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Abstract. This paper deals with the motion by curvature of planar curves having end

points moving freely along a line with fixed contact angles to this line. We first prove

the existence and uniqueness of self-similar shrinking solution. Then we show that the

curve shrinks to a point in a self-similar manner, if initially the curve is a graph.
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1. Introduction

In this paper, we study the following problem on the evolution of planar curves.

Problem (P): Given an initial curve Γ(0), find a family of curves {Γ(t)}0<t<T that lie on the

upper-half plane, have end points on the x-axis with contact angle ψ− on the left and ψ+ on the

right, and evolve according to the motion by curvature; see Figure 1 (a).
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Figure 1. Figure (b) is a schematic snap shot of a diminishing grain domain

Ω(t) surrounded by two other grain domains Ω+(t) and Ω−(t); the dots P (t)

and Q(t) are the so-called triple junctions of three grain domains. When Ω(t) is

symmetric about the x-axis, figure (a), modelled by problem (P), is the upper-half

part of figure (b)

One motivation of our investigation of problem (P) originates from the study of evolution of

grain domains in polycrystals. Here by a grain it refers to a periodic lattice structure of composite

particles of a crystal; see Angenent and Gurtin [8, 29], Herring [30, 31], Mullins [40, 41, 42], Sutton
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and Baluffi [47], Woodruff [48], as well as Kobayashi, Warren, and Carter [36, 37, 38] for more

physical background. In such a sense, all grains are physically and chemically identical, except

their orientations. A grain boundary is the intersection of two grain domains at which orientations

of different lattices do not match. Similarly, a triple junction is the meeting place of three grain

domains. It is commonly believed that at a triple junction, the intersection angles are fixed,

a principal quite often called the Herring condition [30, 31] (under such a principal, we indeed

should have ψ+ = ψ−). Grain boundaries are often modelled by the (mean) curvature flows; see

the theoretical and laboratorial studies of the group of Adams, Ta’asan, Kinderlehrer, Livshits,

Manolache, Mason, Wu, Mullins, Rother, Rollett and Saylor [2, 3, 34], and also mathematical

oriented studies of Bronsard and Retich [12], Kinderleherer and Liu [33], Mantegazza, Novaga and

Tortorelli [39].

It is observed that the evolution of grain boundaries makes a network of grains topologically

simpler and simpler. This is achieved by diminishing of grains; creation of grains is very rare,

except at very early stage of the formation of polycrystals. Here in this paper we consider a mostly

observed scenario depicted in Figure 1 (b). Due to the mathematical challenge, here we shall focus

only on a situation where Ω(t) is symmetric about the x-axis. Then the evolution of the grain

boundary between Ω(t) and Ω+(t) is described in the Problem (P).

When no triple junctions are involved, mathematically one studies the curvature flow of a simple

closed curve (the boundary of a bounded smooth domain). A fundamental result in this direction

is that of Grayson [27] who proved that the curvature evolution of a simple smooth curve remains

simple and smooth until it shrinks to a single point; in addition, in its final stage the curve, after

an appropriate magnification, becomes closer and closer to a circle. Here we shall prove a similar

result: Ω(t) shrinks to a single point in an asymptotically self-similar manner.

In the literature, there have been many studies on the (mean) curvature flow of non-simple

curves (or hypersurfaces in higher spatial dimension), notably the work of Brakke [10], Evans and

Spruck [20, 21, 22, 23], Chen, Giga and Goto [16]. In these studies, either there is non-uniqueness,

such as the varifold solution [10, 32], or there is uniqueness, such as the viscosity solution [20, 16],

but the uniqueness is obtained in a sense by taking the union of all Brakke’s varifold solutions

[32]. There is also an approach by regarding the curvature flow as the limit of a scalar Allen-Cahn

equation [4, 11, 14, 18, 25, 24, 32, 43, 44]; however, the scalar Allen-Cahn equation [4] can model

only two grains.

Thus, in the study of (mean) curvature flow, the existence theory established in [10, 20, 16, 32,

46] on the one hand are beautiful and complete in modelling two phase problems such as the phase

transition between liquid and solid; on the other hand, the uniqueness for multiple (> 3) phase

problems has to be reconsidered. For evolution of grains in polycrystals, for example, one has to

take into account conditions at triple junctions [12, 39, 33, 44]. Indeed, this is another motivation

of this paper. In addition to an earlier work [15], we intend to address relevant problems in

resolving non-uniqueness in the classical curvature flow. For the existence theory, we also refer

the reader to the nice book of Giga [26] for the level-set approach to surface evolution equations.

This paper is organized as follows. In the next section, we first provide, for reader’s convenience,

three formulations for the curvature flow that is relevant to our problem (P). Then we recall some

classical well known local existence and uniqueness results for solution of (P) (cf. [12, 13, 17, 39]).

Moreover, some geometric properties are given. In §3, we show that there exists a unique self-

similar solution, following the discussion of our earlier paper [15] and also Abresch and Langer [1];
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as a byproduct we supply an analytic proof for the monotonicity of a period function originally

proven by Abresch and Langer [1] with the help of numerical verifications of certain quantities.

The main analysis is in §4, in which we show that Γ(t) shrinks to a point in a self-similar manner.

Due to technical difficulties, we assume that ψ± ∈ (0, π/2) and initially Γ(0) is a graph y = u0(x).

We expect the same conclusion holds for a generic simple initial curve and positive ψ± satisfying

ψ+ + ψ− < π. We leave this important extension as an open problem.

After submitting this paper, we learned from the referee that there is a similar work done

independently by a group led by Oliver Schnürer [45]. In this work, the authors considered the

case of convex curve. Our work is for general curve. We do not assume the convexity of the initial

curve. Also, our proof of the main theorems are totally different from the ones given in [45]. We

are grateful to the referee for informing us the relevant work [45]. We also thank Bellettini and

Novoga for sending us their work [9] for the nonconvex case with ψ± = π/3 after this paper was

accepted.

2. Preliminaries

In this section, we shall supply three PDE formulations for our problem (P) and study their

well-posedness. Moreover, some geometric properties of the solution shall be given.

First, we can regard Γ(0) as the union of the positions of a collection of particles, each particle

being designated by a real number z ∈ [0, 1]; that is, Γ(0) = {(x0(z), y0(z)) | 0 6 z 6 1}, |x0z(z)|+ |y0z(z)| > 0 ∀ z ∈ [0, 1],

y0(0) = y0(1) = 0, x0z(0) = y0z(0) cotψ−, x0z(1) = −y0z(1) cotψ+.
(2.1)

Each particle moves and Γ(t) is the union of the positions of all the particles at time t. Hence,

Γ(t) := {X(z, t) | z ∈ [0, 1]}, X(z, t) := (x(z, t), y(z, t)).

Here X(z, t) is the position of the particle named z. At X(z, t), the unit tangent t, unit normal

n, normal velocity V and curvature κ of Γ(t) are given by

t =
Xz

|Xz|
=

(xz, yz)√
x2z + y2z

, n =
(yz,−xz)√
x2z + y2z

, V = Xt · n, κ =
Xzz

|Xz|2
· n.

The motion by curvature equation V = κ is equivalent to{
Xt −

Xzz

|Xz|2
}
· n = 0.(2.2)

It is easy to see that, up to a reprameterization, (2.2) takes the special form Xt = Xzz/|Xz|2.
Hence, problem (P) can be formulated as follows: Find X = (x, y) such that

xt =
xzz

x2z + y2z
, yt =

yzz
x2z + y2z

, z ∈ (0, 1), t ∈ (0, T ),

y(0, t) = 0, y(1, t) = 0, t ∈ [0, T ),

xz(0, t) = yz(0, t) cotψ−, t ∈ [0, T ),

xz(1, t) = −yz(1, t) cotψ+, t ∈ [0, T ),

x(·, 0) = x0(z), y(·, 0) = y0(z), z ∈ [0, 1].

(2.3)

The well-posedness of the problem (2.3) is stated as follows.
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Theorem 1. Let ψ+, ψ− ∈ (0, π) and assume that Γ(0) ∈ C1+α for some α ∈ (0, 1), i.e., (2.1)

holds for some X0 = (x0, y0) ∈ C1+α([0, 1]). Then there exists a positive T such that (2.3) admits

a unique solution (x, y) ∈ C∞([0, 1] × (0, T )) ∩ C1+α,(1+α)/2([0, 1] × [0, T )) and T is the time of

blow-up of curvature, i.e., limt↗T ∥κ∥L∞(Γ(t)) = ∞.

Since the proof of this theorem is rather standard, we safely omit its details here. For example,

one can use a fixed point theorem and a bootstrap argument to derive the existence and uniqueness

of solution to (2.3). Indeed, a much more general construction has been given by Daskalopoulos

and Hamilton [17] to prove the short time existence for the porous medium equation in arbitrary

dimensions. Note that the norm

∥κ∥L∞(Γ(t)) := max
z∈[0,1]

|xzz(z, t)yz(z, t)− yzz(z, t)xz(z, t)|
(x2z(z, t) + y2z(z, t))

3/2

is intrinsic and it does not depend on any parameterization of Γ(t).

Next, when ψ± ∈ (0, π/2) and Γ(0) is a graph y = u0(x), x ∈ [l0−, l
0
+], one can expect that Γ(t)

is also a graph given by y = u(x, t), x ∈ [l−(t), l+(t)]. At (x, u(x, t)), the relevant geometrical

quantities of Γ(t) are given by

t =
(1, ux)√
1 + u2x

, n =
(ux,−1)√
1 + u2x

, V = − ut√
1 + u2x

, κ = − (arctanux)x√
1 + u2x

.

