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Abstract. We study the spiral wave in an unbounded excitable medium from the wave
front interaction model derived by Zykov in 2009. This model consists of two systems
of ordinary differential equations that describe the wave front and wave back, respectively.
First, we derive some properties of the back by the shooting argument and the comparison
principle. Next we show the global existence of the solution of the back. Then we study its
asymptotic behavior at infinity. Finally, we prove the uniqueness of the solution.
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1. Introduction

Wave patterns in excitable media have been studied in many fields in physics, chemistry,
biology and so on. One of the typical wave patterns is a spiral pattern, which is observed
in Belousov-Zhabotinsky reaction [7], cyclic-AMP signaling in social amoeba colonies of
Dictyostelium discoideum [8], etc. It is also known that the spiral waves is one of causes of
a ventricular fibrillation [9]. Therefore, to understand the mechanism of the appearance of
spiral waves is very important. For more details on the mathematics aspect and physical
background of spiral waves, we refer to Fife [3], Tyson and Keener [14], Meron [10], Fiedler
and Scheel [1], Mikhailov [13] and so on.

Many researchers studied the spiral wave as a thickless curve in the plane (see, e.g.,
[2, 4]), though most of experiments exhibit thick spiral waves. Under the assumption that
the tip is rotating along a circle, namely, the front is perpendicular to the core circle, they
derived some information of spiral waves, such as the behavior of the wave and the multiple
existence. To study the motion of the tip and the core of the spiral wave, we need more
information of the spiral wave, especially near its tip. Therefore, it is meaningful to study it
as a thick region to derive the more information of the spiral wave. Zykov studied the spiral
wave rotating along a core circle by free boundary approach in [16, 17]. It shows the selection
mechanism that uniquely determines the shape and the rotation frequency of spiral waves
in an unbounded excitable medium. More precisely, given an admissible rotating

Date: July 24, 2012.
Corresponding author: Y.-Y. Chen. Tel:+81 80 40588673 Fax:+81 44 9347481

Graduate School of Advanced Mathematical Sciences, Meiji University, 1-1-1 Higashimita, Tamaku,
Kawasaki 214-8571, Japan
chenyanyu24@gmail.com.

This work was supported in part by the National Science Council of the Republic of China under the grant
NSC 99-2115-M-032-006-MY3 and by Challenging Exploratory Research (No. 23654042), Japan Society for
the Promotion of Science.

1



2 YAN-YU CHEN, JONG-SHENQ GUO, AND HIROKAZU NINOMIYA

frequency ω, we can choose the constant b related to the excitability so that the
spiral wave in an unbounded excitable medium exists. For example, when we
consider the photosensitive Belousov-Zhabotinsky reaction as in [11, 17], we can
choose the parameter b such that the spiral wave pattern appears by changing the
light intensity. In this work, we will show this result by mathematical analysis.
The method used in [17] is also applicable to other kinds of wave patterns, [11, 12, 15] for a
wave segment in the plane and [16] for a rotating wave pattern in a disk.

In this paper, we give a mathematical proof of the existence and the uniqueness of spiral
waves which consist of the front and the back by using the system proposed by Zykov [17].
This system is the so-called wave front interaction model. For the mathematical studies of
two related wave front interaction models, we refer the reader to some recent works on the
propagating wave segment in the plane [5] and the rotating wave pattern in a disk [6]. We
shall describe this model in the successive section.

Comparing to the works ([2, 4]) that regard the spiral wave as a thickless curve, we
need to treat not only a 3-component ordinary differential system describing the front part,
but also a 3-component ordinary differential system for the back. Moreover, the system for
the back involves a function related to the front. Motivated by [4], the system for the front
can be easily solved by a change of variables which reduces the 3-component system into a
2-component autonomous system. However, a similar change of variables for the system of
the back gives us a 2-component non-autonomous system, since the reduced system includes
the angular distance between the front and the back. The usual phase plane analysis is
no longer applicable. To overcome this difficulty, a delicate analysis is carried out for the
reduced system (see (4.7) below). For this, we need to derive some useful properties of the
back and the angular distance between the front and the back. Indeed, this is based on
comparing with a special solution constructed from the solution describing the front. Hence
we are able to show the global existence of back with positive angular distance using the
continuity argument and the dependency of the parameter. Using the properties of the
angular distance, we can also show the asymptotic behavior and uniqueness of the back.
This result implies that the size of the core is determined only by the front. We emphasize
that the front is tangential to the core circle at the tip, because the spiral wave is rotating
along the core circle.

We organize this paper as follows. First, in Section 2, we describe the wave front
interaction model and state the main result of this paper. In Section 3, we derive several
key properties of the back and study the angular distance between front and back. Finally,
we show the existence and uniqueness of the back for a spiral wave in Section 4.

2. The problem setting and main result

In this section, we first describe the problem setting by the wave front interaction model
derived by Zykov [17].

A planar curve can be described by the Euclidean coordinates (x, y) and the angle θ of
the normal vector (right-hand to the tangent) measuring from the positive x-axis. Then we
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have

dx

ds
= − sin θ,

dy

ds
= cos θ,

dθ

ds
= κ,

where s is the arc length parameter and κ is the (signed) curvature. Using the polar coor-
dinates (r, γ) with the relation (x, y) = (r cos γ, r sin γ), we have

(2.1)
dr

ds
= sinφ,

dγ

ds
=

1

r
cosφ,

dθ

ds
= κ,

where φ := γ − θ.

In this paper, we consider a spiral wave pattern in the plane which is rotating counter-
clockwise with a constant positive angular speed ω. Here a wave pattern corresponds to the
excited region in the media. Let the origin be the center of the rotation. Then we have the
relations

(2.2) r(s, t) = r(s), γ(s, t) = γ(s) + ωt, θ(s, t) = θ(s) + ωt.

