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Abstract. In this paper, we study the solution of an initial boundary value
problem for a quasilinear parabolic equation with a nonlinear boundary con-

dition. We first show that any positive solution blows up in finite time. For a
monotone solution, we have either the single blow-up point on the boundary,
or blow-up on the whole domain, depending on the parameter range. Then, in

the single blow-up point case, the existence of a unique self-similar profile is
proven. Moreover, by constructing a Lyapunov function, we prove the conver-
gence of the solution to the unique self-similar solution as t approaching the
blow-up time.

1. Introduction. In this paper, we study the following initial boundary value
problem (P):

ut = u1+γuxx, 0 < x < 1, t > 0, (1.1)
ux(0, t) = −uq(0, t), ux(1, t) = 0, t > 0, (1.2)
u(x, 0) = u0(x), 0 ≤ x ≤ 1, (1.3)

where γ > 0 and q > 0 are given constants, and u0 is a positive bounded smooth
function defined on [0, 1] such that u′

0(0) = −uq
0(0) and u′

0(1) = 0.
The local existence and uniqueness of positive solution of (P) can be derived

by the standard theory of parabolic equation. We say that a solution u blows up
in finite time T , if lim supt→T−{maxx∈[0,1] u(x, t)} = ∞. The study of blow-up
has attracted much attentions for past years. The typical questions are concerned
about blow-up criteria, blow-up locations, blow-up rates, blow-up profiles, and so
on. We refer the reader to the survey papers of Levine [18] and Deng-Levine [7],
and the book by Samarskii-Galaktionov-Kurdyumov-Mikhailov [19]. Problem (P)
with γ = 0 was studied by Ferreira-de Pablo-Rossi [8] for both the bounded interval
and semi-infinite interval cases. For blow-up on the boundary, we refer the reader
to the survey papers by Chleb́ık-Fila [4] and Fila-Filo [10].
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In [9], Ferreira-de Pablo-Quirós-Rossi studied the following initial boundary value
problem (P̂ ):

ûτ = (ûm−1ûξ)ξ, 0 < ξ < l, τ > 0, (1.4)

(ûm−1ûξ)(0, τ) = ûm(0, τ), (ûm−1ûξ)(l, τ) = 0, τ > 0, (1.5)
û(ξ, 0) = û0(ξ) > 0, 0 ≤ ξ ≤ l, (1.6)

where m < 0 and l > 0 are constants. It is shown that the solution of (1.4)-(1.6)
quenches, i.e., its minimum reaches zero in finite time. The first time when the
minimum of the solution reaches zero is called the quenching time. Note that the
phenomenon of quenching is different from the following dead-core problem (cf.,
e.g., [16] and the references cited therein):

ut = uxx − up, −1 < x < 1, t > 0,

u(±1, t) = k, t > 0,

u(x, 0) = u0(x) > 0, −1 ≤ x ≤ 1,

where 0 < p < 1 and k is a positive constant. For quenching, some derivative of
the solution becomes singular at the quenching time. Indeed, for the problem (1.4)-
(1.6), we have the time derivative blows up at the quenching time. On the other
hand, in the dead-core problem, the solution stays regular whenever its minimum
reaches zero in finite time and the solution can be continued for all time.

It is well-known that quenching problem is related to blow-up problem. Indeed,
by setting

u = ûm, γ = −1/m, ξ = γx, τ = γ2t,

the problem (1.4)-(1.6) becomes (1.1)-(1.3) with q = 1 and spatial domain [0, l/γ].
Therefore, in this paper we shall only consider the case when q 6= 1. Another related
problem to (P) is about the blow-up behavior of the solution of the Cauchy problem
for the equation

ut = uσ(∆u + up), x ∈ Rn, t > 0,

where σ ≥ 1 and p > 1. We refer the reader to [13, 14, 15] and the references cited
therein. On the other hand, the Cauchy problem for the equation (1.1) in higher
spatial dimension has been studied by Bertsch-Ughi [2] and Bertsch-Dal Passo-Ughi
for nonnegative initial data. See also [20] for a more general equation.

In studying the blow-up behavior near the blow-up time, it is crucial to analyze
the so-called (backward) self-similar solutions of (P). Let T < ∞ be the blow-up
time and assume that x = 0 is a blow-up point. For q > 1, we introduce the
following self-similar change of variables:

v(y, s) := (T − t)αu(x, t), y :=
x

(T − t)β
, s := − ln(T − t), (1.7)

where the similarity exponents are given by

α :=
1

γ + 2q − 1
, β := (q − 1)α.

