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Abstract
We study radially symmetric classical solutions of the Dirichlet problem for a heat equation

with a supercritical nonlinear source. We give a sufficient condition under which blow-up in
infinite time cannot occur. This condition involves only the growth rate of the source term at
infinity. We do not need the homogeneity property which played a key role in previous proofs
of similar results. We also establish the blow-up rate for a class of solutions which blow up in
finite time.
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1 Introduction

Consider the heat equation with a superlinear source
ut = ∆u + f(u), x ∈ Ω, t > 0,

u = D ≥ 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(1.1)

where Ω is a smooth bounded domain in Rn, D a constant, and u0 ∈ C(Ω̄). Here by a superlinear
source we mean that for some positive constants ε and A,

uf(u) ≥ (2 + ε)
∫ u

0
f(v) dv > 0 ∀u ≥ A.
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This condition guarantees that there are initial data u0 such that u becomes unbounded. There
are two different ways how a solution may become unbounded:

Blow-up (in finite time): There is a finite positive T such that limt↗T ‖u(·, t)‖L∞(Ω) = ∞;
Grow-up (in infinite time): u ∈ C(Ω̄ × [0,∞)), lim supt↗∞ ‖u(·, t)‖L∞(Ω) = ∞.

It is shown in [4] that grow-up does not occur if the growth of f is subcritical:
(1) n = 1, f is locally Lipschitz;
(2) n = 2, |f ′(u)| ≤ euq

for all u ≥ 0 and some constant q ∈ (0, 2);
(3) n ≥ 3, f is locally Lipschitz and f(u) ≤ up for all u ≥ 1 and some p ∈ (1, pS), where

pS :=
n + 2
n − 2

;

see also [1].

For critical/supercritical growth, so far all results have been restricted to radially symmetric
solutions and to two particular nonlinearities f(u) = up and f(u) = eu. Assume that

Ω = B(R) := {x ∈ Rn | |x| < R}, u0(x) = U0(|x|). (1.2)

It is known that grow-up does not occur in the following two supercritical cases:

(4) f(u) = eu, 3 ≤ n ≤ 9, D = 0 (see [5]);
(5) f(u) = up, n ≥ 3, p > pS , D = 0 (see [7, 12]).

On the other hand, grow-up does occur in the following critical/supercritical cases:

(a) f(u) = up, n ≥ 3, p = pS , D = 0 (cf. [7]);

(b) f(u) = up, n ≥ 11, p > 1 + 4
n−4−2

√
n−1

, D = R
− 2

p−1

[
2[(n−2)p−n]

(p−1)2

] 1
p−1 (cf. [3]);

(c) f(u) = 2(n − 2)eu, n ≥ 10, R = 1, D = 0 (cf. [10, 15]).

These results in [5, 7, 12] are built upon a scaling invariance of the problem: for each λ > 0,
the equation ut − ∆u = f(u) is unchanged under the variable change

uλ(x, t) :=

 λ2/(p−1)u(λx, λ2t) if f(s) = sp,

2λ + u(eλx, e2λt) if f(s) = es.

Here we are interested mainly in the question what happens if the scaling invariance is
removed. For example, what happens when

f(u) = up + ε1 + ε2 sin eu2
+ ε3u

q, ε1 ≥ ε2 ≥ 0, ε3 ≥ 0, p > q.

We shall assume the following:

(A) f ∈ C1, f(·) ≥ 0 in [0,∞), lim
u→∞

u−p f(u) = 1, n ≥ 3, pS < p < pJL.

Here pJL, referred to as the Joseph-Lundgren exponent [9], is defined by

pJL :=

 1 + 4
n−4−2

√
n−1

if n ≥ 11,

∞ if n ≤ 10.

We shall prove the following.



Boundedness of global solutions 3

Theorem 1 Assume (A). There is no grow-up for (1.1)-(1.2); that is, any radially symmetric
global classical solution to (1.1) is uniformly bounded.

