, the existence of a point-tipped rotating spot is proved, if (4.7) holds. Similar
argument can be applied, if (4.8) holds. Therefore, the proof of this lemma is completed. �

In the sequel, for the notational convenience, we shall denote

∆Γ(r; b1, b2) := Γ2(r; b2)− Γ1(r; b1), ∆Φ(r; b1, b2) := Φ2(r; b2)− Φ1(r; b1).

Now we define the set B as follows.

B := {(b1, b2) ∈ [0,∞)× [0,∞) | there exists a unique RI(b1, b2) ∈ (R1, R2)

such that ∆Γ(RI ; b1, b2) = 0, ∆Φ(RI ; b1, b2) < 2π}.

Note that (b1, b2) ∈ B implies that (R1, r
e
1(b1)] ∩ [re2(b2), R2) ̸= ∅ implicitly. Also, B is

nonempty, since (b1, b2) ∈ B by Proposition 4.4.

We give some properties of the set B.

Proposition 4.7. Let (b1, b2) ∈ B and let RI = RI(b1, b2). Then we have

Γ2(RI ; b2) = Γ1(RI ; b1) < Γ+(RI).(4.14)

Moreover, if b1 > 0 (resp. b2 > 0), then for ε > 0 small enough there exists δ > 0 such that

Γ1(RI + δ; b1 − ε) = Γ2(RI + δ; b2),(4.15)

(resp. Γ1(RI − δ; b1) = Γ2(RI − δ; b2 − ε)).
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Proof. First, we give the proof of (4.14). For contradiction, we assume that

Γ2(RI ; b2) = Γ1(RI ; b1) ≥ Γ+(RI).(4.16)

Then we claim that b1 ∈ B1 and b2 ∈ B2. If b1 /∈ B1, we have Γ1(r) < Γ+(r) for all
r ∈ (R1, r

e
1(b1)]. This contradicts (4.16). On the other hand, we also get a contradiction by

Γ2(r) < Γ+(r) for all r ∈ [re2(b2), R2) if b2 /∈ B2. Hence b1 ∈ B1 and b2 ∈ B2.

Moreover, we have Γ+(r) > Γ1(r; b1) for any r ∈ (R1, Rp(b1)) and Γ+(r) > Γ2(r; b2) for
any r ∈ (Rp(b2), R2) which implies that Rp(b1) < RI < Rp(b2). Hence we obtain that

Φ2(RI ; b2)− Φ1(RI ; b1)

= [Φ2(RI ; b2)− Φ+(RI)] + [Φ+(RI)− Φ1(RI ; b1)]

> [Φ2(Rp(b2); b2)− Φ+(Rp(b2))] + [Φ+(Rp(b1))− Φ1(Rp(b1); b1)] = 2π.

which contradicts (b1, b2) ∈ B. Thus (4.14) is proved.

Next, we prove the second statement. Given a pair (b1, b2) ∈ B with b1 > 0. By (4.14),
applying Lemma 3.2 and the continuous dependence on b1, we derive that

Γ1(RI ; b1 − ε) > Γ1(RI ; b1) = Γ2(RI ; b2)(4.17)

with ε > 0 sufficiently small. On the other hand, at R = RI we have

(4.18)
d(Γ2(R; b2)− Γ1(R; b1))

dr
=

− sin(Φ2(R; b2)− Φ1(R; b1))

R sinΦ1(R; b2) sinΦ2(R; b2)
> 0

by using Φ1 ∈ (0, π), Φ2 ∈ (2π, 3π) and π < Φ2(RI ; b2)− Φ1(RI ; b1) < 2π. Hence

Γ1(RI + η; b1) < Γ2(RI + η; b2)

with η > 0 sufficiently small. By the continuous dependence on b1, we also have

Γ1(RI + η; b1 − ε) < Γ2(RI + η; b2)(4.19)

with ε > 0 sufficiently small. Thus, by (4.17) and (4.19), there exists a δ ∈ (0, η) such
that (4.15) holds. The case for b2 can be treated similarly. Therefore, the proposition is
proved. �

Proof of Theorem 1. We divide our discussion into three cases: (i) R ∈ [R0, R3], (ii) R < R0

and (iii) R > R3.