Note that α > 0 and β > 0, if q > 1. It follows that u satisfies (1.1)-(1.3) if and
only if v satisfies

vs = v1+γvyy − βyvy − αv, 0 < y < R(s) := eβs, s > s0 := − lnT, (1.8)
vy(0, s) = −vq(0, s), vy(R(s), s) = 0, s > s0, (1.9)

v(y, s0) = v0(y) := Tαu0(yT β), 0 ≤ y ≤ 1/T β . (1.10)
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Note that s → ∞ and R(s) → ∞ as t ↑ T−. We expect that, as s → ∞, the
solution of (1.8)-(1.10) is stabilized. In this paper, we shall call a global solution of
the following problem as a self-similar profile of (P):

g′′ − βyg−γ−1g′ − αg−γ = 0, 0 < y < ∞, (1.11)
g′(0) = −gq(0). (1.12)

Since we are interested in the behavior of u as t ↑ T−, we shall be concerned with
the positive global solution of (1.11)-(1.12). In particular, we are looking for a
monotone decreasing positive global solution of (1.11)-(1.12).

This paper is organized as follows. In §2, we shall derive a blow-up criterion,
prove the single point blow-up for monotone solutions when q > 1, and study the
case when q ∈ (0, 1). Motivated by a recent work [8], we shall prove in §3 that for
q > 1 the self-similar profile exists and is unique, by using a phase plane analysis
approach. Finally, by using a method of Zelenyak [21] (see also [15]), in §4, we shall
prove the convergence of v, as s → ∞, to the unique self-similar profile for q > 1.

2. Blow-up Criterion and Location. In this section, we first prove that the
solution of the problem (P) always blows up in finite time.

Theorem 2.1. Suppose that q > 0. Then for every positive bounded smooth initial
data u0, there exists a finite time T > 0 such that

lim sup
t→T−

{ max
x∈[0,1]

u(x, t)} = ∞. (2.1)

Proof. By assumption, there is a positive constant δ such that u0 ≥ δ in [0, 1].
Then, by the maximum principle, u(x, t) ≥ δ for the corresponding solution u of
(P).

We introduce the following quantity

N(t) :=
∫ 1

0

u−γ(x, t)dx.

By differentiating N(t) and using (1.1)-(1.2), we get

N ′(t) = −γuq(0, t). (2.2)

Since q > 0, we get

N ′(t) ≤ −η

for some constant η > 0. Thus N(t) should vanish at some finite time. Therefore,
the solution u cannot be bounded for all t > 0. This implies that there exists a
finite T > 0 such that (2.1) holds and the theorem is proved.

In the following, we shall always assume that the solution u of (P) blows up at
time T < ∞. For simplicity, from now on we shall further assume that

u′
0 ≤ 0, u′′

0 ≥ 0 in [0, 1]. (2.3)

Using (2.3), it is easily seen by the strong maximum principle that ux < 0, uxx > 0
and ut > 0.

We say that a point x = a is a blow-up point, if there is a sequence {(xn, tn)}
such that xn → a, tn → T−, and u(xn, tn) → ∞ as n → ∞. Note that x = 0 is
always a blow-up point.



4 JONG-SHENQ GUO

Theorem 2.2. Suppose that q > 1. Under the assumption (2.3), x = 0 is the only
blow-up point.

Proof. Suppose, for contradiction, that there exists another blow-up point a ∈ (0, 1].
Then any point b ∈ [0, a] is also a blow-up point, since ux < 0 and ut > 0.

Now we fix any number b ∈ (0, a). Following [11], we consider the function

J(x, t) := ux(x, t) + εh(x)uq(x, t), h(x) := (x − b)2, ε > 0.

Then it is easy to compute that

Jt − u1+γJxx − (1 + γ)uγuxJx

= −ε(γ + q)qhuγ+q−1u2
x − ε(1 + γ + 2q)h′uγ+qux − εh′′uγ+q+1

≤ 0 in (0, b) × (0, T ),

by using the properties of h and the fact that ux < 0. Clearly, J(b, t) < 0 for all
t ∈ (0, T ). Moreover, J(0, t) = −uq(0, t)(1 − εb2) ≤ 0 for all t ∈ (0, T ), if ε < 1/b2.
By choosing ε small enough and using ux(x, T/2) < 0 in [0, b], we have J(x, T/2) ≤ 0
for all x ∈ [0, b]. Therefore, it follows from the maximum principle that J ≤ 0 in
[0, b] × [T/2, T ), i.e.,

−u−q(x, t)ux(x, t) ≥ ε(x − b)2, x ∈ [0, b], t ∈ [T/2, T ). (2.4)

Integrating (2.4) from 0 to b, we obtain that

[u1−q(b, t) − u1−q(0, t)]/(q − 1) ≥ ε

∫ b

0

(x − b)2dx = εb3/3 ∀ t ∈ (T/2, T ).