The proof of Theorem 1 can be modified to yield a result on the blow-up rate:

Theorem 2 Assume (A). If u is a solution of (1.1)-(1.2) which blows up in a finite time T and
satisfies u(0, t) = maxΩ u(·, t) for all t close to T , then

lim sup
t↗T

(T − t)1/(p−1)‖u(·, t)‖L∞(Ω) < ∞. (1.3)

It was shown in [11] that (1.3) holds for D = 0, f(u) = |u|p−1u, pS < p < pJL and all radially
symmetric (even sign-changing) solutions. On the other hand, it is well-known (cf. [8, 13]) that
there are positive radially decreasing solutions of

ut = ∆u + up, x ∈ RN , p > pJL,

such that

lim sup
t↗T

(T − t)1/(p−1)u(0, t) = ∞.

As we have already mentioned, many results on blow-up of solutions of (1.1) are derived under
the assumption that f(u) behaves like up near zero (which happens to be the same power up near
infinity). From the physical point of view, this assumption should not play any role in such results
because near blow-up the solution is large and the behavior of f(u) for small values of u should not
have any influence on blow-up.

On the other hand, extensions of blow-up results to more general nonlinearities, e.g., those that
do not have any scaling invariance, may be challenging mathematically. In particular, when p > pS ,
the lack of the imbedding W 1,2 ⊂ Lp+1 makes it difficult to use functional analytic methods, whereas
other methods often rely heavily on the specific form of the nonlinearity, cf. [6, 7, 8, 11, 12, 13],
for instance.

The aim of this paper is to extend results obtained previously for f(u) = up to a large class of
nonlinearities which may not have any scaling invariance, by a relatively simple argument based on
intersection properties of solutions.

Remarks.
1. Theorem 1 and the energy identity

d

dt

∫
Ω

{1
2
|∇u|2 − F (u)

}
dx +

∫
Ω

u2
t dx = 0, F (u) :=

∫ u

0
f(s)ds,

imply that if u is a global classical solution to (1.1)-(1.2), then the ω-limit set consists of classical
solutions to

∆v + f(v) = 0 in Ω, v = D on ∂Ω. (1.4)
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Using radial symmetry and non-increase of the zero-number (cf. [2]) one can further show that

v := lim
t→∞

u(·, t) in C2(Ω̄)

where v is a solution of (1.4).
2. Suppose every maximal classical solution to (1.4) is stable. Then Theorem 1 also implies the

existence of global non-classical solutions to (1.1)-(1.2), i.e., the existence of solutions that blow
up in finite time but still can be extended beyond blow-up time. Indeed, let ζ ∈ C2(Ω̄) be any
non-negative non-trivial radially symmetric function satisfying ζ = 0 on ∂Ω. For each h > 0, let
uh be the solution to (1.1) with u0 = D +hζ. One can show that uh is strictly monotone in h, that
for small positive h, uh is a global classical solution, and that for large positive h, uh blows up in a
finite time T h. Let h∗ = sup{h > 0 | uh ∈ C(Ω̄ × [0,∞))}. Then the function u∗ = limh↗h∗ uh is a
global non-classical solution to (1.1) with initial data u0 = D + h∗ζ. In fact, if u∗ is classical, then
v = limt→∞ u∗(·, t) is a classical solution to (1.4). From which, one can show that uh is also a global
classical solution to (1.1) when h is slightly bigger than h∗, which is impossible. See [7, 10, 14] for
more details. One observes that in particular, as h ↘ h∗, T h ↗ T h∗

< ∞.

3. In Theorem 2, we conjecture that the condition

u(0, t) = max
Ω̄

{u(·, t)} for all t close to T (1.5)

can be removed, based on the following evidence. (a) Let M̂(t) = max{u(·, t)} = u(R̂(t), t).
Our proof is still valid if the condition (1.5) is replaced by lim inft↗T u(0, t)/M̂(t) > 0 or by
lim supt↗T R̂(t)/

√
T − t < ∞. (b) If lim inft↗T R̂(t)/

√
T − t = ∞, then blow-up should be

similar to one-dimensional blow-up in which case any exponent p is subcritical and therefore the
assertion of Theorem 2 is also true. We leave such an important relaxation as an open problem.
Note that the restriction (1.5) is not needed in the case f(u) = up (cf. [11]).

In the next section, we establish the existence of a singular steady state of (1.1)-(1.2). Using
this singular steady state and an intersection-comparison argument, we then prove Theorems 1 and
2 in Section 3.