Case (i). R ∈ [R0, R3]. In this case, we define b1 = inf{b1 > 0 | (b1, b2) ∈ B}. Then it

follows from the continuous dependence on the parameters that there exists a R̂ ∈ [R1, R2]

such that ∆Γ(R̂; b1, b2) = 0 and ∆Φ(R̂; b1, b2) ≤ 2π. Due to Proposition 4.4, we have

Γ2(R1; b2) < Γ1(R1; b1) = Γ1(R1; b1).

Hence R̂ ∈ (R1, R2]. If ∆Φ(R̂; b1, b2) = 2π, then we have found a solution. Hence we may

assume that ∆Φ(R̂; b1, b2) < 2π.

Since R ≥ R0, by Proposition 4.4 and Lemma 3.2, we have

Γ2(r; b2) ≤ Γ1(r; b1) < Γ1(r; 0) for r ∈ (R1, R0].
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Thus b1 > 0. We claim that (b1, b2) ̸∈ B. Otherwise, if (b1, b2) ∈ B, then R̂ ∈ (R1, R2) and

by Proposition 4.7 there exist ε, δ > 0 such that ∆Γ(R̂ + δ; b1 − ε, b2) = 0. By choosing ε, δ

small enough, we also have R̂ + δ ∈ (R1, R2) and ∆Φ(R̂ + δ; b1 − ε, b2) < 2π. This implies

that (b1 − ε, b2) ∈ B, a contradiction to the definition of b1. Hence (b1, b2) ̸∈ B.

Recall from Lemma 4.6 that it suffices to consider the case R̂ = R2.

Suppose that R̂ = R2. Then R̂ is the unique intersection point. Otherwise, let Rs be
another intersection point such that Rs ̸= R2 and so Rs ∈ (R1, R2). We may assume without
loss of generality that there is no intersection point in (Rs, R2). If ∆Φ(Rs; b1, b2) ≥ 2π, then

we are done. Otherwise, if ∆Φ(Rs; b1, b2) < 2π, then ∆Γ(Rs + η; b1, b2) > 0 for 0 < η ≪ 1

due to (4.18). Hence ∆Γ(r; b1, b2) > 0 for all r ∈ (Rs, R2). Recall that ∆Γ(R2; b1, b2) = 0. By

Lemma 3.2, Φ1(R2; b1) < Φ1(R2; b1) = π. Hence ∆Φ(R2; b1, b2) ∈ (π, 2π). By the continuity

of ∆Φ, we also have ∆Φ(r; b1, b2) ∈ (π, 2π) for r with 0 < R2 − r ≪ 1. Using Φ1 ∈ (0, π)
and Φ2 ∈ (2π, 3π) in (R1, R2), integrating (4.18) over (R2− ε,R2) with 0 < ε ≪ 1 we obtain

that ∆Γ(R2; b1, b2) > 0, a contradiction. Therefore, R̂ is the unique intersection point and
we conclude that

(4.20) Γ1(r; b1) > Γ2(r; b2) for all r ∈ [R1, R2).

Moreover, b1 < b1 and, by comparison, Γ1(r; b1) > Γ1(r; b1) for all r ∈ (R1, R2].

Now, we consider the trajectory for b2 = 0. Note that Φ2(R2; 0) = 2π. If Φ1(R2; b1) = 0,
then we are done. Otherwise, Φ1(R2; b1) > 0 and so ∆Φ(R2; b1, 0) < 2π. Hence we have
Γ2(r; 0) < Γ1(r; b1) for r with 0 < R2 − r ≪ 1. Suppose that there is the second intersection
point, say at Rs. Similar argument as before, we then have ∆Φ(Rs; b1, 0) ≥ 2π. Since
Rs ∈ (R1, R2), Lemma 4.6 implies the existence of a point-tipped rotating spot.