Thus problem (P) is equivalent to find unknowns u and {l±(t)} such that

ut = (arctanux)x, x ∈ (l−(t), l+(t)), t ∈ (0, T ),

u(l±(t), t) = 0, t ∈ [0, T ),

ux(l±(t), t) = ∓ tanψ±, t ∈ [0, T ),

u(x, 0) = u0(x), x ∈ [l−(0), l+(0)] := [l0−, L
0
+].

(2.4)

Comparing with (2.3), this formulation is simpler in the sense that it is a scalar equation. However,

the disadvantage is that (2.4) is a free boundary problem since a priori {l±(t)}0<t<T are unknown.

The well-posedness of (2.4) was established by Chang, Guo and Kohsaka [13] in a much more

general setting, using a semigroup theory.

The third formulation is related to the polar coordinates. Fix a reference point x0+0i ∈ C = R2

and suppose that {Γ(t)} can be expressed as

Γ(t) = {x0 +R(ς, t)eiς | 0 6 ς 6 π}.

At point X(ς, t) := x0 +R(ς, t)eiς ,

Xς(ς, t) = (Rς + iR) eiς =
√
R2 +R2

ς e
i(ς+ϕ), ϕ := arccot

Rς
R

∈ (0, π).

Retaining the earlier convention of clockwise rotation as positive direction, we have

t = −ei(ς+ϕ), n = −it, V = −Rt sinϕ, κ =
(ς + ϕ)ς√
R2 +R2

ς

=
R2 + 2R2

ς −RRςς

(R2 +R2
ζ)

3/2
.
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Then problem (P) can be expressed as
Rt =

RRςς − 2R2
ς −R2

R(R2 +R2
ς )

, ς ∈ (0, π), t ∈ (0, T ),

Rς(0, t) = −R(0, t) cotψ+, Rς(π, t) = R(π, t) cotψ−, t ∈ [0, T ),

R(ς, 0) = R0(ς), ς ∈ [0, π].

(2.5)

This is a scalar quasilinear parabolic PDE whose short time existence follows from a standard

theory [35]. For maximal existence (i.e. to time where Γ(t) shrinks to a single point), one needs

to shift the origin from time to time.

If two variables (R,ϕ) are used, then the problem can be written as
RRt = −1− ϕζ , Rς = R cotϕ, ς ∈ (0, π), t ∈ (0, T ),

ϕ(0, t) = π − ψ+, ϕ(π, t) = ψ−, t ∈ [0, T ),

R(ς, 0) = R0(ς), ς ∈ [0, π].

(2.6)

In the sequel, we denote by X(z, t) = (x(z, t), y(z, t)), (z, t) ∈ [0, 1]× [0, T ), the unique maximal

solution to (2.3). It is easy to establish the following geometric properties of Γ(t) = {X(z, t) | z ∈
[0, 1]}. Since the proof is very standard, we leave the verification to the reader.

Theorem 2. Assume that ψ± > 0, ψ+ + ψ− 6 π, and Γ(0) is a simple curve whose interior lies

in the upper-half plane. Then for each t ∈ (0, T ), x(0, t) < x(1, t) and Γ(t) is also a simple curve

whose interior lies in the upper-half plane. In addition, the area A(t) of the region bounded by

Γ(t) and the x-axis is given by

A(t) = A(0)− [ψ− + ψ+]t ∀t ∈ [0, T ), T 6 Tmax :=
A(0)

ψ+ + ψ−
.(2.7)

Furthermore, if denote by L(t) the arclength of Γ(t), ℓ(t) = x(1, t)−x(0, t) the distance of the end

points, and c(t) = 1
2 [x(0, t) + x(1, t)] the “center”, then

d

dt

(
L(t)− cosψ− + cosψ+

2
ℓ(t) + (cosψ− − cosψ+)c(t)

)
+

∫
Γ(t)

κ2ds = 0,(2.8)

where ds is the arclength element.

3. Self-Similar Solutions

In this section, we study a class of special solutions that dominate the asymptotic behavior, as

t↗ T , of solutions to problem (P). These are self-similar solutions.

3.1. Main Result.

Here by self-similar it means a solution {Γ(t)}0<t<T that satisfies, for some fixed shape Γ0,

Γ(t) =
√

2(T − t) Γ0 := {
√

2(T − t)(x, y) | (x, y) ∈ Γ0} ∀ t ∈ [0, T ).

Since one can show that Γ0 has to be convex, any of the systems that we derived in §2 can be

used. Here we follow our earlier paper [15] using polar coordinates. Hence, we seek solutions to

(2.6) in the form

R(ς, t) =
√

2(T − t)ρ(ς), ϕ(ς, t) = ψ(ς) ∀ ς ∈ [0, π], t ∈ [0, T ).
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This is equivalent to solve the ODE system

ρ′ = 2ρ cotψ, ρ > 0, ψ′ = ρ− 1 in [0, π],(3.1)

subject to the boundary conditions

ψ(0) = π − ψ+, ψ(π) = ψ−.(3.2)

This section is devoted to prove the following result.

Theorem 3. Assume that ψ± ∈ (0, π/2]. Then (3.1)–(3.2) admits a unique solution. Conse-

quently, problem (P) admits a unique self-similar solution.

0 1 3 5
0

Π
����
2

Π

0 1 3 5

0
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Π

Π-Ψ+

Ψ-

Figure 2. Trajectories to (3.1) on the ρ–ψ phase plane.

3.2. Solution Trajectories.

To solve the problem, we investigate trajectories of the solutions to (3.1). There is a first

integral obtained from [ln sin2 ψ + ln ρ− ρ]′ = 0. Hence, a generic trajectory to (3.1) is given by,

for some constant c ∈ [1,∞),

eρ−1 = c ρ sin2 ψ.(3.3)

Note that the function ρ→ eρ−1/ρ is decreasing in (0, 1] and increasing in [1,∞), with its unique

minimum value 1 attained at ρ = 1. When c = 1, the solution is given by (ρ, ψ) ≡ (1, π/2), which

corresponds to the unit circle. A few other sample trajectories are depicted in Figure 2, where

counterclockwise rotation is the positive direction.

In the sequel, we denote by γ(c) the trajectory given in (3.3) and by G1 and G2 the two inverses

of ρ→ eρ−1/ρ:

s =
eρ−1

ρ
⇐⇒ ρ =

 G1(s) if ρ 6 1,

G2(s) if ρ > 1.

Every trajectory γ(c) is periodic. Its leftmost, rightmost, top, and bottom points are, respectively,(
G1(c),

π

2

)
,

(
G2(c),

π

2

)
,

(
1, π − arcsin

1√
c

)
,

(
1, arcsin

1√
c

)
.
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It is shown in [1] and also in the next subsection that the period of γ(c) is strictly bigger than π so

a trajectory γ to (3.1)–(3.2) is only a part of γ(c). Since γ ⊂ γ(c) has to intersect the horizontal

lines ψ = π − ψ+ and ψ = ψ−, we must have

c > c∗ := max
{ 1

sin2 ψ+

,
1

sin2 ψ−

}
.

We denote by A1(c), A2(c) the intersections of γ(c) with ψ = π − ψ+ and by B1(c), B2(c) that

with ψ = ψ−:

A1(c) =
(
G1(c sin

2 ψ+), π − ψ+

)
, A2(c) =

(
G2(c sin

2 ψ+), π − ψ+

)
,

B1(c) =
(
G1(c sin

2 ψ−), ψ−

)
, B2(c) =

(
G2(c sin

2 ψ−), ψ−

)
.

Assume that ψ+ + ψ− 6 π so π− ψ+ > ψ−. Then, a solution trajectory γ to (3.1)-(3.2) can have

only four possible choices,

(1) A1 ̸= A2 and γ is the part of γ(c) from A2 to B2 (counterclockwise);

(2) γ is the par of γ(c) from A1 to B2 (counterclockwise);

(3) γ is the par of γ(c) from A2 to B1 (counterclockwise);

(4) γ is the part of γ(c) from A1 to B1 (counterclockwise).

Clearly, any of these trajectories gives a solution to (3.1)–(3.2) if and only if the “time” spent on

the trajectory is exactly π. To calculate the time spent on these trajectories, we use the following

dς =
dψ

ρ− 1
=

dρ

2ρ cotψ
,

1

sin2 ψ
= cρe1−ρ, cotψ = ±

√
cρe1−ρ − 1.(3.4)

Also, we introduce the following functions. For every φ ∈ (0, π/2] and c > 1/ sin2 φ,

ℓ1(c, φ) :=

∫ π/2

φ

dϕ

1−G1(c sin
2 ϕ)

, ℓ2(c, φ) :=

∫ G2(c sin
2 φ)

G1(c)

ds

2s
√
cse1−s − 1

.(3.5)

Note that ℓ1(c, φ) is the time spent on γ(c) from the leftmost point (G1(c), π/2) to (G1(c sin
2 φ), φ)

(the first intersection of γ(c) with the line ψ = φ), and ℓ2(c, φ) is the time spent on γ(c) from

the left most point (G1(c), π/2) to (G2(c sin
2 φ), φ) (the second intersection of γ(c) with the line

ψ = φ). In particular, by symmetry, the period ω(c) of γ(c) is given by

ω(c) := 2ℓ2(c, π/2) =

∫ G2(c)

G1(c)

dρ

ρ
√
c ρ e1−ρ − 1

.(3.6)

Also, denote by ω1(c) the “time” spent on γ(c) from the leftmost point (G1(c), π/2) to the bottom

point (1, arcsin[1/
√
c]). Then

ω1(c) := ℓ1(c, arcsin[1/
√
c]) = ℓ2(c, arcsin[1/

√
c]) =

∫ 1

G1(c)

dρ

2ρ
√
c ρ e1−ρ − 1

.(3.7)

Furthermore, when π − ψ+ > π/2 > ψ−, by symmetry ℓi(π − ψ+) = ℓi(c, ψ+), so the time spent

on the part of the trajectory described in cases (1)–(4) are respectively the following:

hI(c) := ℓ2(c, ψ+) + ℓ2(c, ψ−),

hII(c) := ℓ1(c, ψ+) + ℓ2(c, ψ−),

hIII(c) := ℓ2(c, ψ+) + ℓ1(c, ψ−),

hIV (c) := ℓ1(c, ψ+) + ℓ1(c, ψ−).
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Hence, solving (3.1)–(3.2) is equivalent to find c > c∗ such that one of the following holds:

hI(c) = π, hII(c) = π, hIII(c) = π, hIV (c) = π.