Since the normal velocity V can be computed by

V =
dx

dt
cos θ +

dy

dt
sin θ =

dr

dt
cos(γ − θ)− r

dγ

dt
sin(γ − θ),

it follows from (2.2) that

(2.3) V = −ωr sinφ.

As in [6], we let the tip (or, phase change point) to be the unique point on the boundary of
the excited region with zero normal velocity. Moreover, the radius function has its minimum
at the tip. Then we define the front to be the wave boundary before the tip and the back to
be the one after the tip. Furthermore, we measure the arc length s from the tip forward on
the back and backward on the front so that s > 0 on the back and s < 0 on the front. For
clarity, the functions of the front curve and the back curve are denoted by

(x+, y+, r+, γ+, θ+, φ+, V+), (x−, y−, r−, γ−, θ−, φ−, V−),

respectively. Note that by our choice the normal vector is always pointed outward to the
excited region.

For the front, as in [17], we choose the normalized interface equation by the following
linear eikonal equation

(2.4) V+ = 1− κ+.

Using (2.1) and (2.3), we obtain

(2.5)


dr+
ds

= sinφ+,

dφ+

ds
=

cosφ+

r+
− 1− ωr+ sinφ+.
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We take the tip to be (r+, γ+)|s=0 = (R0, 3π/2) for some R0 > 0. Also, we choose θ+(0) =
π/2. Recall that the arc length is measured backward so that s < 0 for the front. Therefore,
(2.5) is equipped with the terminal condition

(2.6) r+|s=0 = R0, φ+|s=0 = π.

We denote the solution of (2.5) with (2.6) by (r+(s;ω), φ+(s;ω)), or simply (r+(s), φ+(s)).

Using the change of variables

X+(s) := ωr+(s) cosφ+(s), Y+(s) := 1 + ωr+(s) sinφ+(s),

we end up with

(2.7)


dX+

ds
= Y+(Y+ − 1),

dY+

ds
= ω −X+Y+, s < 0,

X+(0) = −ωR0, Y+(0) = 1.

Note that Y+ is the curvature function.

We look for solutions such that the radius function is monotone in s. Since φ+(0;ω) = π,
θ+(s;ω) < π/2, and γ+(s;ω) > 3π/2 for 0 < −s ≪ 1, we see from (2.5) that φ+ ∈ [π, 2π] for
the front. This gives us the condition that Y+ < 1 for the front, except when φ+ = π or 2π.

The following proposition for the existence of the front was shown in [4, Lemma 2.1 and
Theorem 1].

Proposition 2.1 ([4, Lemma 2.1 and Theorem 1]). There exists a positive constant ω∗ such
that for each ω ∈ (0, ω∗) there is a unique positive constant R∗(ω) such that a unique solution
(X+, Y+) of (2.7) for R0 = R∗(ω) with 0 < Y+ < 1 exists for all s < 0. Moreover, X ′

+(s) < 0,
Y ′
+(s) > 0 for all s < 0, and the properties

(2.8) lim
s→−∞

X+(s) = ∞, lim
s→−∞

Y+(s) = 0

hold for this solution.

Indeed, the solution obtained in Proposition 2.1 will be used for the front of a spiral
wave. Note that this solution curve is of positive curvature. Hence for each ω ∈ (0, ω∗) there
is a unique solution (r+, φ+) of (2.5) and (2.6) with φ+ ∈ [π, 2π] defined for all s ≤ 0 such
that R0 = R∗(ω) and

(2.9) lim
s→−∞

r+(s) = ∞, lim
s→−∞

φ+(s) = 2π, lim
s→−∞

dθ+
ds

(s) = 0,

by using (2.8). Moreover, since φ+(s) ∈ (π, 2π) for all s ∈ (−∞, 0), we can invert r+(s) and
define Γ+(r) := γ+(s(r)) for all r > R0.

Next, we consider the back of a spiral wave. The back of a spiral wave is influenced
by the front through the inhibitor of the excitable medium. If the activator and the
inhibitor are close to constants in the excited region, the density of the inhibitor
v is expected to satisfy the equation

∂v

∂t
= b̂(2.10)
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for some constant b̂. The continuity condition at the front also implies that v = v+
on the front where v+ is the density of the inhibitor on the front. Now we focus
on the spiral wave pattern rotating along the core with a constant angular speed
ω. Hence, we can rewrite (2.10) as

−ω
∂v

∂γ
= b̂.

Using the condition at the front we have

v− = v+ +
b̂

ω
(Γ+(r−)− γ−),

where v+ (resp. v−) is the inhibitor on the front (resp. back). The speed of the
planar wave of the activator is determined by the density of the inhibitor. As in
[14], under the normalization, we simply assume that the wave velocity c− of the
back is

c− = 1− b(Γ+(r)− Γ−(r)).(2.11)

Here b is equal to the quantity B̃/ω in [17], where B̃ is a dimensionless constant
and it is actually related to the excitability of the medium. Using the normalized
eikonal equation, we obtain that the interface equation for the back is given by

(2.12) V− = 1− κ− − b(Γ+(r−)− γ−).

It is also noted that the patterns in the experiments of photosensitive Belousov-
Zhabotinsky reaction become different if we change the light intensity. Combining
(2.12) with (2.1) and (2.3), the equations for the back can be written as

(2.13)



dr−
ds

= sinφ−,

dγ−
ds

=
cosφ−

r−
,

dφ−

ds
=

cosφ−

r−
− 1− ωr− sinφ− + b(Γ+(r−)− γ−).

Here we have the arc length s ≥ 0 and the initial condition is given by

(2.14) r−|s=0 = R0, γ−|s=0 =
3

2
π, φ−|s=0 = π.

We denote the solution of (2.13) with (2.14) by (r−(s; b), γ−(s; b), φ−(s; b)).

Now we state the following main theorem of this paper.

