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Abstract

In this paper, we study the quenching rate of the solution for a nonlocal parabolic
problem which arises in the study of the micro-electro mechanical system. This
question is equivalent to the stabilization of the solution to the transformed
problem in self-similar variables. First, some a priori estimates are provided. In
order to construct a Lyapunov function, due to the lack of time monotonicity
property, we then derive some very useful and challenging estimates by a delicate
analysis. Finally, with this Lyapunov function, we prove that the quenching
rate is self-similar which is the same as the problem without the nonlocal term,
except the constant limit depends on the solution itself.

Keywords: quenching, micro-electro mechanical system (MEMS), Lyapunov
function, non-local, self-similar, asymptotic.

1. Introduction

In this paper, we consider the following initial boundary problem

ut = uxx − g(t;u, λ)u−2, −1 < x < 1, t > 0, (1.1)

u(±1, t) = 1, t > 0, (1.2)

u(x, 0) = u0(x), x ∈ [−1, 1], (1.3)

where

g(t;u, λ) := λ
(

1 +

∫ 1

−1

u−1(ξ, t)dξ
)−2

. (1.4)
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Throughout this paper, we always assume that

u0 is smooth, u0(±1) = 1, 0 < u0(x) 6 1, u0(x) = u0(−x),
u′0(x) > 0, u′′0(x) > 0 for 0 6 x 6 1.

(1.5)

Also, we shall simply denote g(t;u, λ) by g(t) when there is no confusion.
The problem (1.1)-(1.3) arises in the study of the micro-electro mechanical

system. We refer to [27, 28] for the physical background of this model. In fact,
equation (1.1) is a special case of the following general model

εutt + ut = ∆u− λf(x)

u2

(
1 + α

∫
Ω

u−1(ξ, t)dξ

)2 , x ∈ Ω, t > 0, (1.6)

where u represents the distance of the membrane and the ground electrode
plate, ε is the ratio of the interaction due to the inertial and damping terms,
λ is the applied voltage, α > 0 is related to the capacitor and f(x) is the
varying dielectric properties of the membrane. The model (1.6) has been studied
extensively, see, e.g., [20, 7, 8, 9, 17, 21, 22, 23, 25, 19] for the case ε = 0 (without
inertia) and [24, 18] for the case ε > 0. We also refer the reader to a recent
survey paper [16] for more details and some open problems.

It is known [17] that

Theorem 1. Let (1.5) hold. Then
(a), the system (1.1)–(1.3) admits a unique classical solution in the maximal

existence interval [0, T ), i.e., for any small δ > 0, the solution is in the class
u ∈ C2+α,(2+α)/2([−1, 1]× [0, T −δ]), min|x|61,06t6T−δ u(x, t) > 0; furthermore,
either T =∞, or 0 < T <∞.

(b), for λ suitably large, the maximal existence interval [0, T ) is finite, i.e.,
solution u(x, t) of (1.1)-(1.3) quenches in finite time t = T , and u(0, t) =
min|x|61 u(x, t)→ 0 as t→ T−. Moreover, x = 0 is the only quenching point.

Remark 1.1. It is also clear that

g(t;u, λ)u−2 ∈ C2+α,(2+α)/2([−1, 1]× [0, T − δ]) for any small δ > 0. (1.7)

In our proofs, we actually derived the Hölder continuity of the solution up to
the time T (see Lemma 2.3):

u ∈ C1/2,1/4([−1, 1]× [0, T ]).

In engineering application, quenching means the touchdown of membrane to
the ground plate. Due to the wide range of applications, there are other studies
on problems involving a nonlinear singular term with a negative power and the
p-Laplace operator. For this, we refer the reader to some recent works [1, 4, 2, 3]
and the references cited therein.

The main purpose of this paper is to study the temporal quenching rate of
the nonlocal problem (1.1)-(1.3). In fact, the study of temporal singular rates
has been one of the important issues in the formation of singularities (such as
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blow-up, quenching, extinction and dead-core). This can be traced back to the
seminal works of Giga and Kohn ([10, 11]) for the study of blow-up rate. Since
then, the study of temporal singular rates has attracted a lot of attentions. The
temporal singular rates can be either self-similar or non-self-similar. We refer
the reader to the references for various temporal singular rates cited in [15].