2 Singular Steady States

Here we consider solutions to

vrr +
n − 1

r
vr + f(v) = 0, vr ≤ 0 < v in (0, ε) (2.1)

where n ≥ 3 and ε is a small positive constant. We study the existence of a singular solution.

Lemma 2.1 Suppose f ∈ C(R) and limu→∞ u−p f(u) = 1 where p > pS and n ≥ 3. Then for a
small positive ε, (2.1) admits a singular solution v = v∗ satisfying

lim
r↘0

rmv∗(r) = γ, m :=
2

p − 1
, γ :=

[
2[(n − 2)p − n]

(p − 1)2

] 1
p−1

.
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Proof. Set s = ln r and W = rmv − γ. Then v is a singular solution to (2.1) if and only if

Ẅ + αẆ + βW = h(s,W ) in (−∞, ln ε), lim
s→−∞

W (s) = 0, (2.2)

where α = n−2
p−1 (p − n+2

n−2), β = 2(n−2)
p−1 (p − n

n−2), and h = h1 + h2 with

h1 := γp + pγp−1W − [γ + W ]p, h2 := [γ + W ]p − empsf(e−ms[γ + W ]).

Denote by λ+ and λ− the two roots to the characteristic equation

λ2 + αλ + β = 0, i.e. λ± =
1
2
(−α ±

√
α2 − 4β). (2.3)

Though λ± may not be real, their real parts are always negative. By a variation of constants,

W (s) =
∫ s

−∞

eλ+(s−τ) − eλ−(s−τ)

λ+ − λ−
h(τ,W (τ))dτ, s ∈ (−∞, ln ε]. (2.4)

Here we use the notation eλ+z−eλ−z

λ+−λ−
:= ze−αz/2 when λ+ = λ−.

If one is willing to assume that f ∈ C1(R) and f ′(u) ∼ pup−1 as u → ∞, the existence of a
unique solution to (2.4) follows from a standard Picard’s iteration.

Under the assumptions of the Lemma, we can establish the existence of a solution to this integral
equation by using Schauder’s fixed point theorem. For this, we set

X :=
{
Φ ∈ C((−∞, ln ε])

∣∣∣ ‖φ‖X := sups∈(−∞,ln ε] |Φ(s)| < ∞
}
,

B(δ) :=
{
Φ ∈ X

∣∣∣ ‖Φ‖X ≤ δ
}
,

where ε > 0 and δ ∈ (0, γ/4] are small constants to be chosen later. Note that B(δ) is a closed
convex subset of the Banach space X . For each Φ ∈ B(δ), define, for i = 1, 2,

TiΦ(s) =
∫ s

−∞

eλ+(s−τ) − eλ−(s−τ)

λ+ − λ−
hi(τ, Φ(τ))dτ ∀ s ≤ ln ε.

Note that W is a solution to (2.4) if W = (T1 + T2)W or W = (I − T1)−1T2W where I denotes
the identity operator. We shall show that I−T1 is invertible and (I−T1)−1T2 has a fixed point.

First consider T1. Note that T10 = 0. Also, when |w1| + |w2| ≤ 2δ,

|h1(s, w1) − h1(s, w2)| ≤ p(p − 1)max{[γ − 2δ]p−2, [γ + 2δ]p−2}2δ |w1 − w2|.

This implies that when δ is small, ‖T1Φ1 − T1Φ2‖X ≤ 1
2‖Φ1 − Φ2‖X for every Φ1, Φ2 ∈ B(δ). We

now fix such a small δ ∈ (0, γ/4]. Then from B(δ/2) to X , (I − T1)−1 exists and

‖(I − T1)−1Ψ1 − (I − T1)−1Ψ2‖X ≤ 2‖Ψ1 − Ψ2‖X ∀Ψ1, Ψ2 ∈ B(δ/2).

Next consider T2. Define

ω(s) := sup
v≥γe−ms/2

∣∣∣f(v)
vp

− 1
∣∣∣ .
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Note that ω(·) is non-negative and non-decreasing. For any Φ ∈ B(δ) and τ ≤ s ≤ ln ε,

|h2(τ, Φ(τ))| = (γ + Φ)p
∣∣∣f(e−mτ (γ + Φ))
[e−mτ (γ + Φ)]p

− 1
∣∣∣ ≤ (2γ)pω(s),

|T2Φ(s)| ≤ ω(s)
∫ ∞

0

(2γ)p|eλ+τ − eλ−τ |
|λ+ − λ−|

dτ =: K1ω(s),

∣∣∣ d

ds
T2Φ(s)

∣∣∣ ≤ ω(s)
∫ ∞

0

(2γ)p|λ+eλ+τ − λ−eλ−τ |
|λ+ − λ1|

dτ =: K2ω(s).