A direct investigation for these functions from their integral formulations seems vary hard. Here

we shall utilize the differential equations that used to define them.

3.3. An Analytic Proof of the Abresch and Langer Result [1].

In [1], Abresch and Langer proved with the help of a computer that ω(c), the period of γ(c),

is a strictly decreasing function. Here we provide a purely analytical proof. We remark that this

monotonicity result has been established before by Andrews [6] for a larger class of equations,

namely, V = κα for α > 0. Our proof here is different from that in [6].

Theorem 4. (1) The function ω(c) defined in (3.6) satisfies

lim
c↘1

ω(c) =
√
2π, ω′(c) < 0 ∀ c ∈ (1,∞), lim

c↗∞
ω(c) = π.

(2) The function ω1(c) defined in (3.7) satisfies

lim
c↘1

ω1(c) =

√
2 π

4
, ω′

1(c) > 0 ∀ c ∈ (1,∞), lim
c↗∞

ω1(c) =
π

2
.

Proof. (i) For smooth f and a < b satisfying f(a) = f(b) and for every x ∈ [a, b],

f(x)− f(a) = −
(b− x)

∫ x
a
(y − a)f ′′(y)dy + (x− a)

∫ b
x
(b− y)f ′′(y)dy

b− a
.

Estimating the lower and upper bounds of the integral by replacing f ′′(y) with maxy∈[a,b] f
′′(y)

and miny∈[a,b] f
′′(y) respectively, we conclude that

f(x)− f(a) = −f
′′(ξ)

2
(x− a)(b− x)

for some ξ = ξ(x) ∈ (a, b). Hence, setting f(ρ) = ρe1−ρ, we have

ω(c) =

∫ G2(c)

G1(c)

√
2 dρ

ρ
√
−c f ′′(ξ(ρ))[ρ−G1(c)][G2(c)− ρ]

=

√
2

η
√
−cf ′′(ξ)

∫ G2

G1

dρ√
[ρ−G1][G2 − ρ]

=

√
2 π

η
√

−c f ′′(ξ)
for some ξ, η ∈ [G1(c), G2(c)], by the same estimation technique as above. Since f ′′(1) = −1 and

G1(c), G2(c) → 1 as c→ 1, limc↘1 ω(c) =
√
2 π/

√
−f ′′(1) =

√
2 π.

Similarly, we have ω1(c) →
√
2π/4 as c↘ 1.

(ii) Note that G1(c) → 0 and G2(c) → ∞ as c→ ∞. The change of variable ρ = G1(c)r gives

ω(c) =

∫ G2(c)/G1(c)

1

dr

r
√
r eG1(c)(1−r) − 1

−→
∫ ∞

1

dr

r
√
r − 1

= π as c→ ∞;

here we omit the details of the limit taken process. Analogously, ω1(c) → π/2 as c→ ∞.

(iii) The most difficult part is showing the monotonicity of ω(·) and ω1(·). We provide a method

that may have other applications.

For each c > 1, we denote by (ρ(c; ς), ψ(c; ς)) the solution to (3.1) subject to the initial condition

ρ(c; 0) = G1(c), ψ(c; 0) = 1
2π.
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We shall use (3.4). Note that when ς ∈ (0, ω(c)/2), ψ ∈ (0, π/2). We use ′ for differentiation with

respect to ς and subscript c for differentiation with respect to c. Then, differentiating ψ′ = ρ− 1

and eρ−1 = cρ sin2 ψ with respect to c, we obtain ψ′
c = ρc and (1− 1/ρ)ρc = 1/c+ 2ψc cotψ. As

ρ′ = 2ρ cotψ, this implies that (ρ−1)ψ′
c− (ρ−1)′ψc = ρ/c. Using the integrating factor (ρ−1)−2

and dς = dρ/[2ρ
√
cρe1−ρ − 1], we derive that, for ς ∈ (0, ω1(c)),

ψc(c; ς)

ρ(c; ς)− 1
=

∫ ς

0

ρ(c; ς̂) dς̂

c [ρ(c; ς̂)− 1]2
=

∫ ρ(c;ς)

G1(c)

ds

2c [s− 1]2
√
c s e1−s − 1

.

Denote (ρ, ψ) = (ρ(c; ς), ψ(c; ς)). For ς ∈ (0, ω1(c)),

2c(c− 1)

ρ− 1
ψc =

∫ ρ

G1

√
cse1−s − 1

[1− s]2
ds+

∫ ρ

G1

c−1√
cse1−s−1

−
√
cse1−s − 1

[1− s]2
ds

=

√
cρe1−ρ − 1

1− ρ
−
∫ ρ

G1

ce1−s

2
√
cse1−s − 1

ds+

∫ ρ

G1

c− cse1−s

[1− s]2
√
cse1−s − 1

ds;

here we used integration by parts for the first integral and
√
cse1−s − 1|s=G1(c) = 0. Hence,

2c(c− 1)

ρ− 1
ψc =

√
cρe1−ρ − 1

1− ρ
+ c

∫ ρ

G1

1− se1−s − 1
2 [1− s]2e1−s

[1− s]2
√
cse1−s − 1

ds(3.8)

=

√
cρe1−ρ − 1

1− ρ
+

∫ ρ

G1

2es−1 − 2s− [1− s]2

[1− s]3
d
√
cse1−s − 1

=

√
cρe1−ρ − 1

1− ρ
+

2eρ−1 − 2ρ− [1− ρ]2

[1− ρ]3

√
cρe1−ρ − 1

−
∫ ρ

G1

√
cse1−s − 1

d

ds

(2es−1 − 2s− [1− s]2

[1− s]3

)
ds

=
2[eρ−1 − ρ]

(1− ρ)3

√
cρe1−ρ − 1 +

∫ ρ

G1

J(s)
√
cse1−s − 1

(1− s)4
ds,

where

J(s) := 2(s− 4)es−1 + s2 + 2s+ 3 =
1

3

∫ s

1

t(s− t)3et−1dt > 0 ∀s ∈ (0, 1) ∪ (1,∞).

Therefore,

ψc(c; ς) =
[ρ− eρ−1]

√
cρe1−ρ − 1

c(c− 1)(1− ρ)2
+

ρ− 1

2c(c− 1)

∫ ρ

G1

J(s)
√
cses−1 − 1

(1− s)4
ds(3.9)

for ς ∈ (0, ω1(c)). It is easy to check that the functions on both sides in (3.9) are real analytic

in [0, ω(c)/2]. Hence by the unique continuation property the above formula (3.9) is valid for all

ς ∈ [0, ω(c)/2].

Also, using ρc = [1/c+ 2ψc cotψ]/[1− 1/ρ], cotψ =
√
cρe1−ρ − 1 and (3.8) we obtain

ρc(c; ς) =
ρ[1− ρe1−ρ]

(c− 1)(ρ− 1)
+
ρ cotψ

(c− 1)

∫ ρ

G1

1− se1−s − 1
2 [1− s]2e1−s

[1− s]2
√
cse1−s − 1

ds.(3.10)

Since 1− ρe1−ρ = O([ρ− 1]2), the first function on the right-hand side of (3.10) is smooth.

Now, differentiating ψ(c;ω(c)/2) = 1
2π with respect to c, using ψ′ = ρ− 1 and (3.9), we obtain

dω(c)

dc
= −2ψc(c;ω(c)/2)

ψ′(c;ω/2)
= −

∫ G2(c)

G1(c)

J(s)
√
cs e1−s − 1

c(c− 1)(1− s)4
ds < 0.
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Finally, differentiating ρ(c;ω1(c)) = 1 with respect to c, using ρ′ = 2ρ cotψ and (3.10), we

obtain

dω1(c)

dc
= −ρc(c;ω1)

ρ′(c;ω1)
=

−1

2(c− 1)

∫ 1

G1

e1−s(es−1 − s− 1
2 [1− s]2)

[1− s]2
√
cse1−s − 1

ds > 0,

since the integrand is negative. This completes the proof. �

3.4. The Concavity of ℓ2(·, φ).
Here we investigate the function ℓ2(c, φ) defined in (3.5), which represents the second time that

γ(c) (stating from the leftmost point) intersects the line ψ = φ.

Assume φ ∈ (0, π/2) is fixed and c > 1/ sin2 φ. We begin with differentiating sin−2 φ =

cρ(c; ℓ2)e
1−ρ(c;ℓ2) to derive

d

dc
ρ(c; ℓ2(c, φ)) =

ρ

c(ρ− 1)
.

Next, differentiating the relation ψ(c; ℓ2(c, φ)) = φ with respect to c and using (3.9), we obtain

d

dc
ℓ2(c, φ)) = −ψc

ψ′

∣∣∣
ς=ℓ2(c,φ)

=
ψc

1− ρ

∣∣∣
ς=ℓ2(c,φ)

=
1

c(c− 1)

{ (ρ− eρ−1)

(1− ρ)3
cotφ− 1

2

∫ ρ

G1

J(s)
√
cse1−s − 1

(1− s)4
ds
}∣∣∣
ρ=ρ(c;ℓ2(c,φ))

,

where we have used cotψ =
√
cρe1−ρ − 1. Note that when s ∈ [1, ρ(c; ℓ2(c, φ))],

√
cse1−s − 1 >

cotφ. Also, when c≫ 1, ρ = ρ(c; ℓ2(c, φ)) ≈ ln c≫ 1 and

eρ−1

(ρ− 1)3
≈

∫ ρ

4

(s− 4)es−1

(1− s)4
ds.