In particular, for the study of quenching rate for the following equation

ut = uxx − λu−p, p > 0, (1.8)

we refer the reader to [12, 5, 13, 26]. It is shown that the quenching rate is self-
similar. In other words, the quenching rate for (1.8) is the same as that of the
rate for the corresponding spatially independent ordinary differential equation.
The quenching profile for (1.8) was studied in [6]. However, little is done for
the quenching rate of nonlocal problems. In [14], the quenching rate for the
nonlocal equation

ut = uxx − λ
{

1−
∫ 1

0

u(ξ, t)dξ

}
u−p, 0 < x < 1, t > 0,

was studied for any p > 0. It is proved that the quenching rate is self-similar
which is the same as that of (1.8).

Throughout this paper, we always assume that λ � 1 such that quenching
occurs.

To study the quenching rate, we introduce the following self-similar variables

y := x/
√
T − t, s := − ln(T − t), z(y, s) := (T − t)−1/3u(x, t). (1.9)

Then system (1.1)-(1.3) is equivalent to

zs − zyy +
1

2
yzy −

1

3
z + h(s)z−2 = 0, |y| < R(s), s > s0, (1.10)

z(±R(s), s) = es/3, s > s0, (1.11)

z(y, s0) = T−1/3u0(T 1/2y) , z0(y), |y| 6 R(s0), (1.12)

where
h(s) := g(T − e−s), R(s) := es/2, s0 := − lnT. (1.13)

Then the determination of quenching rate is equivalent to the study of the
asymptotic behavior of z(y, s) as s→∞.

A standard method for the study of long time behavior is to construct a
suitable Lyapunov function with the help of some a priori estimates. For our
equation (1.10)–(1.12), we shall construct this Lyapunov function based on the
equation (3.5)–(3.6), which is a semilinear equation of divergence form. It is not
hard to find a suitable Lyapunov function for a semilinear parabolic equation.
However, the verification of this constructed Lyapunov function relies on certain
useful estimates. In particular, the Lyapunov function relies upon the upper and
positive lower bounds of the solutions in self-similar variables. In many earlier
results such as [12, 5, 13, 14], it is proved that the solution is monotone in time
for certain class of initial data. This important property implies the desired
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upper and positive lower bounds for a Lyapunov function. Unfortunately, in
our problem (1.1)-(1.3), this time monotonic property is not available, even if
we assume that the solution satisfies the monotonicity property initially.

The lack of time monotonic property is a grand challenge for establishing
a positive lower bound for the solution in similarity variables, and in this paper
we shall derive all the necessary estimates to overcome the difficulties.

In section 3, with a careful construction of various auxiliary functions, we
show that the solution in its similarity variables, denoted by z(y, s), will be
bounded from below by a positive constant, provided an estimate on F ,∫∞
s0

∫ R(s)

−R(s)
e−y

2/4z2
s(y, s)dyds is available. Note that the lower bound estimate

is crucial because our equation contains terms involving negative powers such
as z−1 and z−2.

The quantity F appears naturally in the Lyapunov function. In order to
obtain estimates on F , we are required to take on the challenge to construct an
Lyapunov function without apriorily obtaining estimates on the lower bound of
the solution in similarity variables.

We shall achieve this goal in section 4. A key step is to show that
h(s) ddsK1(s) is integrable over (s0,∞), where the function h(s) = g(T − e−s) is
decomposed as

h(s) = λ
(

1 + e−s/6K1(s) + e−s/6K2(s)
)−2

,

K1(s) :=

∫ R(s)

−R(s)

e−y
2/4z−1(y, s)dy, K2(s) :=

∫ R(s)

−R(s)

[1− e−y
2/4]z−1(y, s)dy.