Thus,
T2B(δ) ⊂ B̂ =

{
Φ ∈ X

∣∣∣ |Φ(s)| + |Φ′(s)| ≤ (K1 + K2)ω(s) ∀ s ≤ ln ε
}
.

Since f ∈ C(R) and lims→−∞ ω(s) = 0, one sees that T2 is continuous. Fix ε > 0 such that
ω(ln ε) ≤ δ/[2(K1 + K2)]. Then B̂ is a compact subset of B(δ/2), so that T2 is a continuous
compact operator from B(δ) to B(δ/2). Consequently, (I − T1)−1T2 is a continuous compact
operator from B(δ) to itself, so by Schauder’s fixed point theorem it has a fixed point W ∈ B(δ).
One can further show that |W (s)| ≤ 2K1ω(s) for all s ≤ ln ε, so that W is a solution of (2.2).

Proposition 1 Assume n ≥ 3 and p ∈ (pS , pJL). Then there is a unique solution φ to

φrr +
n − 1

r
φr + φp = 0 on (0,∞), φr(0) = 0, φ(0) = 1. (2.5)

The solution satisfies φ > 0 > φr in (0,∞) and for φ∗(r) := γ r−m with m = 2/(p − 1), there are
infinitely many roots to the equation φ − φ∗ = 0 in (0,∞).

This is a well-known result (cf. [17]). We only sketch the proof for reader’s convenience.
Note that when f(u) ≡ up, (2.2) is autonomous since h2 ≡ 0. It has two equilibria W ≡ −γ

and W ≡ 0, with a unique trajectory connecting them. In terms of (2.1) with f = vp, there are the
singular solution v = γr−m and the regular solution v = φ to (2.5). All other solutions are regular,
given by v = aφ(a1/mr), a ∈ [0,∞).

Finally, notice that when p ∈ (pS , pJL), the characteristic roots λ± to (2.3) are complex with
negative real parts; namely, (0, 0) is a focus on the (W, Ẇ ) phase plane. It then follows that
φ − φ∗ = 0 has infinitely many roots in (0,∞).

3 Proof of the Main Results

Before the proof of Theorem 1 we introduce the following definition:

Definition 3.1 Let I be an interval (open, half-open or closed) with endpoints a, b. Let ψ be a
continuous function on I. We define the zero number (number of sign changes) of ψ by

ZI(ψ) = sup
{
n ∈ N

∣∣∣ ∃ a < x0 < x1 < . . . < xn < b, ψ(xi)ψ(xi+1) < 0 ∀ i = 0, · · · , n − 1
}

if ψ changes sign in I and ZI(ψ) = 0 otherwise.
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In the sequel, B = B(R) and u is a radially symmetric solution to (1.1)-(1.2), which, by the
maximum principle, is non-negative. We let v∗ be the singular solution to (2.1), extended to its
maximum existence interval (0, ε∗] where either ε∗ = ∞ or v∗(ε∗) = 0. We set R∗ = min{ε∗, R}.

We identify u(x, t) and u(r, t), where r = |x|. We first recall a classical result on monotonicity
of solutions (see [2, 16]):

Proposition 2 Suppose u is a global radially symmetric non-negative classical non-stationary so-
lution to (1.1)-(1.2). Then there exists a constant T1 ≥ 0 such that

(i) Z[0,R](ut(·, t)) is a constant independent of t ≥ T1;
(ii) either ut(0, ·) > 0 on [T1,∞) or ut(0, ·) < 0 on [T1,∞);
(iii) ur ≤ 0 on [0, R] × [T1,∞);
(iv) Z[0,R](u(·, t) − v∗(·)) =: N∗ is a constant independent of t ≥ T1.

To prove Theorem 1, we use a contradiction argument. Suppose, on the contrary, that there is
a grow-up solution; i.e., there exists a solution u ∈ C(B̄ × [0,∞)) to (1.1)-(1.2) satisfying

lim sup
t→∞

‖u(·, t)‖L∞(B) = ∞.