Letting t ↑ T−, we reach a contradiction. Thus the theorem follows.

For 0 < q < 1, since uxx > 0, we have ux(x, t) ≥ ux(0, t) = −uq(0, t) and so

u(x, t) ≥ u(0, t) − xuq(0, t) = u(0, t)[1 − xuq−1(0, t)] (2.5)

for all x ∈ (0, 1]. Since u(0, t) → ∞ as t → T− and 0 < q < 1, we conclude that
u(x, t) → ∞ as t → T− for any x ∈ [0, 1]. This means that we have the blow-up in
the whole domain.

Moreover, we can estimate the blow-up rate for the case q ∈ (0, 1) as follows.

Theorem 2.3. Suppose that 0 < q < 1. Then, under the assumption (2.3), there
are positive constants c1 and c2 such that

c1(T − t)−1/(q+γ) ≤ u(0, t) ≤ c2(T − t)−1/(q+γ). (2.6)

for all t ∈ [0, T ).

Proof. First, we choose t0 ∈ (0, T ) such that uq−1(0, t0) ≤ 1/2. Then, using ux < 0
and (2.5), we have

u(0, t)/2 ≤ u(x, t) ≤ u(0, t) ∀ x ∈ [0, 1], t ∈ [t0, T ).

Hence we obtain

u−γ(0, t) ≤ N(t) ≤ 2γu−γ(0, t) ∀ t ∈ [t0, T ),

i.e.,
N−1/γ(t) ≤ u(0, t) ≤ 2N−1/γ(t) ∀ t ∈ [t0, T ). (2.7)

It follows from (2.2) that

−2qγN−q/γ(t) ≤ N ′(t) ≤ −γN−q/γ(t) ∀ t ∈ [t0, T ). (2.8)
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Then the estimate (2.6) follows by an integration of (2.8) from t to T and using
(2.7).

3. Self-similar Profile for q > 1. In this section, we shall study the solution of
the initial value problem (1.11)-(1.12):

g′′ − βyg−γ−1g′ − αg−γ = 0, y > 0, (3.1)
g′(0) = −gq(0). (3.2)

From the local existence and uniqueness theorem of ordinary differential equations,
it follows that there is a unique positive local solution g of (3.1)-(3.2) for each given
initial value g(0) > 0. For convenience, let [0, R) be the maximum existence interval
of g. Note that g > 0 in [0, R) and 0 < R ≤ ∞.

Since g′′ = αg−γ > 0 when g′ = 0, we see that any critical point of g must be a
local minimum point. Hence there is at most one critical point of g. Moreover, if g
has a critical point y0 > 0, then g′(y) > 0 for any y ∈ (y0, R) and g′′(y) > 0 for any
y ∈ [y0, R).

For a given solution g, define

ρ(y) = exp
{
−β

∫ y

0

sg−γ−1(s)ds

}
.

From (3.1) it follows that

(ρg′)′(y) = αρ(y)g−γ(y)

and so

g′(y) =
g′(0) + α

∫ y

0
g−γ(s)ρ(s)ds

ρ(y)
. (3.3)

Later on in §4, we shall need the following property.

Lemma 3.1. If there exists R < ∞ such that g(R−) = 0, then g′(y) → −∞ as
y → R−.

Proof. Note that g must be monotone decreasing to zero, under the assumption of
the lemma. Integrating (3.1) from 0 to y, we get

g′(y) = g′(0) − (β/γ)
∫ y

0

z(g−γ)′(z)dz + α

∫ y

0

g−γ(z)dz.

Using integration by parts, we have

g′(y) = g′(0) − (β/γ)yg−γ(y) + (α + β/γ)
∫ y

0

g−γ(z)dz. (3.4)

Taking K = [1 + α/(α + β/γ)]R/2, from (3.4) it follows that

g′(y) = g′(0) − (β/γ)yg−γ(y) + (α + β/γ)

[∫ K

0

g−γ(z)dz +
∫ y

K

g−γ(z)dz

]
≤ g′(0) − (β/γ)yg−γ(y)

+(α + β/γ)
∫ K

0

g−γ(z)dz + (α + β/γ)g−γ(y)(y − K)

= g′(0) + (α + β/γ)
∫ K

0

g−γ(z)dz + [αy − (α + β/γ)K]g−γ(y)

→ −∞ as y → R−.
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The lemma follows.
We shall need the asymptotic behavior as y → ∞ of any monotone decreasing

positive global solution of (3.1)-(3.2) as follows.