Theorem 2.2. For any ω ∈ (0, ω∗), there exist a unique positive constant R0 := R∗(ω)
defined as in Proposition 2.1 and a unique positive constant b∗ such that the corresponding
solution (r−, γ−, φ−)(s; b∗) of (2.13) with (2.14) is defined for all s ≥ 0. Moreover, it satisfies
the asymptotic condition

lim
s→∞

r−(s) = ∞, lim
s→∞

V−(s) = −1, lim
s→∞

dθ−
ds

(s) = 0.(2.15)
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Figure 1. Numerical solutions of (2.5) (solid curve) and (2.13) (dotted curve)
when ω = 0.2, R0 ≈ 1.305 and b = b∗ ≈ 1.312:(a) whole plane (b) near
the tip

In [17], the author shows the selection mechanism about the rotating spiral
wave in an unbounded excitable medium. Proposition 2.1 and Theorem 2.2
give a mathematical proof to this result. Therefore, given any ω ∈ (0, ω∗), the
unbounded rotating spiral wave pattern only appears by choosing the specific
core radius R0 = R∗(ω) and excitability b = b∗.

The numerical solution of Proposition 2.1 and Theorem 2.2 for ω = 0.2 is given in Figure
1. The solid curve corresponds to the front of the chemical waves and the dotted one does to
the back. The excited region and the resting one are separated by the front and
the back. We can observe the topological changes when the parameter b varies (see Figure
2). From this numerical result, it suggests that the existence of the back can be shown by
the continuity argument. Also we can observe that the angular distance is always positive
and tends to some constant when b = b∗. This means that there is no intersection between
front and back.

Remark 2.1. (Wavelength) As r− → ∞, we can derive the asymptotic wavelength
for the back. From the conclusion in Proposition2.1 and Theorem2.2, we can
easily to obtain that

dr+
dγ+

=
r+ sinϕ+

cosϕ+

→ − 1

ω
as r+ → ∞,

dr−
dγ−

=
r− sinϕ−

cosϕ−
→ − 1

ω
as r− → ∞.

These results suggest that the asymptotic wavelength for the front and the back
when r+ and r− tends to infinity are equal to 2π/ω.

Note that the second condition in (2.15) is natural, since V+(s) → 1 as s → −∞.
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Figure 2. Dependence of solutions of (2.13) on b

3. Some properties of the back

In this section, we shall study the properties of the solution (r−, γ−, φ−) of (2.13) and
(2.14) for any given b > 0. For the simplicity of the notation, we shall drop the subscript
minus sign from now on. As the front, we want to find the radius function for the back to
be monotone in s. So we require that φ ∈ [0, π] for the back, due to

φ(0; b) = π, θ(s; b) > π/2, γ(s; b) < 3π/2 for 0 < s ≪ 1

and (2.13). First, we recall a result from [6].

Lemma 3.1 ([6, Lemma 4.2]). Let b > 0. Then the following statements hold:

(i) If φ(s∗) = 0 for some s∗ > 0 and 0 < φ(s) < π for 0 < s < s∗, then φ(s) < 0 for
s > s∗ with s− s∗ small.

(ii) If φ(s∗) = π for some s∗ > 0 and 0 < φ(s) < π for 0 < s < s∗, then φ(s) > π for
s > s∗ with s− s∗ small.

Now we consider the following open strip domain

Q := (R0,∞)× R× (0, π)

for a given ω ∈ (0, ω∗). For each b > 0, we define the exit-length S = S(b) and the exit-point
(Re, γe, φe)(b) as follows:

(i) if there is a positive number s such that the orbit stays in Q for 0 < s < s,
φ(τ) > π for some τ close to s with τ > s, then S = S(b) = s and (Re, γe, φe)(b) =
(r(S), γ(S), π);

(ii) if there is a positive number s such that the orbit stays in Q for 0 < s < s,
φ(τ) < 0 for some τ close to s with τ > s, then S = S(b) = s and (Re, γe, φe)(b) =
(r(S), γ(S), 0);

(iii) set S(b) = ∞ and Re(b) = r(∞; b), if φ(s) ∈ (0, π) for all s > 0.
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We remark that since r is increasing in s as long as the orbit stays in Q, the orbit
never touches the plane r = R0. Moreover, by Lemma 3.1, the definitions of exit-length and
exit-point are well-defined. Note that Re(b) < ∞ if S(b) < ∞.

Lemma 3.2. If S(b) = ∞, then Re(b) = ∞.

Proof. Assume for contradiction that Re(b) < ∞. Note that r(s) is monotone increasing in
s, 0 < φ < π for 0 < s < ∞ and Re(b) = r(∞; b). With this Re(b) as RD in [6, Lemma 4.3],
we have that |γ(s)| ≤ γ∗(b) for 0 < s < ∞, where

γ∗(b) :=
1

b

( 1

R0

+Re(b)
)
+max

{
3, max

R0≤r≤Re(b)
Γ+(r)

}
+

π

R0

.

Suppose that the limit lims→∞ γ(s) exists (which is finite). Then we can find a sequence
{sn} tending to infinity such that (r′(sn), γ

′(sn)) → (0, 0) as n → ∞. By (2.13), we have

lim
n→∞

sinφ(sn) = lim
n→∞

cosφ(sn)

r(sn)
= 0,

which is a contradiction.

On the other hand, suppose that γ(s) is oscillatory. Then, by the same argument as in
the proof of the last part of [6, Lemma 4.3], we also reach a contradiction. Thus we conclude
that Re(b) = ∞. �

We can regard the orbit as a function of r instead of s. Namely, let Φ(r) := φ(s(r)) and
Γ(r) := γ(s(r)). Then (Φ,Γ) is a solution of the system

(3.1)


dΓ

dr
=

cosΦ

r sinΦ
,

dΦ

dr
=

cosΦ

r sinΦ
− 1

sinΦ
− ωr +

b(Γ+(r)− Γ)

sinΦ
.