It then follows from the expression of J that

d

dc
ℓ2(c, φ) < 0 ∀ c≫ 1.

We continue to investigate the second derivative of ℓ2:

d

dc

(
c(c− 1)

d

dc
ℓ2(c, φ)

)
=

[1− ρ][1− eρ−1] + 3[ρ− eρ−1]− 1
2J(ρ)

[1− ρ]4
cotφ

dρ(c; ℓ2(c, φ))

dc

−1

4

∫ ρ

G1

J(s) se1−s

(1− s)4
√
cse1−s − 1

ds.

= − ρ cotφ

2c(ρ− 1)3
− 1

4

∫ ρ

G1(c)

J(s) se1−s

(1− s)4
√
cse1−s − 1

ds
∣∣∣
ρ=ρ(c;ℓ2(c,φ))

.

Thus, we have the following lemma:

Lemma 3.1. For every φ ∈ (0, π/2] and c > 1/ sin2 φ, let ℓ2(c, φ) ∈ (ω1(c),
1
2ω(c)) be the unique

“time” such that ψ(c; ℓ2) = φ. Then ℓ2(∞, φ) = π/2 and

dℓ2(c, φ)

dc
< 0 ∀ c≫ 1,

d

dc

(
c(c− 1)

d

dc
ℓ2(c, φ)

)
< 0 ∀ c > 1

sin2 φ
.

Remark 3.1. If we make a new parameter α := ln[1− 1/c] so dα = dc/[c(c− 1)], then we have

d2ℓ2
dα2

= c(c− 1)
d

dc

[
c(c− 1)

dℓ2
dc

]
< 0.

That is, as a function of α, ℓ2 is a concave function. This observation is the key to our analysis.
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3.5. Proof of Theorem 3, Part I.

Now consider (3.1)–(3.2). Since ω(c) > π for every c > 1, any solution trajectory γ to (3.1)-

(3.2) must be within one period of a trajectory γ(c) for some c > 1. We consider the four cases

described earlier. For simplicity, we assume that

0 < ψ+ 6 ψ− 6 π/2.

Henceforth c∗ = 1/ sin2 ψ+.

Case (1): A1 ̸= A2 and γ is the part of γ(c) from A2 to B2 (counterclockwise).

By our definition of ℓ2, it is necessary and sufficient to find a solution c to

π = hI(c) := ℓ2(c, ψ+) + ℓ2(c, ψ−), c > c∗.(3.11)

It follows from Lemma 3.1 that

hI(∞) = π,
dhI(c)

dc
< 0 ∀ c≫ 1,

d

dc

(
c(c− 1)

dhI(c)

dc

)
< 0 ∀ c > c∗.

This implies that there exists ĉ ∈ [c∗,∞) such that h′I < 0 in (ĉ,∞) and h′I > 0 in [c∗, ĉ).

Consequently, hI > π in (ĉ,∞). Note that we may have h′I(c) < 0 for all c > c∗ (so that ĉ = c∗).

In this case, (3.11) does not have any solution. In any case, (3.11) admits at least a solution if

and only if

hI(c∗) < π.

In addition, under the above condition, the solution c to (3.11) is unique.

Case (2): γ is the par of γ(c) from A1 to B2 (counterclockwise).

What we need is to find c such that

π = hII(c) := ℓ1(c, ψ+) + ℓ2(c, ψ−), c > c∗.(3.12)

First of all, it is easy to calculate

hII(∞) = π − ψ+, hII(c∗) = hI(c∗).

If hI(c∗) > π, then there exists at least one solution to (3.12). In the next subsection we shall

show that if (3.12) admits a solution, then it is unique and hII(c∗) = hI(c∗) > π.

Thus, exactly one of (3.11) and (3.12) admits a solution, and the solution is unique.

Case (3): γ is the par of γ(c) from A2 to B1 (counterclockwise).

What we need is to find c such that

π = hIII(c) := ℓ1(c, ψ−) + ℓ2(c, ψ+), c > c∗.(3.13)

We shall show in the next subsection that if (3.13) admits a solution, then the solution is unique

and hIII(c∗) > π. However, since c∗ = 1/ sin2 ψ+, we have ℓ2(c∗, ψ+) = ℓ1(c∗, ψ+), so hIII(c∗) 6
2ω1(c) < π. Thus, (3.13) has no solution.

Case (4): γ is the part of γ(c) from A1 to B1 (counterclockwise).

This is equivalent to find c such that

ℓ1(c, ψ−) + ℓ1(c, ψ+) = π, c > c∗.

This equation has no solution, since max{ℓ1(c, φ−), ℓ1(c, φ+} 6 ω1(c) < π/2 for all c > 1.
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This proves the assertion of Theorem 3.

Remark 3.2. The discussion for case (3) in particular implies that when ψ+ = ψ− ∈ (0, π/2],

there is no solution trajectory to (3.1)–(3.2) that connects either from A1 to B2 or from A2 to B1.

3.6. Proof of Theorem 3, Part II.

It remains to consider solutions in cases (2) and (3). Here we drop the assumption on the

order ψ+ 6 ψ−, so both cases (2) and (3) are essentially the same. We shall introduce a different

method.

Note from (3.1) that ψ′′ = ρ′ = 2ρ cotψ = 2(1+ψ′) cotψ. This suggests that we study, for each

parameter α ∈ (0,∞), the initial value problem Ψ′′(α; ς) = 2(1 + Ψ′) cotΨ, ς ∈ R,

Ψ(α; 0) = π − ψ+, Ψ′(α; 0) = α− 1.
(3.14)

This problem has a unique solution. Given such a solution Ψ, the function (ψ, ρ) := (Ψ, 1 + Ψ′)

solves (3.1). Solving (3.1)–(3.2) is equivalent to find α∗ > 0 such that

Ψ(α∗;π) = ψ−.(3.15)

To address the leftover discussion for the cases (2) and (3) from the previous subsection, we

need only consider the case α ∈ (0, 1]. We divide the analysis into a few steps.

1. First of all, the solution Ψ(α; ·) corresponds to γ(c) with

c =
eα−1

α sin2 ψ+

.

We now investigate the number of sign change of Ψα(α; ·) in one period (0, ω(c)).

Note that both Ψα and Ψ′ satisfy the second order linear ODE

LΨα = 0 = LΨ′ in R, Lϕ := ϕ′′ − (2 cotΨ)ϕ′ +
2(1 + Ψ′)

sin2 Ψ
ϕ.

When α = 1, Ψα is a constant multiple of Ψ′. When α ̸= 1, Ψ′ and Ψα are linearly independent

so their zeros interlace. We denote the first zero of Ψα by ς1(α) and its second zero by ς2(α). Also,

we denote by ω̂1(α) and ω̂2(α) the first and second time that Ψ′ = R− 1 = 0 respectively. Then

0 < ω̂1(α) 6 ς1(α) < ω̂2(α) 6 ς2(α) ∀α ∈ (0, 1].(3.16)

2. Next, we estimate the location of the first zero ς1(α) of Ψα. Set R = 1 +Ψ′. We find

R > 0, (R−1/2)′ = −R−1/2 cotΨ, (R−1/2)′′ = R−1/2
{ R

sin2 Ψ
− 1

}
.

It then follows that(
R−1/2Ψα

)′′
= R−1/2Ψ′′

α + 2(R−1/2)′Ψ′
α + (R−1/2)′′Ψα

= R−1/2Ψ′′
α − 2R−1/2Ψ′

α cotΨ +R−1/2
{ R

sin2 Ψ
− 1

}
Ψα

= −
{ R

sin2 Ψ
+ 1

}
R−1/2Ψα.
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Since R > 0, by the Liouville theorem, the distance of two consecutive zeros of R−1/2Ψα is strictly

smaller than π. Hence,

ς1(α) ∈ (0, π).(3.17)

3. Now we consider the case when α = R(α; 0) ∈ (0, 1]. First of all, since ω(∞) = π and

ω(c) > π for all c > 1, we have

lim
α↘0

Ψ(α;π) = π − ψ+, Ψ(α;π) > π − ψ+ when 0 < α≪ 1.

Hence, we can define

a1 := max{a > 0 | Ψ(·;π) > π − ψ+ in (0, a]}.

Since ω(c) > π, we must have a1 ∈ (0, 1). Since ψ− < π−ψ+, there is no solution to Ψ(α;π) = ψ−

when α ∈ (0, a1].

To consider the situation when α ∈ (a1, 1] we define

a2 := sup{a ∈ (a1, 1] | Ψα(α;π) < 0 ∀α ∈ [a1, a]}.

Note that Ψ(a1;π) = π−ψ+ and R(a1;π) > 1 = R(a1; ω̂2(a1)). We must have π < ω̂2(a1) so by

(3.16) and (3.17), π ∈ (ς1(a1), ς2(a1)). This implies that Ψα(a1;π) < 0. Hence, a2 is well-defined.

Now in [a1, a2), Ψα(·;π) < 0 so Ψ(·;π) < π − ψ+ in (a1, a2]. Consequently, ω̂2(α) > π for all

α ∈ [a1, a2]. Hence,

π ∈ (ς1(α), ω̂2(α)) ⊂ (ς1(α), ς2(α)) ∀α ∈ [a1, a2].