After differentiation in s, K1 involves a possible singularity at y = 0 (for lacking
a positive lower bound), but K2 contains a factor y2 which will cancel possible
singularities at y = 0. Directly doing integration by parts will not completely
move the d/ds derivatives from K1 to K2. We overcome this difficulty by going
to a infinite series, so that we can move completely the d/ds derivatives from
K1 to K2. Of course, doing so produces other extra terms that need to be
estimated, and we are fortunate enough to be able to derive all the estimates
necessary for the extra terms.

Since the limit h(∞) exists (see Lemma 2.1 in §2), the natural candidate for
the limit of z(y, s) as s→∞ is the solution to the problem

wyy −
1

2
ywy +

1

3
w − h(∞)w−2 = 0, y ∈ R, (1.14)

wy(0) = 0 6 wy(y), y > 0, and w grows at most polynomially at ∞. (1.15)

Our problem corresponds to the case p = 2 in (1.8). Since p = 2 > 1, there is no
slow orbit (see [5]). The only solution to (1.14)–(1.15) with a polynomial bound
at ∞ is the constant solution w ≡ w∞ := [3h(∞)]1/3. Note that the constant
depends on the solution itself. We now state our main theorem of this paper as
follows.

Theorem 2. As s→∞, the solution z(y, s) converges uniformly on any com-
pact set to the constant w∞.
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In terms of (1.1)–(1.3), we have the following theorem.

Theorem 3. Let (1.5) hold. Suppose that u is the solution of (1.1)–(1.3) with
T being the quenching time. Then

lim
t→T−

∫ 1

−1

u−1(ξ, t)dξ := K (1.16)

exists and is finite. Furthermore, for any C > 1,

(T − t)−1/3u(x, t)→ w∞ uniformly for |x| 6 C
√
T − t, (1.17)

where

w∞ =
(

3λ(1 +K)−2
)1/3

.

The rest of this paper is organized as follows. In §2, we provide some a priori
estimates for problem (1.1)-(1.3). Then we derive some a priori estimates for
the transformed problem (1.10)-(1.12) in §3. In particular, we derive the upper
bounds of z(y, s); the lower bounds, however, is derived only for the solution
away from y = 0. Finally, in §4, we first derive some very useful and challenging
estimates to construct a Lyapunov function for problem (1.10)-(1.12). With all
these estimates in hand, we then prove our main theorem.

2. Some a priori estimates for problem (1.1)-(1.3)

In this section, we shall give some a priori estimates for the solution of
problem (1.1)-(1.3).

Lemma 2.1. The function g(t) is continuous for 0 6 t 6 T and
min06t6T g(t) > 0.

Proof. By [17], for any β ∈ (2, 3), for sufficiently large λ there exists c > 0
such that

c|x|2/β 6 u(x, t) 6 1 for |x| 6 1, 0 6 t 6 T. (2.1)

It follows that
∫ 1

−1
u−1(x, t)dx is uniformly integrable and we have the estimate

inf
06t6T

g(t) > 0.

By (2.1), we can apply parabolic estimates in the region |x| > 0 to obtain

lim
t→T−

u(x, t) = u(x, T ) for |x| > 0.

The estimate (2.1) also implies u−1(x, t) 6 c−1|x|−2/β . By Lebesgue Dominate
Convergence Theorem,

lim
t→T−

∫ 1

−1

u−1(x, t)dx =

∫ 1

−1

u−1(x, T )dx.
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This shows that g(t) is continuous at t = T .
A careful examination of the proof in [17] shows that the constant c in (2.1)

is independent of λ. Therefore, we have

lim
λ→∞

g(T ;u, λ) =∞.

We next establish

Lemma 2.2. It holds

(T − t)−1/3u(0, t) 6
( 3

T − t

∫ T

t

g(τ)dτ
)1/3

. (2.2)

Proof. Since u(0, t) is the minimum,

ut(0, t) > −g(t)u−2(0, t).

Thus
1

3

(
u3(0, t)

)
t
> −g(t).