We now recall a comparison principle from [6] as follows.

Lemma 3.3 ([6, Lemma 4.8]). Let (Γj(r),Φj(r)) := (Γ(r; bj),Φ(r; bj)) be the solution of
(3.1) with Γj(R0) = 3π/2 and Φj(R0) = π defined on [R0, r(S(bj))], j = 1, 2. If 0 < b1 < b2,
then

Γ1(r) > Γ2(r), Φ1(r) < Φ2(r)

on (R0,min{r(S(b1)), r(S(b2))}) as long as Γ+(r) > Γ1(r).

Let (r+, γ+, φ+)(s) be the front solution defined in Proposition 2.1. Since the trajectory
of the solution (X+, Y+) passes through the point (0, Y0) for some Y0 ∈ (0, 1), there is a
positive constant s1 such that φ+(−s1) = 3π/2. In the sequel, we define R1 = r+(−s1).
Note that R1 satisfies that

ωR1 < 1.(3.2)

This radius R1 shall play the role as the disk radius RD in [6] in the sequel.
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The following simple observation gives a clue for our shooting argument to obtain the
existence of the solution of the back.

Proposition 3.4. Given b > 0. Set

(r̂(s), γ̂(s), φ̂(s)) :=
(
r+(−s), γ+(−s)− 2

b
, φ+(−s)− π

)
, s ≥ 0.

Then (r̂, γ̂, φ̂) becomes a solution of the system (2.13) defined for all s ≥ 0 and so

(Γ̂, Φ̂) :=
(
Γ+(r)−

2

b
,Φ+(r)− π

)
is also a solution of (3.1).

Proof. It is easy to see that

dr̂(s)

ds
=

dr+(−s)

ds
= − sin(φ+(−s)) = sin(φ+(−s)− π) = sin φ̂(s),

dγ̂(s)

ds
=

d(γ+(−s)− 2/b)

ds
=

− cos(φ+(−s))

r+(−s)
=

cos(φ+(−s)− π)

r+(−s)
=

cos(φ̂(s))

r̂(s)
,

dφ̂(s)

ds
=

d(φ+(−s)− π)

ds
= −

(cos(φ+(−s))

r+(−s)
− 1− ωr+(−s) sin(φ+(−s))

)
=

cos(φ+(−s)− π)

r+(−s)
− 1− ωr+(−s) sin(φ+(−s)− π) + 2

=
cos(φ̂(s))

r̂(s)
− 1− ωr̂(s) sin(φ̂(s)) + b(Γ+(r̂)− γ̂(s)).

Hence we know that (r̂, γ̂, φ̂) is a solution of (2.13) on [0,∞) and the proposition is proved.
�

The following lemma is useful.

Lemma 3.5. For each b > 0, the solution (r(s; b), γ(s; b), φ(s; b)) of (2.13) and (2.14)
satisfies one of the following:

(i) Φ+(r)− π < Φ(r) < π for any r ∈ (R0, Re(b)).
(ii) There exists a Rp = Rp(b) ∈ (R0, Re(b)) such that Φ+(r) − π < Φ(r) < π for any

r ∈ (R0, Rp) and Φ(Rp) = Φ+(Rp)− π. Moreover, we have

Γ+(r)− Γ(r) <
2

b
for R0 < r ≤ Rp.

Proof. Recall Φ+(r) ∈ (π, 2π) for r > R0 and Φ(r) ∈ (0, π) for all r ∈ (R0, Re). Since

d(Γ+ − Γ)

dr
=

cosΦ+

r sinΦ+

− cosΦ

r sinΦ
=

sin(Φ− Φ+)

r sinΦ+ sinΦ
,(3.3)

the function (Γ+ − Γ)(r) is increasing in r as long as 0 < (Φ+ − Φ)(r) < π. This is the case
whenever Φ+(r) − π < Φ(r) < π. Using (Γ+ − Γ)(R0) = 0 and [6, Lemma 4.1], we have
(Γ+ − Γ)(r) > 0 for r > R0 and sufficiently close to R0.
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Assume that 0 < Φ+(r)−Φ(r) < π for any r ∈ (R0, Rp) and (Φ+−Φ)(Rp) = π for some
Rp ∈ (R0, Re). Then

d(Φ+ − π − Φ)

dr
(Rp) ≥ 0.

We compute

d(Φ+ − π − Φ)

dr
=

1

sinΦ+

(cosΦ+

r
− 1

)
− 1

sinΦ

(cosΦ
r

− 1 + b(Γ+ − Γ)
)

=
sin(Φ− Φ+)

r sinΦ+ sinΦ
− 1

sinΦ+

+
1

sinΦ
− b(Γ+ − Γ)

sinΦ
.

If (Γ+ − Γ)(Rp) > 2/b, then we have

d(Φ+ − π − Φ)

dr
(Rp) < 0,

a contradiction. Hence we have (Γ+ − Γ)(Rp) ≤ 2/b.

On the other hand, if (Γ+ − Γ)(Rp) = 2/b, then, by the uniqueness of solution of (3.1)
with the help of Proposition 3.4, we have (Γ+ − Γ)(r) ≡ 2/b and (Φ+ − Φ)(r) ≡ π, a
contradiction. Hence we must have (Γ+ − Γ)(Rp) < 2/b. It follows from (3.3) that

Γ+(r)− Γ(r) <
2

b
for R0 < r ≤ Rp.

This completes the proof of the lemma. �

Hereafter we shall define the set

B :=

{
b > 0

∣∣∣∣∣ There exist a constant Rp = Rp(b) ∈ (R0, Re(b)) such that
Φ(Rp; b) = Φ+(Rp)− π and
Φ+(r)− π < Φ(r; b) < π for any r ∈ (R0, Rp)

}
.