This implies that Ψα(α;π) < 0 for all α ∈ [a1, a2]. Hence, we must have a2 = 1.

That Ψα(α;π) > 0 for all α ∈ [a1, 1] implies that the equation

Ψ(α;π) = ψ−, a ∈ (0, 1]

admits at most one solution. In addition, there exists a solution if and only if Ψ(1;π) 6 ψ−. Since

ψ− = Ψ(1;hII(c∗)), we conclude that if (3.12) admits a solution, then it is unique and hII(c∗) > π.

This completes the proof of Theorem 3.

4. Asymptotic Behavior

In this section, we consider the asymptotic behavior, as t ↗ T , of solutions to problem (P),

where [0, T ) is the maximum existence interval. We want to show that as t ↗ T , Γ(t) shrinks to

a single point. In addition, after magnification, the solution approaches a self-similar profile. We

focus on the formulation (2.4), so necessarily we need to assume that Γ(0) is a graph and

0 < ψ± <
π

2
.

When the upper-half plane is replaced by a sector of open angle strictly less than π, the problem

has been studied by Guo and Hu [28]. We shall use the techniques developed in [28] and also ideas

from Grayson [27] and Angenent [7].

For notational simplicity, we denote

a(s) = arctan s, γ± = tanψ±.
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Thus, we consider, for unknown (u, l±, T ), to

ut = (a(ux))x, x ∈ (l−(t), l+(t)), t ∈ (0, T ),

u(l±(t), t) = 0, ux(l±(t), t) = ∓γ±, t ∈ [0, T ),

u(x, 0) = u0(x), x ∈ [l−(0), l+(0)] := [l0−, l
0
+],

limt↗T maxx∈[l−(t),l+(t)] |uxx(x, t)| = ∞.

(4.1)

Without loss of generality, we assume that

u0 ∈ C∞([l0−, l
0
+]), u0(l0±) = 0, u0(·) > 0 in (l0−, l

0
+), ∓u0x(l0±) = γ± > 0.(4.2)

We extend the problem to the case where a is a generic function satisfying

a(·) ∈ C∞(R), a′ > 0 in R, a(0) = 0.(4.3)

In studying the asymptotic behavior of the solution, we need one of the following assumptions

(i) either sa′′(s) 6 0 ∀ s ∈ R (ii) or u0xx 6 0 in (l0−, l
0
+).(4.4)

Clearly, the first alternative is satisfied when a(s) = arctan s.

We use the following notations, for each t ∈ [0, T ),

I(t) := (l−(t), l+(t)), Γ(t) := {(x, u(x, t)) | x ∈ I(t)},

Ω(t) := {(x, y) | x ∈ I(t), 0 < y < u(x, t)}, A(t) := |Ω(t)| =
∫
I(t)

u(x, t)dx,

Q(t) := {(x, τ) | x ∈ I(τ), 0 < τ < t}.

Since u(l±(t), t) = 0, it is easy to calculate

d

dt
A(t) =

∫
I(t)

utdx = a(ux)
∣∣∣l+(t)

l−(t)
= a(−γ+)− a(γ−) < 0.

Hence,

0 < T 6 Tmax :=
A(0)

a(γ−)− a(−γ+)
, A(t) = [a(γ−)− a(−γ+)](Tmax − t).

4.1. The Maximum Existence Interval.

Theorem 5. Assume that a(·) satisfies (4.3) and u0 satisfies (4.2). Then (4.1) admits a unique

solution. In addition, T = Tmax, and as t↗ T , Γ(t) shrinks to a point.

When a(s) = arctan s, the existence of a unique solution is shown as in the previous section.

For a generic a satisfying (4.3), the existence for C1+α (α > 0) initial data was shown in [13] by

using a semi-group theory. Here for completeness, we provide an alternative proof.

Proof. The idea is to work on the function w := ux. Fix a small T1 > 0. For each pair

of C(2+α)/2([0, T1]) functions l±(·) satisfying l+ > l−, define w as the unique solution to the

(non-degenerate) porous medium problem

wt = (a(w))xx in Q(T1) = {(x, t) | x ∈ (l−(t), l+(t)), t ∈ (0, T1)},

w(l±(t), t) = ∓γ± ∀ t ∈ [0, T1], w(x, 0) = u0x(x) ∀x ∈ I(0).
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This problem has a unique solution w ∈ C2+α,(2+α)/2(Q̄(T1)); see DiBenedetto [19]. Define

l̃±(t) = l0± ± a′(∓γ±)
γ±

∫ t

0

wx(l±(τ), τ)dτ ∀ t ∈ [0, T1].(4.5)

Then l̃± ∈ C(3+α)/2([0, T1]), since wx ∈ C1+α,(1+α)/2. This improvement of regularity from

l± ∈ C(2+α)/2 to l̃± ∈ C(3+α)/2 for the time evolution problem allows us to apply the Schauder’s

fixed point theorem to conclude that there is a fixed point l± = l̃±, provided that T1 is suitably

small. Regularity of the fixed point follows by a bootstrap argument. Uniqueness can be proven

by showing that the map from l± to l̃± is a contraction (under a suitable norm). Existence on a

maximal interval follows by a step by step extension.

Finally, u can be recovered from w by setting

u(x, t) =

∫ x

l−(t)

w(ς, t) dς ∀x ∈ [l−(t), l+(t)], t ∈ [0, T1].

From (4.5) with l̃± = l± and the system satisfied by w, it is easy to verify that u solves (4.1).

We remark that weak solutions for the porous medium equation for w can be defined for L∞

initial data, and if |a(±∞)| < ∞, even for L1 initial data. We shall not elaborate on this topic.

We refer interested readers to the book of DiBenedetto [19].

To show that T = Tmax, we need only estimate the C2(I(t)) norm of u(·, t), since we know

from [13] that short time extension exists as long as u(·, t) ∈ C1+α. The following two lemmas

originate from [28]. For completeness, we shall repeat, with simplification, the proofs in [28].

The first lemma concerns the upper bound of uxx.

Lemma 4.1. Let

M1 := max
x∈Ī(0)

|u0x(x)|, M2 = max
x∈Ī(0)

a(u0x(x))x, M0 = max
x∈Ī(0)

1

a′(u0x)
.

Then for every t ∈ [0, T ) and x ∈ [l−(t), l+(t)],

|ux(x, t)| 6M1, ut(x, t) 6M2, uxx 6M0M2.

Proof. The function w = ux satisfies the parabolic equation (w)t = (a′(ux)wx)x. By the

maximum principle, maxQ(T ) |ux| 6 max{M1, γ+, γ−} =M1.

Similarly, the function w = ut satisfies wt = (a′(ux)wx)x inQ(T ) so the maximum and minimum

of ut are attained on the parabolic boundary. Initially, ut(x, 0) = (a(u0x))x 6 M2. To find

boundary values of ut, we differentiate ux(l−(t), t) = γ− and u(l−(t), t) = 0 with respect to t to

obtain uxt + l̇−uxx = 0 and ut + ux l̇− = 0. Hence, using a′(ux)uxx = ut, we obtain

a′(ux)utx

∣∣∣
x=l−(t)

= −a′(ux)uxx l̇− = − ut l̇− = (l̇−)
2ux = γ− l̇2− > 0.

Similarly, one can show that utx(l+(t), t) 6 0. Thus, the maximum of ut in Q(T ) is attained at

the initial boundary, so ut 6 M2. Upon using uxx = ut/a
′(ux), we also obtain the maximum

estimate for uxx. �

To find a lower bound for uxx, we introduce notation ℓ(t), the width, and h(t), the maximum

height of Γ(t):

ℓ(t) := l+(t)− l−(t), h(t) := max
x∈I(t)

u(x, t) ∀ t ∈ [0, T ).

Then we have the following lemma for a lower bound of uxx.
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Lemma 4.2. There exists a constant C that depends only on u0 such that for every (x, t) ∈ Q(T ),

ut(x, t) > −Ch(0)
h(t)

, uxx(x, t) > −Ch(0)
h(t)

.

Proof. Let ξ0 and ξ0 be the minimum and maximum roots to u0x(·) = 0 in [l0−, l
0
+]. Set

K+ := sup
x∈(ξ0,l0+)

a(u0x)− a(−γ+)
u0(x)

, K− := sup
x∈(l0−,ξ

0)

a(γ−)− a(u0x)

u0(x)
.

Since u0x(l
0
+) < 0 < u0x(l

0
−), both K+ and K− are bounded.

Fix an arbitrary τ ∈ (0, T ). Consider the function

w(x, t) =
K+h(0)

h(τ)
u(x, t)− a(ux(x, t)) + a(−γ+).

Using ut = a′(ux)uxx and uxt = [a(ux)]xx we derive that

wt − a′(ux)wxx =
K+h(0)

h(τ)

{
ut − a′(ux)uxx

}
− a′(ux)

{
[uxt − [a(ux)]xx

}
= 0.

Hence, w satisfies the maximum principle.

Next we find an appropriate parabolic domain for our application of the maximum principle.

Since critical points of u(·, t) cannot be created in time evolution, roots to ux = 0 form continuous

curves connected to Ī(0)×{0}. Hence, there exits a continuous function ξ(·) defined on [0, τ ] such

that u(ξ(t), t) = h(t) and

ξ(t) ∈ (l−(t), l+(t)), ux(ξ(t), t) = 0, uxx(ξ(t), t) 6 0 ∀ t ∈ [0, τ ].