Recalling that u(0, T ) = 0, integrating the above inequality leads to (2.2).
It is not difficult to find (see [17]) that

E(t) ,
1

2

∫ 1

−1

u2
x(x, t)dx+ λ

(
1 +

∫ 1

−1

u−1(x, t)dx
)−1

satisfies

E ′(t) = −
∫ 1

−1

u2
t (x, t)dt < 0.

Integrating this equation over [0, T ), we obtain L2 estimates for ut:∫ T

0

∫ 1

−1

u2
t (x, t)dxdt 6 E(0) <∞.

Using the monotonicity of E(t), we obtain L∞([0, T ], L2) estimate for ux:

1

2

∫ 1

−1

u2
x(x, t)dx+ λ

(
1 +

∫ 1

−1

u−1(x, t)dx
)−1

6 E(0) <∞.

These estimates imply the Hölder continuity of u on [−1, 1]×[0, T ] as follows.

Lemma 2.3. The following estimates hold:

|u(x1, t)− u(x2, t)| 6 C|x1 − x2|1/2, (2.3)

|u(x, t1)− u(x, t2)| 6 C|t1 − t2|1/4. (2.4)
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Proof. The estimate (2.3) is a direct consequence of Hölder’s inequality:

|u(x1, t)− u(x2, t)| 6
∣∣∣ ∫ x2

x1

ux(ξ, t)dξ
∣∣∣ 6 |x1 − x2|1/2

(∫ 1

−1

u2
x(ξ, t)dξ

)1/2

6
(

2E(0)
)1/2

|x1 − x2|1/2.

To show (2.4), we note that

|u(x, t1)− u(x, t2)|2 6
∣∣∣ ∫ t2

t1

ut(x, τ)dτ
∣∣∣2 6 |t1 − t2|

∫ T

0

u2
t (x, τ)dτ.

Thus for any x1 < x2, there exists x̄ ∈ [x1, x2] such that

(x2 − x1)|u(x̄, t1)− u(x̄, t2)|2 =

∫ x2

x1

|u(x, t1)− u(x, t2)|2dx

6 |t1 − t2|
∫ T

0

∫ 1

−1

u2
t (x, τ)dxdτ,

which implies that

|u(x̄, t1)− u(x̄, t2)| 6 |t1 − t2|1/2

|x2 − x1|1/2
(E(0))1/2.

For any x, we take x1 and x2 such that x1 < x < x2, then |x− x̄| 6 |x2 − x1|,
and

|u(x, t1)− u(x, t2)|
6 |u(x̄, t1)− u(x̄, t2)|+ |u(x, t1)− u(x̄, t1)|+ |u(x, t2)− u(x̄, t2)|

6 2
(

2E(0)
)1/2

|x1 − x2|1/2 +
|t1 − t2|1/2

|x2 − x1|1/2
(E(0))1/2.

Taking |x1 − x2| = |t1 − t2|1/2, we obtain the desired results.
As a corollary, we have

Lemma 2.4. It holds

ux(x, t) 6 Cx−1/2.

Proof. We only need to get an estimate near x = 0. By Lemma 2.3, the
function

ψ(y, s) =
u(ay, a2s+ t∗)− u(0, t∗)

a1/2
, 1 < y < 4,−1 < s 6 0, 0 < a < 1/4,

is uniformly bounded. It satisfies

ψs − ψyy = −a3/2g(a2s+ t∗)u−2(ay, a2s+ t∗) , J.
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By Lemma 2.1 (we choose β so that 8/3 < β < 3), the right-hand side of the
above equation is estimated by∣∣J∣∣ 6 Ca3/2|ay|−4/β 6 Ca3/2−4/β 6 C, 1 < y < 4,−1 < s 6 0, 0 < a < 1/4.

It follows from interior parabolic estimates that

ψy(y, s) 6 C, 2 6 y 6 3,−1/2 6 s 6 0.

Taking y = 2, s = 0, we obtain

a1/2ux(2a, t∗) 6 C, 0 < a < 1/4,

which implies the conclusion of the lemma.
We next proceed to establish Hölder continuity of g(t).