Then we have the following property for any b ∈ B.

Lemma 3.6. For any b ∈ B, the corresponding solution of (2.13) and (2.14) satisfies

(Γ+ − Γ)(r) <
2

b
, 0 < Φ(r) < Φ+(r)− π

for all r ∈ (Rp, Re(b)).

Proof. For any r with Φ(r) = Φ+(r)− π, we compute that

d(Γ+ − Γ)

dr
(r) = 0,

d(Φ+ − Φ)

dr
(r) =

1

sinΦ(r)
[2− b(Γ+ − Γ)(r)],(3.4)

d2(Γ+ − Γ)

dr2
(r) =

1

r sin3Φ(r)
[b(Γ+ − Γ)(r)− 2].

From these equalities and Lemma 3.5, it follows that

d(Φ+ − Φ)

dr
(Rp) > 0,

d2(Γ+ − Γ)

dr2
(Rp) < 0.



SPIRAL WAVE IN THE PLANE 11

Hence we have

(Φ+ − Φ)(r) > π, (Γ+ − Γ)(r) <
2

b
for 0 < r −Rp ≪ 1.

By (3.3), we know (Γ+ − Γ)(r) < 2/b as long as (Φ+ − Φ)(r) > π. If there exists a
smallest R′

p > Rp such that (Φ+ − Φ)(R′
p) = π, then we have

d(Φ+ − Φ)

dr
(R′

p) ≤ 0.

However, we also have

(Γ+ − Γ)(R′
p) <

2

b
,

since (Γ+ −Γ)(r) is nonincreasing on [Rp, R
′
p]. This contradicts (3.4). Therefore, the lemma

follows. �

Lemma 3.6 means that the projection of the trajectory (r,Γ,Φ) onto (r,Φ)-plane stays
in the region {(r,Φ) ∈ (R0,∞)× (0, π) | r > R0, 0 < Φ < Φ+(r)− π} as long as it hits the
boundary Φ = Φ+(r) − π. Moreover, we have Γ+(r) − Γ(r; b) < 2/b for all r ∈ (R0, Re(b)),
if b ∈ B.

Remark 3.1. If Φ+(r) − π < Φ(r; b) < π (resp. 0 < Φ(r; b) < Φ+(r) − π < Φ(r; b)), then
Γ+(r)−Γ(r; b) is monotone increasing (resp. decreasing) in r. Moreover, we always have the
property that Γ(r; b) < Γ+(r) for r ∈ (R0, Rp(b)), due to the fact that Γ(r; b) < 3π/2 < Γ+(r)
when 0 < r −R0 ≪ 1 and the above monotonicity property.

We have the following characterization for the set B.

Proposition 3.7. The set B is a nonempty bounded open set. In fact, there is a finite
positive constant b∗ such that B = (0, b∗).

Proof. Recall (3.2). Then, by [6, Lemma 4.9], there is a positive constant b∗ = b∗(ω) such
that S(b) = s for all b ≥ b∗. This implies that b ̸∈ B for all b ≥ b∗, by Lemma 3.6. Hence
B is bounded. Moreover, by [6, Theorem 4.10], there is a positive constant b0 such that the
corresponding solution (Γ0,Φ0) of (3.1) satisfying Φ0(R1) = π/2 and

Φ+(r)− π < Φ0(r) < π, Γ0(r) < Γ+(r) for R0 < r < R1.

Note that Φ+(R1) = 3π/2. This implies that b0 ∈ B and so B ̸= ∅.

Next, we claim that

(i) If b1 ∈ B, then (0, b1] ⊂ B;
(ii) If b ∈ B, then there is a positive constant δ such that b+ δ ∈ B.

Then the proposition follows from the above two properties by setting b∗ := supB.

To show (i), we take any b which is smaller than b1. It follows from Lemma 3.3 that

Γ(r; b1) < Γ(r; b), Φ(r; b) < Φ(r; b1), R0 < r < min{Re(b), Re(b1)}.
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Since

Φ(Rp(b1); b) < Φ(Rp(b1); b1) = Φ+(Rp(b1))− π,

there is r ∈ (R0, Rp(b1)) such that Φ(r; b) = Φ+(r)− π. Hence b ∈ B. The first statement is
shown.

For (ii), suppose for contradiction that there is a b1 ∈ B such that b /∈ B for any b > b1.
Lemma 3.5 and (3.4) imply that

Γ+(Rp(b1))− Γ(Rp(b1); b1) <
2

b1
,

d(Φ+(Rp(b1))− π − Φ(Rp(b1); b1))

dr
> 0.

Then there is a positive constant R > Rp(b1) such that 0 < Φ(R; b1) < Φ+(R) − π. If b
is close to b1, then Φ(R; b) is close to Φ(R; b1) by the continuity of the parameter b. Then
b ∈ B for all b > b1 with b − b1 ≤ δ for some constant δ > 0. Therefore, the statement (ii)
holds true and the proposition is proved. �

Remark 3.2. Note that for b = 0 the quantity Rp(0) is well-defined. Indeed, as in the proof
of [6, Lemma 4.4], the corresponding solution Φ (to b = 0) satisfies

d(cosΦ− cosΦ+)

dr
= −cosΦ− cosΦ+

r
+ ωr

(√
1− cos2Φ +

√
1− cos2Φ+

)
for r > R0 with the initial condition

cosΦ+(R0) = cosΦ(R0) = −1.

Since cosΦ(r), cosΦ+(r) > −1 for r > R0 with r −R0 small, we see that

(cosΦ− cosΦ+)(r) > 0

for r > R0. Hence S(0) ̸= s̄. On the other hand, if Φ+(r) − π < Φ(r) < π for all r > R0,
then

cosΦ+(r) < cosΦ(r) < cos(Φ+(r)− π) = − cosΦ+(r)

for all r > R0. This contradicts with the fact that the range of Φ+(r) is equal to [π, 2π].
Therefore, Rp(0) is a well-defined finite positive number.