As ut(x, t)|x=ξ(t) = a′(ux)uxx 6 0, u(ξ(t), t) is a decreasing function, so that u(ξ(t), t) > h(τ) for

all t ∈ [0, τ ]. Now consider w on the parabolic domain {(x, t) | x ∈ [ξ(t), l+(t)], t ∈ [0, τ ]}.
Initially, by the definition of K+, w(x, 0) > 0 for all x ∈ [ξ(0), l+(0)] ⊂ [ξ0, l+(0)];

On the boundary x = ξ(t), w > K+h(0) + a(−γ+) > 0;

On the boundary x = l+(t), w = 0.

Hence, w > 0 for all x ∈ [ξ(t), l+(t)], t ∈ [0, τ ]. Consequently, as w(l+(t), t) = 0, we have

0 > wx(x, t)
∣∣∣
x=l+(t)

=
K+h(0)

h(τ)
ux − [a(ux)]x = −K+h(0)γ+

h(τ)
− ut,

i.e.,

ut(l+(t), t) > −K+h(0)γ+
h(τ)

∀ t ∈ [0, τ ].

An analogous estimate can also be found at x = l−(t). As ut in Q(τ) can only attain its minimum

on the parabolic boundary, we see that for every (x, t) ∈ Q̄(τ),

ut(x, t) ≥ −Ch(0)
h(τ)

, C = max{M2,K+γ+,K−γ−}.

Setting t = τ we obtain the estimate for ut. Using the equation uxx = ut/a
′(ux), we also obtain

the lower bound for uxx. �

Proof of Theorem 5. So far we have ∥uxx(·, t)∥C0(Ī(t)) 6 C/h(t) for every t ∈ [0, T ). It follows

from the short-time existence theorem that limt↗T h(t) = 0.

Next we estimate the width ℓ(t). As u(l±(t), t) = 0 implies that ux(l±, t)l̇± + ut(l±, t) = 0, we

have l̇±(t) = ±ut(l±, t)/γ∓. It follows from the upper bound of ut that

d

dt

{M2t

γ−
+ l−(t)

}
=
M2

γ−
− ut
γ−

> 0,
d

dt

{
l+(t)−

M2t

γ+

}
=

ut
γ+

− M2

γ+
6 0.
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It then follows that l±(T ) := limt↗T l±(t) exist and are finite. As Ω(t) ⊂ [l−(t), l+(t)]× [0, h(t)],

we have A(t) < [l+(t)− l−(t)]h(t) so that limt↗T A(t) = 0. Thus T = Tmax.

Finally, we show that Γ(t) shrinks to a point, i.e., l+(T ) = l−(T ). We use a contradiction

argument. Suppose, on the contrary that l+(T ) > l−(T ). The function

d(x, t) :=
a(ux(x, t))

ux(x, t)
if ux(x, t) ̸= 0, d(x, t) = a′(0) otherwise

is uniformly bounded from above and uniformly bounded away from zero. Hence, we can apply

the Harnack inequality (cf. [35]) to ut = (d(x, t)ux)x to conclude that u(x, T ) > 0 for all x ∈
(l−(T ), l+(T )). This contradicts the known fact that h(T ) := limt↗T h(t) = 0. Thus, l+(T ) =

l−(T ) and Γ(t) approaches a single point as t↗ T . This completes the proof. �

4.2. The Grim Reaper Solution.

To study the asymptotic behavior, as t ↗ Tmax, the essential difficulty is to exclude that the

blow-up solution has the shape of a long needle. Indeed, in a related problem, Mantegazza, Novaga

and Tortorelli proved in [39] that asymototically the solution is either a self-similar solution or a

grim reaper solution of the form y = π/2 − arcsin(e−x) (see also [5]). Here, we shall provide a

generalization for such a solution.

For each constant c > 0, there is a special solution of the form

l+(t) = ∞, l−(t) = ct, u(x, t) = U(x− ct) ∀x ∈ (ct,∞), t ∈ R.

Then the equation for the profile U is

−cU ′ = (a(U ′))′ in (0,∞), U(0) = 0, U ′(0) = γ > 0, U ′ > 0 in (0,∞).

This gives a(U ′) = a(γ)− cU and

U(∞) =: m =
a(γ)

c
, or c =

a(γ)

m
.

Denote by a−1 the inverse function of a(·), we have U ′ = a−1(a(γ) − cU) so the profile U is

implicitly given by

ξ =

∫ U(ξ)

0

ds

a−1(a(γ)− cs))
=

1

c

∫ a(γ)

a(γ)−cU(ξ)

dv

a−1(v)
∀ ξ > 0.

After substituting c by m, U can be expressed as the implicit function of

ξ =
m

a(γ)

∫ a(γ)

a(γ)[1−U(ξ)/m]

dv

a−1(v)
.

In the special case of motion by curvature, i.e., a(s) = arctan s, we have a−1(v) = tan v. Writing

ψ = a(γ) = arctan γ, we have

ln
sinψ

sin[ψ(1− U(ξ)/m)]
=
ξψ

m
.

That is,

U(ξ) = m
{
1− 1

ψ
arcsin[e−ξψ/m sinψ]

}
, ξ > 0.

Note that the original grim reaper solution [5] corresponds to the profile U with c = 1 and

m = ψ = π
2 . With the flexibility of m (or c = a(γ)/m), the grim reaper solutions can be used as

supersolutions in many applications.
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4.3. Scaling Invariance. The problem (4.1) is scaling invariant. Namely, for each λ > 0, define

uλ(x, t) =
u(λx, T + λ2(t− 1))

λ
, lλ±(t) = λl±(T + λ2(t− 1)).

Then (uλ, lλ±) solves the same set of problem in time interval [1− T/λ2, 1). Note that

{(x, uλ(x, 0)) | x ∈ [lλ−(0), l
λ
+(0)]} = λ Γ(T − λ2) := {(λx, λy) | (x, y) ∈ Γ(T − λ2)},

Ωλ(0) = λ Ω(T − λ2) := {(λx, λy) | (x, y) ∈ Ω(T − λ2)}.

By the above scaling, any time interval [t0, T ) for solution u is transferred to the time interval

[0, 1) for uλ by taking λ =
√
T − t0. Note that the constants in Lemma 4.1 become

Mλ
0 6M0, Mλ

1 6M1, Mλ
2 6 λM2 =

√
T − t0 M2.

Thus, when t0 is sufficiently close to T , Mλ
2 with λ =

√
T − t0 is very small; this is why the curve

is asymptotically concave.

4.4. Eventual Concavity.

For a curvature flow of a closed curve, Angenent [7] provided an elegant method to show the

eventual convexity of curves; see also the earlier result of Grayson [27]. As we are working on

segments of curves, periodicity cannot be used. We can only use Angenent’s method to obtain a

partial result.

Lemma 4.3. There exists t∗ ∈ [0, T ) and ξ ∈ C1([t∗, T )) such that for each t ∈ [t∗, T ),

ux(·, t) > 0 in [l−(t), ξ(t)), ux(ξ(t), t) = 0 > uxx(ξ(t), t), ux(·, t) < 0 in (ξ(t), l+(t)].

In addition,

l̇−(t) > 0, l̇+(t) < 0 ∀ t ∈ [t∗, T ).

Proof. The function w = ux satisfies wt = (a′(ux)wx)x in Q(T ). As w ̸= 0 on the parabolic

boundary of Q(T ), the number of roots of w(·, t) = 0 is finite and non-increasing in time. Passing

each time at which there is a root of multiplicity k > 1, the number of roots decreases by at

least k − 1. Hence, there exists t0 > 0 such that the number of roots to ux(·, t) = 0 in Ī(t) is

independent of t ∈ [t0, T ) and every root is simple. We claim that there is indeed exactly one

root. Suppose for contradiction that this is not true. Then the function

h∗(t) := min
{
u(x, t) | x ∈ Ī(t), ux(x, t) = 0 < uxx(x, t)

}
is well–defined and is continuous for all t ∈ [t0, T ). Now from ut = a′(ux)uxx, one sees that h∗(t)

is a strictly increasing function, so h∗(t) > h∗(t0) for all t > t0. On the other hand, we know that

h∗(t) 6 h(t) and limt↗T h(t) = 0, so there is a contradiction. Thus, in [t0, T ), ux(·, t) changes

sign only once.

In a similar manner, w := ut satisfies wt = (a′(ux)wx)x in Q(T ) and the mixed type boundary

condition wx = −[l̇±/a
′(∓γ±)]w, obtained by differentiating ux(l±(t), t) = γ± with respect to t

and using uxx = w/a′(∓γ±). This implies that the roots to ut = 0 does not increase with time,

and passing each time at which there is a non-simple root the number of roots decreases at least

by one. Note in particular that any root on the boundary is non-simple. Hence, there is a time,

which we still denote by t0, such that in [t0, T ), the number of roots to ut(·, t) = 0 does not change

with t and every root is simple. Hence, ut ̸= 0 on the boundary. As the solution shrinks to a single
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point, we must have ut < 0 on the boundary. Thus, l̇± = −ut/ux = ±ut/γ± has the required sign

for all t ∈ [t0, T ). �

To continue, we need a refinement on the upper bound on uxx given in Lemma 4.1.

Lemma 4.4. Assume that either (i) u0xx 6 0 on I(0) or (ii) sa′′(s) 6 0 on R. Then there exists

a constant M and a time t∗ ∈ [0, T ) such that

uxx(x, t) 6Mu(x, t) ∀x ∈ I(t), t ∈ [t∗, T ).

Proof. (i) Suppose u0xx 6 0 on Ī(0). Then ut(·, 0) = a′(u0x)u
0
xx 6 0 on Ī(0) × {0}. It then

follows from the maximum principle that ut 6 0 in Q(T ). Consequently, uxx = ut/a
′(ux) 6 0.