Lemma 2.5. There exists γ > 0 such that

|g(t1)− g(t2)| 6 C|t1 − t2|γ

for any t1, t2 ∈ [0, T ].

Proof. It is clear that Hölder continuity of the function g(t) is the same as that
for

k(t) ,
∫ 1

−1

u−1(x, t)dx = 2

∫ 1

0

u−1(x, t)dx.

For any t1, t2 ∈ (0, T ], t1 < t2, and any 0 < µ < 1/4, we have

|k(t1)− k(t2)|

6 2

∫ 2µ

0

|u−1(x, t1)− u−1(x, t2)|dx+ 2

∫ 1

2µ

|u−1(x, t1)− u−1(x, t2)|dx

, I1 + I2.

It is clear that (note that c−1 depends on β)

I1 6 4c−1

∫ 2µ

0

|x|−2/βdx 6 C(β)µ1−2/β .

To establish an estimate for I2, we compute

I2 = 2

∫ 1

2µ

|u(x, t1)− u(x, t2)|
u(x, t1) · u(x, t2)

dx

6 Cµ−4/β

∫ 1

2µ

|u(x, t1)− u(x, t2)|dx = Cµ−4/β

∫ 1

2µ

∣∣∣ ∫ t2

t1

ut(x, t)dt
∣∣∣dx

6 Cµ−4/β |t1 − t2|1/2
(∫ 1

2µ

∫ t2

t1

u2
tdxdt

)1/2

6 Cµ−4/β |t1 − t2|1/2.
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Combining the estimates for I1 and I2, we obtain

|k(t1)− k(t2)| 6 Cµ1−2/β + Cµ−4/β |t1 − t2|1/2.

Taking µ = |t1 − t2|β/[2(β+2)], we obtain

|k(t1)− k(t2)| 6 C|t1 − t2|γ , γ :=
β − 2

2(β + 2)
.

The lemma is proved.
Since u is clearly bounded by 1 and bounded below by a positive constant

near x = 1, we clearly have the following bounds on the derivatives at x = 1:

0 6 ux(1, t) 6 C, ut(1, t) = 0, |uxx(1, t)| 6 C for 0 6 t 6 T. (2.5)

In fact, the estimate (2.1) implies that u ∈ C1+α,(1+α)/2([b, 1] × [0, T ]) for any
b ∈ (0, 1).

3. Some a priori estimates for problem (1.10)-(1.12)

This section is devoted to the derivation of some a priori estimate for the
solution z of problem (1.10)-(1.12).

First, in terms of similarity variables, the estimate (2.2) gives

z(0, s) 6 C1, lim sup
s→∞

z(0, s) 6
(

3g(T )
)1/3

, H , (3.1)

where

C1 := sup
06t<T

( 3

T − t

∫ T

t

g(τ)dτ
)1/3

.

To obtain an upper bound for z, we construct an upper solution as follows.
Take µ and c1(µ) such that

2

3
< µ < 1, c1(µ) = min

0<y<∞

{
(1− µ)µyµ−2 +

(1

2
µ− 1

3

)
yµ
}
> 0.

Then the function
w = yµ + c1(µ)

satisfies

−wyy +
1

2
ywy −

1

3
w

= (1− µ)µyµ−2 +
(1

2
µ− 1

3

)
yµ − 1

3
c1(µ)

>
2

3
c1(µ) > 0.

Take C∗ such that C∗c1(µ) > C1, C∗eµs0/2 > es0/3 and C∗c1(µ) > ‖z0‖L∞ .
Then it follows from (3.1) and the maximum principle that

z(y, s) 6 C∗w(y) for 0 6 y 6 es/2, s > s0.

We have established
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Lemma 3.1. For any 2
3 < µ < 1, there exists a C∗ = C∗(µ) > 0 such that

z(y, s) 6 C∗(1 + |y|µ) for 0 6 y 6 es/2, s0 6 s <∞. (3.2)

Recall (2.5). In terms of variables (z, y, s), we have

0 6 −zy(−R(s), s) = zy(R(s), s) 6 CR−1/3(s). (3.3)

Differentiate the boundary condition (1.11), we obtain

1

2
yzy(y, s) + zs(y, s) =

1

3
|y|2/3 for y = ±R(s).