It remains to consider the case that Γ2(r; 0) < Γ1(r; b1) for all r ∈ [R3, R2). Since R ≤
R3, we have Γ1(R3; b1) ≤ Γ2(R3; b2) < Γ2(R3; 0), by Proposition 4.4 and Lemma 3.2. Hence
we obtain that Γ1(R3; b1) < Γ2(R3; 0) < Γ1(R3; b1). Then by the continuous dependence on

b1 we can find a b1 ∈ (b1, b1) such that Γ1(R3; b1) = Γ2(R3; 0). Note that Φ2(R3; 0) = 3π.

Since Φ1 ∈ (0, π), we have ∆Φ(R3; b1, b2) ≥ 2π. Then the existence of a point-tipped rotating
spot again follows from Lemma 4.6.

Case (ii). R < R0. In this case, we also define b1 = inf{b1 > 0 | (b1, b2) ∈ B}. if b1 > 0,
then the proof of Theorem 1 can be completed by the argument similar to Case (i). Thus,
we only consider the case that b1 = 0.

Suppose that b1 = 0. Then there is at least one R̂ ∈ (R1, R0] such that ∆Γ(R̂; 0, b2) = 0.

If R̂ = R0, then we have ∆Φ(R0; 0, b2) ≥ 2π, since Φ1(R0; 0) = 0. Hence we are done.

Also, if we have R̂ ∈ (R1, R0) and there is the second intersection point, then a point-tipped
rotating spot exists.

We consider the remaining case that R̂ ∈ (R1, R0), ∆Φ(R̂; 0, b2) < 2π, Γ1(r; 0) >

Γ2(r; b2) for all r ∈ (R1, R̂), and Γ1(r; 0) ∈ (Γ1(r; b1),Γ2(r; b2)) for all r ∈ (R̂, R0]. Assume
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that there exist b1 > 0 and r ∈ (R1, Re(b1)) such that ∆Γ(r; b1, b2) ≤ 0, then ∆Γ(R̆; b1, b2) =

0 for some R̆ ∈ (R1, r] ⊂ (R1, R2). These conditions imply that

d∆Γ(R̆; b1, b2)

dr
≤ 0.

Using Φ1(R̆; b1) ∈ (0, π), Φ2(R̆; b2) ∈ (2π, 3π) and ∆Φ(R̆; b1, b2) ∈ (π, 3π) together with

d∆Γ(R̆; b1, b2)

dr
=

− sin∆Φ(R̆; b1, b2)

R̆ sinΦ2(R̆; b2) sinΦ1(R̆; b1)
≤ 0,

we see that ∆Φ(R̆; b1, b2) ≥ 2π. This shows that (4.6) holds with b̃1 = b1 and b̃2 = b2.
Hence a point-tipped rotating spot can be derived. Otherwise, we have ∆Γ(r; b1, b2) > 0 for
r ∈ (R1, Re(b1)) for each b1 ≥ 0. By applying the continuous dependence on b1 in the (r, ϕ)-
phase plane, there exists a b1 ∈ (0, b1) such that the corresponding solution of (2.9)-(2.10)
satisfies

r1(ξ1; b1) = R2, φ1(ξ1; b1) = 0.

Note that we have γ1(ξ1; b1) ≤ γ∗. This produces a point-tipped rotating spot, if γ1(ξ1; b1) =
γ∗. When γ1(ξ1; b1) < γ∗, it gives an arc-tipped rotating spot.

Case (iii) R > R3. For this case, we define b2 = inf{b2 > 0 | (b1, b2) ∈ B}. Then Theorem 1
can be proved by a similar argument as Case (ii). In conclusion, we have completed the
proof of Theorem 1. �
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