4. Proof of Theorem 2.2

For any b > 0, the local existence of the solution of (2.13) and (2.14) has been studied
by [6, Lemma 3.1]. Now, we shall show the global existence of the solution of the back that
satisfies (2.15) for a certain b > 0.

Recall the constant b∗ = supB defined in Proposition 3.7.

Proposition 4.1. The solution (r, γ, φ)(s; b∗) of (2.13) and (2.14) exists globally for all
s ≥ 0 such that 0 < φ(s; b∗) < π for all s > 0. Moreover,

(4.1) Re(b∗) = ∞, φe(b∗) = π, 0 < Γ+(r(s; b∗))− γ(s; b∗) <
2

b ∗
for s > 0.
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Proof. First, by the definition of b∗, we can take a sequence {bn} such that bn ∈ B and
bn ↗ b∗. Since b∗ ̸∈ B, we have

Φ+(r)− π < Φ(r; b∗) < π for all r ∈ (R0, Re(b∗)).(4.2)

If Re(b∗) < ∞, then Lemma 3.2 implies that S(b∗) < ∞ and so, by (4.2), φ(S(b∗); b∗) = π.
By Lemma 3.1 and the continuous dependence on b, there is a n ≫ 1 such that S(bn) = s.
This contradicts to bn ∈ B. Therefore, we have Re(b∗) = ∞ and so S(b∗) = ∞. Since
Φ+(∞) = 2π, it follows from (4.2) that φe(b∗) = φ(∞; b∗) = π.

Finally, the last inequality in (4.1) follows from Lemma 3.5 (ii). This completes the
proof of this proposition. �

To complete the proof of the existence part in Theorem 2.2, it remains to show that the
solution given in Proposition 4.1 satisfies (2.15). For this, we set

k = k(r; b∗) := b∗(Γ+ − Γ)(r).

Since Γ+(r)− Γ(r; b∗) is monotone increasing in r, the limit

k∞ := lim
r→∞

k(r; b∗) = lim
s→∞

k(r(s; b∗); b∗)

exists and we have k(r; b∗) < k∞ for all r ≥ R0. Note that k∞ ≤ 2 by (4.1).

By the fact φ(∞; b∗) = π, we can choose a sequence {sn} tending to infinity such that
limn→∞ φ′(sn; b∗) = 0. Define rn = r(sn; b∗). Then we have

(4.3) lim
n→∞

ωrn sinΦ(rn; b∗) = lim
n→∞

ωr(sn; b∗) sinφ(sn; b∗) = k∞ − 1,

by using the equation of φ in (2.13). Using (3.3), (2.8) and (4.3), we compute that

0 = lim
n→∞

d(Γ+ − Γ)(rn)

dr
= lim

n→∞

(
cosΦ+(rn)

rn sinΦ+(rn)
− cosΦ(rn)

rn sinΦ(rn)

)
= −ω +

ω

k∞ − 1
.

Thus we conclude that k∞ = 2, i.e.,

(4.4) lim
s→∞

{b∗[Γ+(r(s; b∗))− γ(s; b∗)]} = 2.

We next claim that

(4.5) lim
s→∞

ωr(s; b∗) sinφ(s; b∗) = 1.

For this, we define

(4.6) X = X(s) := ωr(s; b∗) cosφ(s; b∗), Y = Y (s) := 1 + ωr(s; b∗) sinφ(s; b∗).

Then (X,Y ) satisfies

(4.7)


dX

ds
= (Y − 1)[Y − k(r(s; b∗); b∗)],

dY

ds
= ω −X[Y − k(r(s; b∗); b∗)].

Proposition 4.1 implies that X(s) < 0, Y (s) > 1 for all s ≥ s0 for some s0 ≫ 1 and
X(s) → −∞ as s → ∞.
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Suppose that there is a positive constant s1 ≥ s0 such that

Y (s1) < k(r(s1; b∗); b∗) +
ω

X(s1)
.

Then

dY

ds
(s1) < 0.

Moreover, we compute that

d

ds

(
k(r(s; b∗)); b∗) +

ω

X(s)

)
=

d

ds
k(r(s; b∗)); b∗)−

ω

X2(s)

dX(s)

ds
> 0

at s = s1. Therefore, by a contradiction argument and using (4.7), we deduce that

Y (s) < k(r(s; b∗); b∗) +
ω

X(s)
for all s ≥ s1.

Notice that 1 < Y (s) < k(r(s; b∗)); b∗) for all s ≥ s1. Hence it follows from (4.7) that the
functions X(s) and Y (s)− [k(r(s; b∗)); b∗) + ω/X(s)] are strictly decreasing for s ≥ s1.

Now, we choose a constant s2 > s1 and a sufficiently small constant ϵ such that

Y (s) < k(r(s; b∗); b∗) +
ω

X(s)
− ϵ for all s ≥ s2.

Then we derive that

dY

ds
(s) < ϵX(s) < ϵX(s2) < 0 for all s > s2.

Letting s → ∞, we obtain that Y (s) → −∞, a contradiction. Thus we conclude that

(4.8) Y (s) ≥ k(r(s; b∗); b∗) +
ω

X(s)
for all s ≥ s0.

On the other hand, using π/2 < Φ+(r)− π < Φ(r; b∗) < π for all r ≫ 1, we have

(4.9) Y (s) < 1− ωr(s) sinΦ+(r(s)) for all s ≫ 1.

Letting s → ∞ in (4.8) and (4.9), we obtain that lims→∞ Y (s; b∗) = 2. Thus (4.5) follows.

Using (4.4), (4.5) and (2.13), we obtain that

lim
s→∞

dθ

ds
(s) = 0.