Lemma 3.2. For any monotone decreasing positive global solution g of (3.1)-(3.2),
we have g(y) → 0, g′(y) → 0 and [yg′(y)/g(y)] → −α/β as y → ∞.

Proof. By assumption, we see that g(y) → L as y → ∞ for some L ∈ [0,∞). We
claim that L = 0. If L ∈ (0,∞), then there exists {yn} → ∞ such that g′(yn) → 0
as n → ∞. Dividing (3.1) by y and integrating the resulting equation from 1 to yn,
we obtain ∫ yn

1

g′′(s)
s

ds +
β

γ

∫ yn

1

(g−γ)′(s)ds = α

∫ yn

1

g−γ(s)
s

ds. (3.5)

We compute that ∫ yn

1

g′′(s)
s

ds =
g′(yn)

yn
− g′(1) +

∫ yn

1

g′(s)
s2

ds,

0 >

∫ yn

1

g′(s)
s2

ds ≥
∫ yn

1

g′(s)ds = g(yn) − g(1),∫ yn

1

(g−γ)′(s)ds = g−γ(yn) − g−γ(1).

Hence the left-hand side of (3.5) is uniformly bounded for all n. But, for K large
enough, we have∫ yn

1

g−γ(s)
s

ds ≥
∫ yn

K

(2L)−γ

s
ds → ∞ as n → ∞,

a contradiction. Hence L = 0.
Next, we claim that g′(y) → 0 as y → ∞. For this, we set

I := α

∫ ∞

0

g−γ(s)ρ(s)ds.

We claim that g′(0)+I = 0. Since g′ < 0, by (3.3), g′(0)+ I ≤ 0. Since g(y) → 0 as
y → ∞, there exists a sequence {yn} such that yn → ∞ and g′(yn) → 0 as n → ∞.
Since ρ(y) → 0 as y → ∞, by (3.3), we must have g(0)+I = 0. Now, by L’Hôpital’s
Rule, we compute from (3.3) that

lim
y→∞

g′(y) = lim
y→∞

g′(0) + α
∫ y

0
g−γ(s)ρ(s)ds

ρ(y)

= − lim
y→∞

αg(y)
βy

= 0.

Finally, by applying L’Hôpital’s Rule to (3.3) again, we obtain that

lim
y→∞

yg′(y)
g(y)

= lim
y→∞

g′(0) + α
∫ y

0
g−γ(s)ρ(s)ds

y−1ρ(y)g(y)

= lim
y→∞

α

−y−2gγ+1(y) + y−1gγ(y)g′(y) − β

= −α

β
.

This completes the proof.
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Following [1, 17, 8], we introduce the following variables:

U :=
yg′(y)
g(y)

, V := y2g−γ−1(y), z := ln y (3.6)

for any solution g of (3.1). Then it is easily to check that (U, V ) satisfies the first
order autonomous system (Q):

dU

dz
= U(1 − U) + V (α + βU), (3.7)

dV

dz
= V [2 − (1 + γ)U ]. (3.8)

Note that there are two finite critical points A := (0, 0) and B := (1, 0) for the
system (Q). Since the linearization of (Q) around A gives the matrix[

1 α
0 2

]
,

which has eigenvalues {1, 2} and corresponding eigenvectors {(1, 0), (α, 1)}, we see
that A is an unstable improper node. In particular, it follows from an easy phase
plane analysis that every orbit near A in the second quadrant of (U, V )-plane leaves
A horizontally (see, e.g., [6]). Notice that orbits corresponding to monotone de-
creasing positive solutions of (3.1)-(3.2) lie in the second quadrant.