Using (3.3), we conclude

|zs(±R(s), s)| 6 CR2/3(s). (3.4)

To derive a lower bound for z(y, s), we rewrite (1.10) as

ρzs =
(
ρ · zy

)
y

+ ρ ·
(1

3
z − h(s)z−2

)
, (3.5)

where
ρ(y) := e−y

2/4. (3.6)

For any α > 0, we compute

d

ds

∫ R(s)

−R(s)

ρ(y)z1+α(y, s)dy

= 2ρ(R(s))R′(s)z1+α(R(s), s) +

∫ R(s)

−R(s)

ρ(y)(z1+α)s(y, s)dy.

(3.7)

It follows from (3.7) with α = 0 and (3.5) that

d

ds

∫ R(s)

−R(s)

ρ(y)z(y, s)dy = J0 +

∫ R(s)

−R(s)

ρ(y)
(1

3
z − h(s)z−2

)
dy, (3.8)

where
J0 = 2ρ(R(s))R′(s)z(R(s), s) + 2ρ(R(s))zy(R(s), s).

Clearly,

|J0| 6 C exp
(
− 1

8
es/2

)
.

And, from Lemma 3.1,

sup
s>s0

∫ R(s)

−R(s)

ρ(y)z(y, s)dy <∞. (3.9)

By integrating (3.8), we obtain∣∣∣ ∫ s2

s1

∫ R(s)

−R(s)

ρ(y)
(1

3
z − h(s)z−2

)
dyds

∣∣∣ 6 C∗ <∞ for s2 > s1 > s0, (3.10)
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where C∗ is independent of s2 and s1. It follows from (3.9) and (3.10) that∫ s1+1

s1

∫ R(s)

−R(s)

ρ(y)z−2(y, s)dyds 6 C for any s1 > s0. (3.11)

We claim that∫ s1+1

s1

∫ R(s)

−R(s)

ρ(y)z−2+α(y, s)dyds 6 C for any s1 > s0 (3.12)

for any α > 0. For α > 2, (3.12) follows from (3.2). For α ∈ (0, 2), it follows
from (3.11) and Hölder’s inequality with p = 2/α and q = 1/(1− α/2) that∫ s1+1

s1

∫ R(s)

−R(s)

ρ(y)z−2+α(y, s)dyds

=

∫ s1+1

s1

∫ R(s)

−R(s)

ρ1/p(y)ρ1/q(y)z−2+α(y, s)dyds

6

(∫ s1+1

s1

∫ R(s)

−R(s)

ρ(y)dyds

)1/p(∫ s1+1

s1

∫ R(s)

−R(s)

ρ(y)z−2(y, s)dyds

)1/q

6 C for any s1 > s0.

Hence (3.12) holds for any α > 0.
Multiplying the equation (3.5) by (1 + α)zα, using (3.7) and the above esti-

mates, we obtain∫ s1+1

s1

∫ R(s)

−R(s)

ρ(y)
{(
z(1+α)/2

)
y

}2

dyds 6 Cα for any s1 > s0. (3.13)

By Hölder’s inequality, for y > 0,

z(1+α)/2(y, s)− z(1+α)/2(0, s) 6
√
y
{∫ y

0

{(
z(1+α)/2

)
y

}2

dy
}1/2

.

It follows from (3.13) that∫ s1+1

s1

G(s)ds 6 Cα, where G(s) := sup
0<y61

[z(1+α)/2(y, s)− z(1+α)/2(0, s)]2

y
.

(3.14)
Since zy(0, s) = 0, we have

lim
y→0

[z(1+α)/2(y, s)− z(1+α)/2(0, s)]2

y
= 0.

Hence the “sup” in (3.14) is actually achieved and G(s) is a continuous function
in s.