Since κ = dθ/ds, it follows from (2.12) that

lim
s→∞

V (s) = −1.

Hence (2.15) follows and this completes the proof of the existence part of Theorem 2.2.

By (2.11), we immediately see that the asymptotic wave speed of the back is

lim
r→∞

c− = lim
r→∞

{1− b[Γ+(r)− Γ−(r)]} = 1− k∞ = −1.

We now turn to show the uniqueness of the back.

Lemma 4.2. For any b > b∗, Re(b) < ∞.
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Proof. Assume for contradiction that Re(b) = ∞ for some b > b∗. Note that S(b) = ∞.
Recall from (4.1) that Γ(r; b∗) < Γ+(r) for all r > R0. It follows from Lemma 3.3 that

(4.10) Γ(r; b∗) > Γ(r; b), Φ(r; b∗) < Φ(r; b) for all r ∈ (R0,∞).

We claim that b ∈ B. Otherwise, we have Φ+(r)−π < Φ(r; b) < π for all r > R0. Hence
we have Φ(∞; b) = π, since Φ+(∞) = 2π.

First, we define η1(r) = cosΦ(r; b) and η2(r) = cosΦ(r; b∗). Then

(4.11) lim
r→∞

(η1 − η2)(r) = 0,

since Φ(∞; b) = Φ(∞; b∗) = π. Moreover, due to (4.10) we have

(4.12) −1 < η1(r) < η2(r) < 0

for all r ≥ R̃ for some large R̃.

Next, we compute

d(η1 − η2)

dr
= −η1 − η2

r
+ ωr

(√
1− η21 −

√
1− η22

)
−b[Γ+(r)− Γ(r; b)] + b∗[Γ+(r)− Γ(r; b∗)].

From (4.10), we have

b[Γ+(r)− Γ(r; b)] > b[Γ+(r)− Γ(r; b∗)].

Then it follows from k∞(b∗) = 2 that

lim inf
r→∞

{b[Γ+(r)− Γ(r; b)]} ≥ 2b

b∗
> 2,

due to b > b∗. Combining this with (4.11) and (4.12), by choosing a larger R̃ (if it is
necessary), we have

d(η1 − η2)

dr
< 0(4.13)

for all r ≥ R̃. Then from (4.11) it follows that (η1 − η2)(R̃) > 0. This contradicts (4.12).
Therefore, we conclude that b ∈ B, i.e., Rp(b) < ∞.

Now, from the proof of Proposition 3.7, we have b∗ ∈ (0, b) ⊂ B. This contradicts the
definition of b∗. Thereby the proof is complete. �

To complete the proof of the uniqueness, we consider the case 0 < b < b∗. In this case,
Rp(b) exists by Proposition 3.7 and then there is a positive constant sp = sp(b) such that
r(sp; b) = Rp(b). Let (X, Y ) be defined by (4.6) and (4.7) with b∗ replacing by b. Note that
k(s; b) is decreasing in s for s > sp and Y (s; b) > 1 for s > 0.

Lemma 4.3. For any b ∈ (0, b∗) with Re(b) = ∞ and any s− ∈ (sp(b),∞) satisfying
X(s−) ≤ 0, either φ(∞; b) = π, or there is a s+ = s+(s−) such that s+ > s− and X(s+) > 0.
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Proof. We assume that X(s) ≤ 0 for all s ≥ s−. Note that φ(s) ∈ [π/2, π] for all s ≥ s− and
so

(4.14) φ(s; b) = π − sin−1
[Y (s)− 1

ωr(s)

]
.

We divide our discussion into two cases.

Case (i). Y (s0) > k(s0; b) for some s0 ≥ s−. Note that X and Y are increasing
whenever X ≤ 0 and Y > k. Hence

0 ≥ X(s) > X(s0), Y (s) > Y (s0) > k(s0; b) > k(s; b) for all s > s0.

Then

dY

dX
=

ω −X(Y − k)

(Y − 1)(Y − k)
≤ M for all s > s0 + 1

where

M :=
ω

[Y (s0)− 1][Y (s0)− k(s0 + 1)]
+

−X(s0)

Y (s0)− 1
> 0.

Thus it follows that Y is bounded, since

1 < Y (s) ≤ Y (s0 + 1) +M [X(s)−X(s0 + 1)] ≤ Y (s0 + 1)−MX(s0 + 1)

for all s > s0 + 1. Using (4.14), we see that φ(∞; b) = π.

Case (ii). Y (s) ≤ k(s−; b) for all s ≥ s−. In this case, it is easy to see from (4.14)
that φ(∞; b) = π.

Therefore, if φ(s; b) does not converge to π as s → ∞, then there is s+ > s− such that
X(s+) > 0. This proves the lemma. �

Lemma 4.4. For 0 < b < b∗, Se(b) = s < ∞.

Proof. Suppose that there is a b ∈ (0, b∗) satisfying Re(b) = ∞. Let Re = Re(b). By
Remark 3.1 and Lemmas 3.5 and 3.6, we have

(4.15) k∞(b) < kM := sup
R0<r<∞

k(r, b) < 2.

Moreover, by Lemma 3.6 and Proposition 3.7, we recall that Y (s; b) > 1 for s > 0,

r(sp; b) = Rp(b), k(sp; b) = kM ,

0 < φ(s) < Φ+(r(s))− π for all s ≥ sp

and k(s; b) is decreasing in s for s > sp. Note that S(b) = ∞.

First, we consider the case φ(∞; b) = π. Define ξ1(r) = cosΦ(r; b) and ξ2(r) =
cosΦ(r; b∗). Then limr→∞(ξ1 − ξ2)(r) = 0. Note that Φ(r; b) < Φ(r; b∗) < π by Lemma 3.3.