From Lemma 3.2 we see that a monotone decreasing positive global solution
g of (3.1)-(3.2) corresponding to an orbit connecting from A to the point D :=
(−α/β,∞) in (U, V )-plane. To learn the behavior near D, we choose the follow-
ing new dependent variable (U,W ), W := 1/V , and independent variable τ :=∫ z

0
V (s)ds. Then the system (Q) becomes the system (R):

dU

dτ
= WU(1 − U) + (α + βU), (3.9)

dW

dτ
= −W 2[2 − (1 + γ)U ]. (3.10)

Note that the critical point D of (Q) becomes the critical point E := (−α/β, 0) of
(R) in the (U,W )-plane. It is easy to see that the linearization of (R) around E
gives the matrix [

β −(1 + α/β)(α/β)
0 0

]
,

which has eigenvalues λ1 = β > 0, λ2 = 0, and corresponding eigenvectors v1 =
(1, 0),v2 = ((1+α/β)(α/β), β). Hence the horizontal line is tangent to the unstable
manifold of E. Since the center manifold is tangent to the eigenspace spanned by
v2 and dW/dτ < 0 for (U,W ) ∈ S, where

S := {(U,W ) | W > 0, −α/β < U < 0},

by a standard technique (see, e.g., [5]), there exists a unique orbit of the system
(R) tending to E as τ → ∞. This shows that there exists a unique orbit, call it as
Γ∗, of the system (Q) tending to the critical point D as z → ∞. Note that Γ∗ lies
in the strip S for all large z. Since dU/dz < 0 on {V > 0, U = −α/β}, dU/dz > 0
on {V > 0, U = 0}, and dV/dz > 0 in the second quadrant, the orbit Γ∗ must tend
to A as z → −∞.

We thus have proved the following existence theorem.
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Theorem 3.3. There exists a monotone decreasing positive global solution of (3.1)-
(3.2).

We continue to prove the uniqueness of such solution. Note first that any orbit
tending to A has the behavior V = bU2 + O(U3) as U → 0− for some positive
constant b (which depending on each orbit). Let b∗ be the constant corresponding
to the orbit Γ∗. Therefore, by the phase plane analysis, for each b > b∗ the corre-
sponding orbit shall reach the positive V -axis in finite time and continue to stay in
the first quadrant. These orbits are those solutions of (3.1)-(3.2) with exactly one
critical point.

On the other hand, for each b ∈ (0, b∗) the corresponding orbit shall reach the
half-line L := {V > 0, U = −α/β} in finite time. We claim that these orbits are
those solutions of (3.1)-(3.2) which tend to zero in finite time. Let V = V (U) be
an orbit from A such that (U, V )(z0) = (−α/β, c) for some c > 0. Note that V > c
and U < −α/β for z > z0. Hence

dU

dz
≤ −U2 for z > z0. (3.11)

It follows from (3.11) that U(z) → −∞ as z → z−1 for some finite z1 > z0. Set
y1 := ez1 . Suppose for contradiction that g(y) > 0 for all y ∈ [0, y1]. Then g′(y1)
is finite by (3.3). This implies that U(z−1 ) is finite, a contradiction. Hence we have
proved that g(y) → 0+ as y → y−

1 .
Therefore, we are ready to prove the following uniqueness theorem.

Theorem 3.4. There exists a unique monotone decreasing positive global solution
of (3.1)-(3.2).

Proof. Since we have a unique orbit in (U, V )-plane connecting the critical points
A and D, it remains to show the one-to-one correspondence of orbits with the
positive solutions of (3.1)-(3.2). This is equivalent to show that different values of
g(0) give different orbits in S leaving from A. Given a positive constant b (which
corresponding to an orbit in S leaving from A). Since

b = lim
z→−∞

V (z)
U2(z)

= lim
y→0

g−γ+1(y)
(g′)2(y)

= g1−γ−q(0),

by using (3.2), we obtain the one-to-one correspondence between b and g(0). Hence
the theorem follows.

In the following, we shall denote g∗ to be the unique monotone decreasing positive
global solution of (3.1)-(3.2) and let µ∗ := g∗(0).

4. Asymptotic Behavior Near Blow-up Time for q > 1. In this section, we
shall study the asymptotic behavior of the solution u of (P) near the blow-up time
T . This is equivalent to study the stabilization, as s → ∞, of the solution v of
(1.8)-(1.10). More precisely, we shall prove the following main theorem of this
section.

Theorem 4.1. Let v be the solution of (1.8)-(1.10) and g∗ be the unique self-
similar profile obtained in Theorem 3.4. Then, under the assumption (2.3), as
s → ∞, v(y, s) → g∗(y) uniformly for any compact subset of [0,∞).

To prove this theorem, we shall divide our discussions into a few subsections as
follows.
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4.1. Some a priori bounds. In this subsection, we shall derive some a priori
bounds for v. First, we derive the following blow-up rate estimate.

Lemma 4.2. Under the assumption (2.3), there are positive constants a, κ such
that

a(T − t)−α ≤ u(0, t) ≤ κ(T − t)−α (4.1)

for all t ∈ (0, T ).