Combining (3.11) and (3.14), we obtain∫ s1+1

s1

{
sup

0<y61

[z(1+α)/2(y, s)− z(1+α)/2(0, s)]2

y
+

∫ R(s)

0

ρ(y)z−2(y, s)dy
}
ds 6 C.
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By the mean value theorem, for each s1 > s0, there exists τ1 ∈ [s1, s1 + 1] such
that

sup
0<y61

[z(1+α)/2(y, τ1)− z(1+α)/2(0, τ1)]2

y
+

∫ R(τ1)

0

ρ(y)z−2(y, τ1)dy

=

∫ s1+1

s1

{
sup

0<y61

[z(1+α)/2(y, s)− z(1+α)/2(0, s)]2

y
+

∫ R(τ1)

0

ρ(y)z−2(y, s)dy
}
ds

6 C. (3.15)

This implies that, for 0 < y 6 1,

z(1+α)/2(y, τ1) 6 z(1+α)/2(0, τ1) + C
√
y,

and so (assuming that α < 1),

z2(y, τ1) 6 C[z1+α(0, τ1) + y]2/(1+α).

Substituting into (3.15), we obtain

1 + α

1− α
z(0, τ1)−(1−α) 6

∫ 1

0

dy

[z1+α(0, τ1) + y]2/(1+α)
6 C.

Since we take α < 1, this implies that

z(0, τ1) > c0

for some c0 > 0 independent of s1. Let k to be the first integer bigger than s0,
and take s1 to be k, k + 1, k + 2, k + 3, · · · . We have proved:

Lemma 3.2. There exists τj ∈ [k + j, k + j + 1] with 0 6 τj+1 − τj 6 2 such
that

z(0, τj) > c0 (3.16)

for some positive constant c0 independent of s1.

Based on Lemma 3.2, we can establish the following lemma on the lower
bound of z, provided some L2 estimates on z−s is available.

Lemma 3.3. Let c0 be given as in (3.16) and let

Λ = ‖h‖L∞[− lnT,∞), A = Λ
(c0

2

)−2

, y∗ =

√
c0
2A

.

If

1

y∗

∫ τ

τj

∫ y∗

0

[(zs)
−]2dyds 6

c20
32

for some τ ∈ (τj , τj + 2], then

z(0, s) >
c0
2

for τj 6 s 6 τ. (3.17)
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Proof. We already established

z(0, τj) > c0 > 0, τj →∞, 0 < τj+1 − τj 6 2.

Since y = 0 is the minimum of z(y, s), we have

z(y, τj) > z(0, τj) > c0.

We write

L [z] , zs − zyy +
1

2
yzy −

1

3
z + h(s)z−2 = 0.

Since A = Λ(c0/2)−2, we have

L
[c0

2
+
A

2
y2
]

= −A+
A

2
y2 − 1

3

(c0
2

+
A

2
y2
)

+ h(s)
(c0

2
+
A

2
y2
)−2

6 −A+ Λ
(c0

2

)−2

= 0 for |y| <
√

c0
2A

= y∗.

It is also clear that with our choice of y∗ we also have

c0
2

+
A

2
y2 6

3c0
4

for |y| 6 y∗.

By our assumption,

1

y∗

∫ τ

τj

∫ y∗

0

[(zs)
−]2dyds 6 c20/32.

By the mean value theorem, there exists y∗1 ∈ [0, y∗] such that∫ τ

τj

[(zs(y
∗
1 , s))

−]2ds 6 c20/32.

Hence

−[z(y∗1 , s)− z(y∗1 , τj)] 6
√
τ − τj

(∫ τ

τj

[(zs(y
∗
1 , s))

−]2ds
)1/2

6
√

2

√
c20
32

=
c0
4

for τj 6 s 6 τ,

which implies

z(y∗1 , s) > z(y∗1 , τj)−
c0
4

> c0 −
c0
4

>
3c0
4

for τj 6 s 6 τ.