Since Φ(∞; b) = π and k∞(b∗) = 2, we can choose a sufficiently large constant R̃ such that

−1 < ξ2(r) < ξ1(r) < 0(4.16)
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and, due to (4.15),

d(ξ1 − ξ2)

dr
= −ξ1 − ξ2

r
+ ωr

(√
1− ξ21 −

√
1− ξ22

)
−b[Γ+(r)− Γ(r; b)] + b∗[Γ+(r)− Γ(r; b∗)] > 0

for all r ≥ R̃. Then (ξ1 − ξ2)(r) < 0 for all r > R̃, since (ξ1 − ξ2)(∞) = 0. This contradicts
(4.16). Hence either Re < ∞ or φ(s; b) does not converge to π as s → ∞. The former case
implies that S(b) = s, due to b ∈ B, Lemma 3.2 and Lemma 3.6.

Now we assume that φ(s; b) does not converge to π as s → ∞. We claim that there is
a s̄ ≥ sp such that

(4.17) X(s̄) > 0, Y (s̄) ≥ k(s̄; b).

To see this, we consider the sign of X(sp). If X(sp) ≤ 0, then, by Lemma 4.3, there exists a
s+ ≥ sp such that X(s) > 0. Hence there is a s̄ ∈ [sp, s+] satisfying

(4.18) X(s̄) > 0,
dX

ds
(s̄) ≥ 0.

Recalling (4.7) and Y > 1, (4.17) follows. Consider the case where X(sp) > 0. If there is a
s− ≥ sp such that X(s−) ≤ 0, then we have X(s+) > 0 for some s+ > s−, by Lemma 4.3.
Similarly, we have a s̄ ∈ [sp, s+] satisfying (4.18) and then (4.17) holds. Thus we only need
to consider the case where X(s) > 0 for all s ≥ sp. For this case, suppose for contradiction
that Y (s) < k(s; b) for all s ≥ sp. Then dY/ds ≥ ω for all s ≥ sp. Hence there is a
s+ ∈ [sp, sp + (k(sp; b) − Y (sp))/ω] such that Y (s+) = k(s+; b), a contradiction. Therefore,
our claim (4.17) has been proved.

Next, we will prove X(s) > 0 for all s ≥ s̄, where s̄ is a point such that (4.17) holds.

For this, we first consider the case when Y (s̄) < k(s̄) + ω/X(s̄). We claim that Y (s) >
k(s) for all s > s̄. Note that

(4.19) Y ′(s) :=
dY

ds
(s) > 0 whenever Y (s) < k(s) + ω/X(s) and X(s) > 0.

Then, by the fact that k is decreasing in (sp,∞), (Y − k)′(s̄) > 0. Hence Y > k for s > s̄
with s− s̄ ≪ 1. Suppose that there exists s1 > s̄ such that Y (s1) = k(s1). Without loss of
generality, we may take s1, the smallest one, such that Y > k in (s̄, s1) and Y (s1) = k(s1).
Then (Y − k)′(s1) ≤ 0 which implies that Y ′(s1) < 0. On the other hand, by (4.7), we have
X > 0 in [s̄, s1]. In particular, X(s1) > 0 and Y (s1) < k(s1) + ω/X(s1). It follows from
(4.19) that Y ′(s1) > 0, a contradiction. Therefore, we have proved that Y > k in (s̄,∞).
Then, by (4.7), X is increasing in (s̄,∞) and so X(s) > 0 for all s ≥ s̄.

Suppose next that Y (s̄) ≥ k(s̄) + ω/X(s̄). Since

dX

ds
(s) > 0,

d

ds

(
Y − k − ω

X

)
(s) > 0

whenever Y ≥ k + ω/X, X > 0 and s ≥ sp (in which k is non-increasing), the trajectory
satisfies conditions X > 0 and Y > k + ω/X for s > s̄.

Therefore, we have proved that X(s) > 0 for all s ≥ s̄.
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Now we consider the case where X(s1) > 0 and Y (s1) ≥ k(s1) + ω/X(s1) for some
s1 > s̄. From the argument above, the trajectory satisfies X > 0 and Y > k + ω/X for
s > s1. It follows from (4.7) that Y (s) is decreasing for s > s1. Then φ(s) is decreasing for
s > s1, since

dφ

ds
=

dY
ds

− dr
ds
ω sinφ

X
=

dY
ds

− ω sin2 φ

X
< 0.

Hence the limit Y∞ := lims→∞ Y (s) exists with Y∞ ∈ [1, Y (s1)] which also implies that
φ(∞; b) = 0. Since there is a sequence {rn} tending to infinity such that

0 = lim
n→∞

d(Γ+ − Γ)(rn)

dr
= lim

n→∞

(
cosΦ+(rn)

rn sinΦ+(rn)
− cosΦ(rn)

rn sinΦ(rn)

)
= −ω − ω

Y∞ − 1
< 0,

we have a contradiction.

Finally, it remains to exclude the case that the trajectory satisfies conditions X > 0 and
Y < k + ω/X for s > s̄. For this, we suppose that X(s) > 0 and Y (s) < k(s) + ω/X(s) for
all s > s̄. Under this assumption, we see that Y (s) − k(s) is increasing for all s > s̄. Then
we obtain that k(s) < Y (s) < k(s) + ω/X(s) for all s ≥ s̄. Hence X(s) is increasing for
s ≥ s̄ and this implies that Y∞ ∈ (1, k∞ + ω/X(s̄)]. Using the fact that φ(s) ∈ (0, π/2) for
all s ≥ s̄, we may re-write

φ(s) = sin−1
[Y (s)− 1

ωr(s)

]
and derive that φ(∞; b) = 0. Then we reach a contradiction as before. Therefore, we
conclude that Re(b) < ∞. This completes the proof of this lemma. �

The uniqueness part of Theorem 2.2 immediately follows from Lemmas 4.2 and 4.4.
Thus we have completed the proof of Theorem 2.2.
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