Proof. The proof of this lemma is based on the so-called intersection comparison
principle (cf. [19, 8]). We first recall from §3 that there exists a positive constant
µ∗ such that the solution g of (3.1)-(3.2) with g(0) ∈ (µ∗,∞) satisfying g′ < 0 in
[0, R) and g(y) → 0 as y → R− for some finite R depending on g(0). Moreover, if
g(0) ∈ (0, µ∗), then there exists a unique y0 > 0 such that g′ < 0 in [0, y0), g′ > 0
in (y0,∞), and g(y) → ∞ as y → ∞.

For the lower bound, we compare u with the function

U1(x, t) := (T − t)−αg1(x/(T − t)β),

where g1 is the solution of (3.1)-(3.2) with a very small g1(0) such that u0(0) >
U1(0, 0) and u0 has at most one intersection with U1(x, 0) in [0, 1]. This is possible,
since u0 is positive and monotone decreasing. We claim that u(0, t) > U1(0, t) for
all t ∈ (0, T ). Suppose, for contradiction, that u(0, t) > U1(0, t) for t ∈ (0, t0)
and u(0, t0) = U1(0, t0) for some t0 ∈ (0, T ). Since the number of intersections is
non-increasing, we must have u(x, t0) < U1(x, t0) for all x ∈ (0, 1]. Then we have
u < U1 in the set

{(x, t) | x(t) < x < 1, 0 < t ≤ t0},
where x(t) is the intersection point for each t. But, this leads to a contradiction with
the Hopf Lemma. We thus have derived the lower bound that u(0, t) > g1(0)(T −
t)−α for all t ∈ (0, T ).

For the upper bound, we compare u with the function

U2(x, t) := (T − t)−αg2(x/(T − t)β),

where g2 is the solution of (3.1)-(3.2) with g2(0) very large so that g2 is decreasing
to zero at some finite R and u0 has at most one intersection with U2(x, 0). Note
that this is possible, since, by Lemma 3.1, g′2(y) → −∞ as y → R−. Note also that
U2 is defined only in the set {(x, t) | 0 ≤ x < R(T − t)β , 0 ≤ t < T}. Similar
argument as above gives that u(0, t) < g2(0)(T − t)−α for all t ∈ (0, T ). The lemma
follows.

As a consequence of (4.1), we obtain the following estimate

0 < a ≤ v(0, s) ≤ κ < ∞ for all s > s0. (4.2)

Since uxx > 0, we have vyy > 0. Hence, using (1.9) and (4.2), we obtain

vy(y, s) ≥ vy(0, s) = −vq(0, s) ≥ −κq. (4.3)

Also, ux < 0 implies that vy < 0 and so v ≤ κ. Using (4.2) and (4.3), it is easy to
see that there is a positive constant δ ∈ (0, 1) such that

v(y, s) ≥ a/2 for 0 ≤ y ≤ δ, s > s0. (4.4)

Moreover, we claim that

v(y, s) ≥ a

2

(y

δ

)−α/β

for δ < y ≤ eβ(s−s+
0 ), s > s0, s+

0 := max(s0, 0). (4.5)
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Indeed, given (y, s) with y ∈ (δ, eβ(s−s+
0 )), s > s0, we can find an l ∈ (s+

0 , s) such
that y = δeβ(s−l). Since vyy > 0, it follows from (1.8) that vs + βyvy + αv > 0.
Then

d

dτ
v(z, τ) = vs(z, τ) + βzvy(z, τ) ≥ −αv(z, τ), z := yeβ(τ−s).

Hence (4.5) follows by an integration of the above inequality from τ = l to τ = s.
From (4.4) and (4.5), we can derive that polynomial growth estimates in y for vs

and vyy, by applying the interior parabolic estimates to (1.8). More precisely, we
have the following.

Lemma 4.3. Under the assumption (2.3), there is a positive constant C such that

|vs(y, s)| ≤ C(1 + y2+γ/(q−1)) ∀ y ∈ [0, eβs/2], s ≥ s0. (4.6)

Proof. First, we derive the following estimate

v(y, s) ≤ C(1 + y)−α/β , y ∈ [0, eβs/2], s > s0, (4.7)

for some positive constant C. Note that α/β = 1/(q− 1). We consider the function

J(x, t) := ux(x, t) + cuq(x, t), c > 0.

Then we have

Jt − u1+γJxx − (1 + γ)uγuxJx = −q(q + γ)cuq+γ−1u2
x.