(ii) Suppose sa′′(s) 6 0 on R. Let t∗ be as in the previous lemma. If ut(·, t∗) 6 0 on I(t∗), then

by (i), we have ut 6 0 in Q(T ) \ Q(t∗). Hence, consider the case that ut(·, t∗) is not everywhere

non-positive in I(t∗). Let

M = max
x∈I(t∗)

ut(x, t∗)

u(x, t∗)
.

Consider the function w := ut−Mu on Q(T )\Q(t∗). By the definition ofM , we have w(·, t∗) 6 0

on I(t∗). Also, as ut(l±(t), t) < 0 for all t ∈ [t∗, T ), we have w(l±(t), t) < 0 for all t ∈ [t∗, T ).

Finally, we calculate

wt − [a′(ux)wx]x −M
a′′(ux)ux
a′(ux)

w

=
{
utt − [a′(ux)utx]x

}
−M

{
ut − [a′(ux)ux]x

}
−M

a′′(ux)ux
a′(ux)

(ut −Mu)

= M2uuxa
′′(ux)

a′(ux)
6 0.

It then follows from the maximum principle that w 6 0 in Q(T ) \ Q(t∗). This completes the

proof. �

4.5. The Aspect Ratio.

In order to use a blow-up technique showing that Γ(t) shrinks to a point in an asymptotically

self-similar manner, we need to estimate the aspect ratio h(t)/ℓ(t). Since u is Lipschitz, the upper

bound is trivial,
h(t)

ℓ(t)
6 ∥ux(·, t)∥∞ 6M1.

The difficulty here is to find a positive lower bound for h(t)/ℓ(t); namely, to exclude the case that

Γ(t) evolves into long thin needle-like shape, such as that of a grim reaper solution [5, 39].

In [28], the curve Γ(t) is restricted to a sector of open angle strictly less than π, which guarantees

a positive lower bounded of h(t)/ℓ(t), since the graph y = u(x, t) is asymptotically concave so it is

asymptotically above a line segment with positive contact angles. This argument does not work

in the current case since the line segment is reduced to the x-axis. Here we use a modification of

Grayson’s idea [27]. For convenience, we denote

e(t) :=
ℓ(t)

h(t)
, q(t) :=

ℓ(t)2

A(t)
.
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As explained by Grayson, finding an upper bound for e(t) is equivalent to finding an upper bound

for q(t). Indeed, since A(t) 6 h(t)ℓ(t), we have

q(t) =
ℓ2(t)

A(t)
> ℓ2(t)

h(t)ℓ(t)
= e(t).

4.6. The Grayson’s Technique [27].

In the sequel, we show that q(t) is uniformly bounded.

Step 1. This is a step that we specifically develop here to accommodate the Grayson’s technique.

It is vital to the application of Grayson’s original ideas.

Let t ∈ [t∗, T ) be any fixed constant. Consider the function

v(x, t) = u(x, t) + 1
2Mh(t) [x− l−(t)] [ l+(t)− x].

By Lemma 4.4, we have

vxx = uxx −Mh(t) 6 uxx −Mu(x, t) 6 0.

Thus, v(·, t) is concave. We denote by Ω̃(t) the region bounded by y = v(x, t) and the x-axis:

Ω̃(t) := {(x, y) | l−(t) < x < l+(t), 0 < y < v(x, t)}.

Then

Ã(t) := |Ω̃(t)| =
∫
I(t)

v(x, t)dt = A(t) + 1
6Mh(t)ℓ3(t).

Since v(·, t) is concave, we have

Ã(t) > 1
2ℓ(t)∥v(·, t)∥L∞ > 1

2ℓ(t)h(t).

It then follows that

A(t) > 1
2h(t)ℓ(t)−

1
6Mh(t)ℓ3(t) = 1

2h(t)ℓ(t)
{
1− 1

3Mℓ2(t)
}
.(4.6)

Hence

1 <
Ã(t)

A(t)
=
A(t) + 1

6Mh(t)ℓ3(t)

A(t)
6 1 +

Mℓ2(t)

3−Mℓ2(t)
.

Here the fundamental difference in using the estimation uxx 6Mu from Lemma 4.4 and in using

uxx 6 M0M2 from Lemma 4.1 is profound. Since a priori it is unknown that the ratio ℓ2(t)/h(t)

is small, without the extra factor h(t), the resulting estimate between A and Ã is almost useless.

Step 2. Referring to Figure 3, set q0(t) = l−(t) and q4(t) = l+(t). Let q1(t), q2(t), q3(t) be real

numbers such that q0 < q1 < q2 < q3 < q4 and∫ q1

q0

v(x, t)dx =

∫ q2

q1

v(x, t)dx =
θ

2
Ã(t),

∫ q3

q2

v(x, t)dx =

∫ q4

q3

v(x, t)dx =
1− θ

2
Ã(t),

where

θ :=
a(γ−)

a(γ−) + |a(−γ+)|
∈ (0, 1), 1− θ =

|a(−γ+)|
a(γ−) + |a(−γ+)|

.

One of the most important ideas of Grayson [27] is to show that at time t1 ≈ t + 1
2

√
T − t,

I(t1) is within a tiny neighborhood of [q1(t), q3(t)]. Since the area from time t to time t1 shrinks
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q0 q1 q2 q3 q4

Figure 3. Division of Ω̃(t) into four pieces by vertical lines and comparison of

areas by a rectangle, a triangle and trapezoids.

about by half, to improve the aspect ratio, one would like to show that if e(t) is large, then

ℓ2(t1)/ℓ
2(t) < 1/2. Hence, we would like to show [q3(t)− q1(t)] <

1√
2
ℓ(t).

Let ξ ∈ I(t) be the number such that v(ξ, t) = maxI(t) v(·, t). By symmetry, we assume without

loss of generality that ξ ∈ [q0, q2]. From left to right, we denote by Ωi = Ωi(t) the region bounded

by y = v(x, t), y = 0, x = qi−1 and x = qi. Also, we set li := qi− qi−1 the base width of each Ωi.

(i) First of all, v(·, t) is decreasing in [q2, q4]. As the area of Ω3 equals that of Ω4, we have

l3 = q3 − q2 < l4 = q4 − q3,

(1− θ)Ã(t) = |Ω3 ∪ Ω4| 6 v(q2, t)(q4 − q2).

(ii) Since v is concave, the curve y = v(x, t) is above the line y = v(q2, t)(x − q0)/(q2 − q0) in

[q0, q2]. Hence,

1
2v(q2, t)(q2 − q0) 6 |Ω1 ∪ Ω2| = θÃ(t).

Using the conclusion of (i), we obtain

1
2 (1− θ)v(q2, t)(q2 − q0) 6 (1− θ) θ Ã(t) 6 θv(q2, t)(q4 − q2),

⇒ 1
2 (1− θ){ℓ(t)− (q4 − q2)} 6 θ(q4 − q2)

⇒ l3 + l4 = q4 − q2 > 1− θ

1 + θ
ℓ(t).

(iii) Here again, as v(·, t) is concave, the curve y = v(·, t) is above the line y = v(q1, t)(q4 −
x)/(q4 − q1) in [q1, q4] and below the same line in [q0, q1]. Hence, estimating the areas |Ω1| and
|Ω2| by the corresponding trapezoids, we obtain

q1 − q0
2

{q4 − q0
q4 − q1

v(q1, t) + v(q1, t)
}
> |Ω1| = |Ω2| >

q2 − q1
2

{
v(q1, t) +

q4 − q2
q4 − q1

v(q1, t)
}
.

Using li = qi − qi−1 and cancelling the common factor 1
2v(q1, t), we obtain

l1
{ℓ(t) + ℓ(t)− l1}

ℓ(t)− l1
> {ℓ(t)− l1 − [l3 + l4]}

{ℓ(t)− l1 + [l3 + l4]}
ℓ(t)− l1

⇒ ℓ2(t)− {ℓ(t)− l1}2 > {ℓ(t)− l1}2 − (l3 + l4)
2

⇒ ℓ(t)− l1 6 1√
2

√
ℓ2(t) + (l3 + l4)2.
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(iv) In conclusion, we have

q3 − q1 = ℓ(t)− l1 − l4 6 1√
2

√
ℓ2(t) + (l3 + l4)2 − l4

6 1√
2

√
ℓ2(t) + (l3 + l4)2 −

1

2
(l3 + l4).

Since the function 1√
2

√
ℓ2 + x2 − x/2 is decreasing in x ∈ [0, ℓ], using (ii) we then obtain

q3(t)− q1(t) 6
1√
2

√
ℓ2(t) + x2 − 1

2x
∣∣∣
x= 1−θ

1+θ ℓ(t)
= ℓ(t)ν1(θ),

where

ν1(θ) :=

√
1 + θ2 − (1− θ)/2

1 + θ
∈
(1
2
,
1√
2

)
.

Similarly, if ξ ∈ [q2, q4], then

q3(t)− q1(t) 6 ℓ(t)ν1(1− θ).

In conclusion, we have

(4.7) q3(t)− q1(t) 6 ℓ(t)ν(θ) ∀ t ∈ [t∗, T ), ν(θ) := min{ν1(θ), ν1(1− θ)} ∈
(1
2
,
1√
2

)
.

Step 3. Now let’s fix a t0 ∈ [t∗, T ). For some t1 ∈ (t0 +
1
2 [T − t0], T ) and a small positive ε to

be determined later, set

q̂1 := min{q1(t0), l+(t1)},

q̂3 := max{l−(t1), q3(t0)},

τ1 := max{t ∈ [t0, t1] | l−(t) 6 q̂1 − h(t0)/ε},

τ2 := max{t ∈ [t0, t1] | l+(t) > q̂3 + h(t0)/ε}.