By a time translation, we can assume that all assertions of Proposition 2 hold with T1 = 0.

1. First we claim that

lim inf
t→∞

u̇t(0, t)
up(0, t)

= 0.

Indeed, if the assertion is not true, then there exists δ > 0 such that ut(0, t) ≥ δup(0, t) for all
t ≥ 0, which implies that u(0, ·) blows up in finite time since p > 1.

2. Now let {ti} be a sequence in (0,∞) such that

lim
i→∞

u(0, ti) = ∞, lim
i→∞

ut(0, ti)
up(0, ti)

= 0.

Set

Mi = u(0, ti), Ri = M
−1/m
i , wi(ρ, τ) = Rm

i u(Riρ, ti + R2
i τ).

Then

wiτ − ∆wi = wp
i gi in B(R/Ri) × (−ti/R2

i , τ
∗],

where

gi =
f(Miwi)
(Miwi)p

=
f(u)
up

, τ∗ := 1/[2(p − 1)g∗], g∗ = sup
s≥1

f(s)
sp

.

First observe that

wiτ (0, 0) =
R2

i

Mi
ut(0, ti) =

ut(0, ti)
up(0, ti)

→ 0 as i → ∞.
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Next observe that wi ≤ 1 for all τ ≤ 0. Also, comparing wi with the solution to the ode
Ṁ = g∗Mp,M(0) = 1, we see that

max
B(R/Ri)

wi(·, τ) ≤ [1 − (p − 1)g∗τ ]−1/(p−1) ≤ 21/(p−1) ∀ τ ∈ [0, τ∗].

It then follows by a standard parabolic estimate that {wi} is a locally uniformly bounded family
in C2,1, and, along a subsequence, it converges uniformly in any compact subset of Rn × (−∞, τ∗]
to a non-negative radially symmetric limit w satisfying

wτ − ∆w = wp in Rn × (−∞, τ∗], w(0, 0) = 1, wτ (0, 0) = 0.

Here the limi→∞ wp
i gi = wp is obtained as follows: Fix any (ρ, τ) ∈ [0,∞) × (−∞, τ∗]: (a) If

w(ρ, τ) > 0, then, at (ρ, τ),

lim
j→∞

gj = lim
j→∞

f(Mjwj)
(Mjwj)p

= lim
s→∞

f(s)
sp

= 1.

(b) If w(ρ, τ) = 0, (ρ, τ) is a local minimum of w so that at (ρ, τ), wτ −∆w ≤ 0. This implies that
0 ≤ limi→∞ wp

i gi = wτ − ∆w = 0 at (ρ, τ).
3. We claim that wτ ≡ 0. Suppose not. Then Z[0,∞)(wτ (·, τ)) decreases at least by 1 when τ

passes by 0. Indeed, since Z[0,∞)(wτ (·, 0)) < ∞ by Proposition 2(i), there is δ > 0 such that either
wτ (·, 0) > 0 in (0, δ] or wτ (·, 0) < 0 in (0, δ]. Then there is τ1 > 0 such that either wτ (δ, ·) > 0
in [−τ1, τ1] or wτ (δ, ·) < 0 in [−τ1, τ1]. Hence it follows from the strong maximum principle that
Z[0,δ](wτ (·, τ1)) = 0. But, Z[0,δ](wτ (·,−τ1)) ≥ 1. Consequently, Z[0,∞)(ut(·, t)) decreases at least
by one near t = tj for every sufficiently large j (in the subsequence), which is impossible. Thus,
wτ ≡ 0; namely, w(·, τ) = φ(·) for all τ , where φ is the unique solution to (2.5).

We know that, for φ∗(ρ) = γρ−m, Z[0,∞)(φ−φ∗) = ∞, so that Z[0,ρ∗](φ−φ∗) = N∗ +1 for some
ρ∗ > 0. Also, we know that

1 = lim
r↘0

rmv∗(r)
γ

= lim
r̃↘0

r̃mv∗(r̃ρ)
φ∗(ρ)

uniformly in ρ ∈ (0, ρ∗].