Also, J(0, t) = (−1 + c)uq(0, t) < 0 if c < 1. Since x = 0 is the only blow-up point
and ux < 0 for x < 1 and 0 < t < T , we have J(1/2, t) < 0 for t ∈ [T/2, T ) and
J(x, T/2) < 0 for x ∈ [0, 1/2], if c ¿ 1. It follows from the maximum principle that
J < 0 in [0, 1/2] × [T/2, T ). Therefore, we obtain that

vy(y, s) ≤ −cvq(y, s), y ∈ [0, eβs/2], s À 1. (4.8)

By integrating (4.8), the estimate (4.7) follows.
To estimate vs for a given (ȳ, s̄) with ȳ À 1, as in [15], we make the following

change of variables:

V (y, s) := Kv(µy + ȳ, µ2K1+γs + s̄), |y| ≤ 1, −1 < s ≤ 0,

K := kα/β = k1/(q−1), µ := k−1−(1+γ)/(q−1),

where k ≥ 1 is chosen so that 2k ≤ ȳ ≤ 4k. Then V satisfies the equation

Vs = V 1+γVyy − µK1+γ(µy + ȳ)βVy − µ2K1+γαV.

Note that, by the choices of K and µ, we have

0 < µK1+γ(µy + ȳ) ≤ 4µK1+γk ≤ 4 for |y| ≤ 1,

0 < µ2K1+γ ≤ 1.

Also, by using (4.7) and (4.5), we have

0 < c0 ≤ V ≤ C0 < ∞, |y| ≤ 1, −1 < s ≤ 0,

for some constants c0 and C0 which are independent of (ȳ, s̄). By applying the
interior Schauder estimate, we see that Vs(0, 0) is bounded by a constant which is
independent of (ȳ, s̄). This gives the estimate (4.6) and the lemma is proved.

From (1.8) and combining all the above estimates, the polynomial growth esti-
mate in y for vyy can also be derived.
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4.2. Backward problem. To derive the convergence result, we need to construct a
Lyapunov function. In constructing a suitable Lyapunov function, we first study the
following backward initial value problem for a given (y, v, ξ) with y > 0, v > 0, ξ ∈ R:

g′′ − βzg−γ−1g′ − αg−γ = 0, z < y, (4.9)
g(y) = v, g′(y) = ξ. (4.10)

The local existence and uniqueness of the solution of (4.9)-(4.10) near y is trivial.
We call this local backward solution as g(z; y, v, ξ) or simply g(z). As before, we
define

ρ(z) := exp
{

β

∫ y

z

sg−γ−1(s; y, v, ξ)ds

}
.

Then ρ > 1, ρ′ < 0, and

g′(z) =
1

ρ(z)

{
ξ − α

∫ y

z

ρ(s)g−γ(s)ds

}
. (4.11)

We first prove that this backward solution always stays bounded in [0, y]. Oth-
erwise, if g(z) → ∞ as z → z+

0 for some z0 ∈ [0, y], then g′(z) → −∞ as z → z+
0 .

On the other hand, since g ≥ δ in (z0, y] for some constant δ > 0, ρ is uniformly
bounded in [z0, y]. It then follows from (4.11) that g′(z+

0 ) is finite, a contradiction.
Hence g remains bounded.

In particular, if ξ ≤ 0, then, by (4.11), g′ < 0 in [0, y) and so g(z; y, v, ξ) ≥ v
for all z ∈ [0, y]. We conclude that any local solution g(z; y, v, ξ) can be continued
backward beyond z = 0 as a positive solution of (4.9)-(4.10) defined in [0, y] for any
given (y, v, ξ) with y > 0, v > 0, ξ ≤ 0.

We claim that

g(z; y, v, ξ) ≤ v + αy2v−γ − ξy for z ∈ [0, y], (4.12)

if ξ ≤ 0. Indeed, from (4.11) it follows that

g′(z) = ξ/ρ(z) − α

∫ y

z

[ρ(s)/ρ(z)]g−γ(s)ds

≥ ξ − α

∫ y

z

g−γ(s)ds

≥ ξ − αyv−γ

for z ∈ [0, y], by using ξ ≤ 0, ρ > 1, and ρ′ < 0. Then for ξ ≤ 0 we have

g(z) = v −
∫ y

z

g′(s)ds ≤ v − y(ξ − αyv−γ) for z ∈ [0, y].

The estimate (4.12) follows.