It is possible that τ1 is not well-defined, in which case l−(t0) > q̂1 − h(t0)/ε, so by monotonicity,

l−(t1) > l−(t0) > q̂1 − h(t0)/ε which is what we want. It τ1 is well-defined, we want to show that

τ1 < t1 so that l−(τ1) = q̂1 − h(t0)/ε and we still have l−(t1) > q̂1 − h(t0)/ε. Similarly, either τ2

is not well-defined or τ2 < t1 so that l+(t1) < q̂3 + h(t0)/ε.

Hence, suppose that τ1 > t0. Then [q̂1−h(t0)/ε, q̂1] ⊂ [l−(t), l+(t)] for all t ∈ [t0, τ1]. For every

t ∈ [t0, τ1], by the mean value theorem, there exists x̂ ∈ (q̂1 − h(t0)/ε, q̂1) such that

ux(x̂, t) =
u(q̂1, t)− u(q̂1 − h(t0)/ε, t)

q̂1 − [q̂1 − h(t0)/ε]
6 εu(q̂1, t)

h(t0)
6 ε.

Consequently, using uxx 6Mu we have

ux(q̂1, t) = ux(x̂, t) +

∫ q̂1

x̂

uxx(x, t)dx 6 ε+Mh(t)[q̂1 − x̂] 6 ε+
Mh2(t0)

ε
6 2ε,

if ε is taken to satisfy

ε >
√
Mh(t0).

By choosing t∗ larger, we may also assume that 2
√
Mh(t∗) < min{γ−, γ+}. Henceforth we require

√
Mh(t0) 6 ε < min{γ−, γ+}/2.
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Denote by A1(t) the area bounded by the curve y = u(x, t), the x axis, and the vertical line

x = q̂1. Then, for all t ∈ [t0, τ1), using u(l−(t), t) = 0 and the fact that q̂1 is a constant, we have

d

dt
A1(t) =

d

dt

∫ q̂1

l−(t)

u(x, t) dt

=

∫ q̂1

l−(t)

ut(x, t)dx = a(ux(q̂1, t))− a(γ−) 6 a(2ε)− a(γ−).

Hence

A1(τ1) 6 A1(t0)− [a(γ−)− a(2ε)](τ1 − t0).

Observe that

A1(t0) 6 |Ω1(t0)| = 1
2θ|Ã(t0)| 6

1
2θA(t0)

{
1 +

Mℓ2(t0)

3−Mℓ2(t0)

}
=

a(γ−)(T − t0)

2

{
1 +

Mℓ2(t0)

3−Mℓ2(t0)

}
,

by using the definition of θ and the fact that A(t) = [a(γ−)− a(−γ+)](T − t). It then follows that

τ1 − t0 6 A1(t0)

a(γ−)− a(2ε)
6 a(γ−)

2a(γ−)− 2a(2ε)

{
1 +

Mℓ2(t0)

3−Mℓ2(t0)

}
(T − t0).

Similarly, if τ2 > t0, then we can show that

τ2 − t0 6 |a(−γ+)|
2|a(−γ+)| − 2|a(−2ε)|

{
1 +

Mℓ2(t0)

3−Mℓ2(t0)

}
(T − t0).

Now set

t1 := t0 +
1
2 (T − t0)max

ε+ a(γ−){1 + Mℓ2(t0)
3−Mℓ2(t0)

}
a(γ−)− a(2ε)

, ε+
|a(−γ+)|{1 + Mℓ2(t0)

3−Mℓ2(t0)
}

|a(−γ+)| − |a(−2ε)|


= t0 +

1
2 (T − t0)[1 +O(ε+ ℓ2(t0))].

Then we must have both τ1 < t1 and τ2 < t1. Therefore, we have

l−(t1) > q̂1 − h(t0)/ε, l+(t1) 6 q̂3 + h(t0)/ε.

Now if q̂1 < q1(t0), then by definition of q̂1, we must have q̂1 = l+(t1) so the first estimate implies

ℓ(t1) 6 h(t0)/ε. Similarly, if q̂3 > q3(t0), then q̂3 = l−(t1) and we still have ℓ(t1) 6 h(t0)/ε.

Finally, when q̂1 = q1(t0) and q̂3 = q3(t0), using (4.7) we have

ℓ(t1) 6 q̂3 − q̂1 + 2h(t0)/ε = q3(t0)− q1(t0) + 2h(t0)/ε 6 ℓ(t0)ν(θ) + 2h(t0)/ε.

Hence, in any case we have ℓ(t1) 6 ℓ(t0)ν(θ) + 2h(t0)/ε and the ratio can be calculated as

q(t1)

q(t0)
=
A(t0)

A(t1)

ℓ2(t1)

ℓ2(t0)
6 T − t0

T − t1

(
ν(θ) +

2h(t0)

εℓ(t0)

)2

.

=
2

1 +O(ε+ ℓ2(t0))

(
ν(θ) +

2h(t0)

εℓ(t0)

)2

.

The above estimate indeed holds also with t1 replaced by t0 + (T − t0)/2. To see this, we

introduce a parameter k ∈ [0,∞) and redefine q1 and q3 in terms of k by the relation

Ã2(t0) = (1 + k)Ã1(t0), Ã3(t0) = (1 + k)Ã4(t0), Ãi(t) :=

∫ qi

qi−1

v(x, t)dx.
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As before, the point q2 is also defined so that∫ q2

q0

v(x, t)dx = θÃ(t).

Then the quantity q3 − q1 differs from the original estimate by a factor of 1 + O(k). By taking

k = K[ε+Mℓ2(t0)] for some large fixed constant K, we can have t1 = t0 + (T − t0)/2. We leave

the reevaluation of the preceding estimates to the readers.

Hence, there exists a positive constant K that is independent of ε and t0 such that

q(t0 +
1
2 [T − t0])

q(t0)
6 2ν2(θ) +K

{
ε+ ℓ2(t0) +

2h(t0)

ε2ℓ(t0)

}
∀ t0 ∈ [t∗, T ).

Here we used the fact that h(t0)/ℓ(t0) is bounded by M1 so ( hεℓ )
2 6M1

h
ε2ℓ .

Finally, we fix

ε =
1− 2ν2(θ)

3K
.

Take t∗ sufficiently close to T such that

ℓ2(t) 6 1− 2ν2(θ)

3K
∀t ∈ [t∗, T ].

We then obtain

q(t0 +
1
2 [T − t0])

q(t0)
6 2 + 2ν2(θ)

3
+
K0h(t0)

ℓ(t0)
∀ t0 ∈ [t∗, T )

for some positive constant K0 independent of t0. As A(t) > h(t)ℓ(t),

K0h(t)

ℓ(t)
=
K0h(t)ℓ(t)

ℓ2(t)
6 K0A(t)

ℓ2(t)
=

K0

q(t)
∀ t ∈ [t∗, T ).

It then follows that

q(t0 +
1
2 [T − t0])

q(t0)
6 2 + 2ν2(θ)

3
+

K0

q(t0)
∀ t0 ∈ [t∗, T ).

That is,

q(t0 +
1
2 [T − t0]) 6

2 + 2ν2(θ)

3
q(t0) +K0 ∀ t0 ∈ [t∗, T ).(4.8)

Step 4. Now we are ready to show that the quantity q(t) := ℓ2(t)/A(t) is uniformly bounded.

For this, we set

τ0 = t∗, τj = T − T − t∗
2j

∀ j = 1, 2, · · · .

Then, by (4.8), we have

q(τj+1) 6
2 + 2ν2(θ)

3
q(τj) +K0, j = 0, 1, · · · .

By a mathematical induction, one sees that

sup
j>0

q(τj) 6 max
{
q(t∗),

3K0

1− 2ν2(θ)

}
.

Finally, using the monotonicity of ℓ(t), we have

q(t) 6 2q(τj) ∀ t ∈ [τj , τj+1].

Therefore, q(t) is uniformly bounded.
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Note that

M1ℓ
2(t) > h(t)ℓ(t) > A(t) = [a(γ−) + |a(−γ+)|](T − t) =

ℓ2(t)

q(t)
> ℓ2(t)

∥q∥∞
.

We then conclude the following key estimate:

Lemma 4.5. There exists a constant C > 0 such that
√
T − t 6 Cℓ(t) 6 C2h(t) 6 C3

√
T − t ∀ t ∈ [0, T ).

By translation, we may assume that l±(T ) := limt↗T l±(T ) = 0. Since l̇+(t) < 0 < l̇−(t) for

t ∈ [t∗, T ], we have

|l±(t)| < ℓ(t) 6 C
√
T − t ∀t ∈ [t∗, T ).

4.7. The Self-similar Transformation.

Now we make the change of dependent and independent variables:

z =
x√

2(T − t)
, s = − ln

√
2(T − t),

U(z, s) := esu(ze−s, T − 1
2e

−2s), L±(s) = es l±(T − 1
2e

−2s),

⇐⇒ u(x, t) =
√
2(T − t) U

( x√
2(T − t)

,− ln
√
2(T − t)

)
.

Set s0 = − ln[
√
2T ]. Then the functions (U,L±) satisfies

Us = [a(Uz)]z − zUz + U, z ∈ (L−(s), L+(s)), s > s0,

U(L±(s), s) = 0, s > s0,

Uz(L±(s), s) = ∓γ±, s > s0.

By the estimates established so far, we have

0 6 U(z, s) =
u(x, t)√
2(T − t)

6 C,

|Uz(z, s)| = |ux(x, t)| 6M1,

|Uzz(z, s)| = |
√
2(T − t)uxx| 6 C

√
2(T − t)

h(t)
6 C,

|L±(s)| =
|l±(t)|√
2(T − t)

6 C.

Using these estimates and applying a standard blow-up technique used in [28], we can derive

the convergence to the self-similar profile as t↗ T . The key is to find a Lyapunov functional (see

also [49]). Since the proof is rather standard, we safely omit it here.
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