Since all zeros of φ−φ∗ = 0 are non-degenerate and limi→∞ wi(·, 0) = φ in C1([0, ρ∗]), we see that,
setting v∗i (ρ) = Rm

i v∗(Riρ),

lim inf
i→∞

Z[0,ρ∗](wi − v∗i ) ≥ Z[0,ρ∗](φ − φ∗) = N∗ + 1.

Transferring back to the original variables, we see that for all i À 1,

Z[0,ρ∗Ri](u(·, ti) − v∗(·)) ≥ N∗ + 1,

contradicting (iv) of Proposition 2. This contradiction shows that supt>0 ‖u(·, t)‖L∞(B) < ∞. The
assertion of Theorem 1 thus follows.

Proof of Theorem 2. We use a similar idea as above. Suppose u is a solution to (1.1)-(1.2)
that blows up at a finite time T and satisfies u(0, t) = maxB u(·, t) for all t close to T . Note that
ut(0, t) > 0 near t = T . The assertions of Proposition 2 can be modified as follows:
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Both Z[0,R](ut(·, t)) and Z[0,R](u(·, t) − v∗) are non-increasing in t ∈ [0, T ) so that they are
constants for all t ∈ [T1, T ) for some T1 ∈ [0, T ).

By assumption, u(0, t) = maxB u(·, t) for all t ∈ [T1, T ) and limt↗T u(0, t) = ∞. Set

M(t) = u(0, t), δ = lim inf
t↗T

ut(0, t)
up(0, t)

= lim inf
t↗T

Ṁ(t)
Mp(t)

.

We claim that δ > 0. Suppose not. Then along a sequence {ti} that approaches monotonically
to T as i → ∞, there holds limi→∞

Ṁ(ti)
Mp(ti)

= 0. Defining wi and following line by line the arguments
in the previous proof, we obtain a contradiction. This contradiction shows that δ > 0. Consequently
there exists T2 ∈ [T1, T ) such that

Ṁ(t)
Mp(t)

≥ δ

2
∀t ∈ [T2, T ).

Integrating this inequality over (t, T ) gives M(t)(T−t)1/(p−1) ≤ [(p−1)δ/2]1/(1−p) for all t ∈ [T2, T ).
The assertion of Theorem 2 follows.

References

[1] T. Cazenave and P.L. Lions, Solutions globales d’équations de la chaleur semilinéaires,
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[5] M. Fila and P. Poláčik, Global solutions of a semilinear parabolic equation, Adv. Diff.
Equations 4 (1999), 163–196.

[6] A. Friedman, J.B. McLeod, Blow-up of positive solutions of semilinear heat equations,
Indiana Univ. Math. J. 34 (1985), 425–447.

[7] V.A. Galaktionov and J.L. Vázquez, Continuation of blow-up solutions of nonlinear heat
equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997), 1–67.

[8] M.A. Herrero and J.J.L. Velázquez, A blow up result for semilinear heat equations in
the supercritical case, preprint.

[9] D.D Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources,
Arch. Rat. Mech. Anal. 49 (1972), 241–269.



10 X. Chen, M. Fila, and J.-S. Guo

[10] A.A. Lacey and D. Tzanetis, Global existence and convergence to a singular steady state
for a semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 289–305.

[11] H. Matano and F. Merle, On non-existence of type II blow-up for a supercritical nonlinear
heat equation, Comm. Pure Appl. Math. 57 (2004), 1494–1541.

[12] N. Mizoguchi, Boundedness of global solutions for a supercritical semilinear heat equation
and its application, Indiana Univ. Math. J. 54 (2005), 1047–1059.

[13] N. Mizoguchi, Type II blowup for a semilinear heat equation, Adv. Diff. Equations, 9 (2004),
1279–1316.

[14] W.-M. Ni, P.E. Sacks and J. Tavantzis, On the asymptotic behavior of solutions of certain
quasilinear parabolic equations, J. Diff. Equations 54 (1984), 97–120.

[15] I. Peral and J.L. Vazquez, On the stability or instability of the singular solution of the
semilinear heat equation with exponential reaction term, Arch. Rat. Mech. Anal. 129 (1995),
201–224.

[16] W.-M. Ni and P. Sacks, The number of peaks of positive solutions of semilinear parabolic
equations, SIAM J. Math. Anal. 16 (1985), 460–471.

[17] X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc.
337 (1993), 549–590.