4.3. Lyapunov function. In this subsection, we shall construct a Lyapunov func-
tion by using a method of Zelenyak [21].

First, we define

E[v](s) :=
∫ s

0

Φ(y, v(y, s), vy(y, s))dy − vq+1(0, s)
q + 1

, (4.13)

where Φ = Φ(y, v, ξ) is to be determined later. Then, using (1.8) and an integration
by parts, we compute that

d

ds
E[v](s) = J0(s) + J1(s) + J2(s), (4.14)
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where

J0(s) = −
∫ s

0

Φξξ(y, v(y, s), vy(y, s))v−γ−1(y, s)v2
s(y, s)dy,

J1(s) = Φξ(s, v(s, s), vy(s, s))vs(s, s) − Φξ(0, v(0, s), vy(0, s))vs(0, s)
+ Φ(s, v(s, s), vy(s, s)) − vq(0, s)vs(0, s),

J2(s) =
∫ s

0

{
Φv − Φξy − Φξvvy − Φξξ

[
βyv−γ−1vy + αv−γ

]}
vs(y, s)dy

:=
∫ s

0

K(y, v(y, s), vy(y, s))vs(y, s)dy.

Next, we introduce

Φ(y, v, ξ) :=
∫ ξ

0

(ξ − σ)P (y, v, σ)dσ +
∫ v

κ

αµ−γP (y, µ, 0)dµ,

P (y, v, σ) := exp
{
−β

∫ y

0

zg−γ−1(z; y, v, σ)dz

}
with the constant κ defined in (4.2) and g(z; y, v, σ) defined in §4.2. Then

Φξ(y, v, ξ) =
∫ ξ

0

P (y, v, σ)dσ, Φξξ(y, v, ξ) = P (y, v, ξ).

Moreover, we compute that

K(y, v, ξ) =
∫ ξ

0

{
− σPv(y, v, σ) − Py(y, v, σ)

+
∂

∂σ
[P (y, v, σ)(−βyv−γ−1σ − αv−γ)]

}
dσ

=
∫ ξ

0

{
− βP (y, v, σ)

[ ∫ y

0

(−γ − 1)zg−γ−2(z; y, v, σ) ·(
− σgv(z; y, v, σ) − gy(z; y, v, σ)

+(−βyv−γ−1σ − αv−γ)gσ(z; y, v, σ)
)

dz

]}
dσ.

Now, using (4.9)-(4.10), we can derive (cf., e.g., [15]) that

gy(z; y, v, σ) = −σgv(z; y, v, σ) + (−βyv−γ−1σ − αv−γ)gσ(z; y, v, σ). (4.15)

It follows from (4.15) that K(y, v, ξ) ≡ 0 and hence J2 = 0.
Using (4.12), we find that

P (y, v, σ) ≤ exp
[
− (β/2)y2(v + αy2v−γ − σy)−γ−1

]
(4.16)
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for y ∈ [0,∞), v > 0, σ ≤ 0. Since P (0, v, σ) ≡ 1, we have Φξ(0, v, ξ) = ξ. Also, it
follows from (4.16) that for ξ ≤ 0 and v ∈ (0, κ]

|Φξ(y, v, ξ)| =
∣∣∣ ∫ ξ

0

P (y, v, σ)dσ
∣∣∣ ≤ |ξ| exp

[
− (β/2)y2(v + αy2v−γ − ξy)−γ−1

]
,

|Φ(y, v, ξ)| ≤ ξ2

2
exp

[
− (β/2)y2(v + αy2v−γ − ξy)−γ−1

]
+αv−γκ exp

[
− (β/2)y2(κ + αy2v−γ)−γ−1

]
.

Note that from (1.9) it follows that

J1(s) = Φξ(s, v(s, s), vy(s, s))vs(s, s) + Φ(s, v(s, s), vy(s, s)).

Since −κq < vy < 0, 0 < v < κ, and vs is bounded by polynomial in y, we have

|J1(s)| ≤ C exp(−λs2)

for some small λ > 0. Combining all the above estimates, we obtain∫ ∞

s0

∫ s

0

P (y, v(y, s), vy(y, s))v−γ−1v2
sdyds < ∞.

Taking any sequence {sn} with sn → ∞ as n → ∞, by the standard arguments
(e.g., [12]), we conclude that a subsequence of the sequence {vn(y, s) := v(y, s+sn)}
converges to the unique monotone decreasing positive global solution g∗(y) of (3.1)-
(3.2) as n → ∞. Since this limit is independent of the choice of {sn}, we conclude
that v(y, s) → g∗(y) as s → ∞ uniformly for any compact subset of [0,∞). This
completes the proof of Theorem 4.1.
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