By symmetry, we also have z(−y∗1 , s) = z(y∗1 , s).
If y∗1 = 0, we then already have z(0, s) > 3c0/4 for τj 6 s 6 τ . In the case

y∗1 > 0, we can then apply the comparison principle in the region {(y, s); |y| <
y∗1 , τj < s < τ} to conclude

z(y, s) >
c0
2

+
A

2
y2 for |y| < y∗1 , τj 6 s 6 τ.

Hence (3.17) follows and this concludes the proof of this lemma.
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Remark 3.1. Lemmas 3.1, 3.2 and 3.3 are valid for any function h(s) bounded
by positive constants from above and below, with c0 and τj depending only on
these two bounds.

Next, we show the following lemma which is very useful in the proof of
Lemma 4.3 in §4.

Lemma 3.4. There exist constants L1 > 0 and c1 > 0 such that

z(L1, s) > c1 for s� 1. (3.18)

Proof. Multiplying the equation (3.5) by z2 and integrating, we obtain

d

ds

∫ R(s)

−R(s)

1

3
ρz3dy = −2

∫ R(s)

−R(s)

ρzz2
ydy +

∫ R(s)

−R(s)

1

3
ρz3 − h(s)

∫ R(s)

−R(s)

ρdy + J(s),

where J(s) comes from various terms generated by integration by parts. By
(1.11), (3.2), (3.3) and (3.4), we have

|J(s)| 6 C exp
(
− 1

8
es/2

)
.

Thus, for any small ε > 0, we can take S1 � 1 so that

d

ds

∫ R(s)

−R(s)

1

3
ρz3dy <

∫ R(s)

−R(s)

1

3
ρz3 − (h(∞)− ε)

∫ R(s)

−R(s)

ρdy := I(s) (3.19)

for s� S1. If I(s∗) < 0 for some s∗ > S1, then (3.19) implies that I(s) < 0 for

all s > s∗. Therefore,
∫ R(s)

−R(s)
1
3ρz

3 must reach zero in a finite time, which is a

contradiction. Thus we must have∫ R(s)

−R(s)

1

3
ρz3 > (h(∞)− ε)

∫ R(s)

−R(s)

ρdy for s > S1.

It follows that

2L1

3
z3(L1) >

∫ L1

−L1

1

3
z3dy

>
∫ L1

−L1

1

3
ρz3dy

> (h(∞)− ε)
∫ R(s)

−R(s)

ρdy −
∫
|y|>L1

1

3
ρz3dy.

Since z 6 C(1 + |y|µ), we can take L1 suitable large so that the right-hand side
of the above inequality is uniformly positive, and this implies the conclusion of
the lemma.
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4. Proof of the main theorem

In this section, we first construct a Lyapunov function. Let

E(s) =
1

2

∫ R(s)

−R(s)

ρ(y)z2
y(y, s)dy − 1

6

∫ R(s)

−R(s)

ρ(y)z2(y, s)dy. (4.1)

Then E(s) is bounded from below, due to (3.2). We compute, using (3.5),

d

ds
E(s) =

∫ R(s)

−R(s)

ρzyzysdy −
1

3

∫ R(s)

−R(s)

ρzzsdy + J11(s)

= −
∫ R(s)

−R(s)

(ρzy)yzsdy −
1

3

∫ R(s)

−R(s)

ρzzsdy + J11(s) + J12(s)

= −
∫ R(s)

−R(s)

ρz2
sdy + h(s)

d

ds

{∫ R(s)

−R(s)

ρz−1dy

}
+J11(s) + J12(s) + J13(s),

where

J11(s) := ρ(R(s))z2
y(R(s), s)R′(s)− 1

3
ρ(R(s))z2(R(s), s)R′(s),

J12(s) := 2ρ(R(s))zy(R(s), s)zs(R(s), s),

J13(s) := −2h(s)ρ(R(s))z−1(R(s), s)R′(s).

Set J1(s) := J11(s) + J12(s) + J13(s). The we have

d

ds
E(s) = −

∫ R(s)

−R(s)

ρz2
sdy + h(s)

d

ds
K1(s) + J1(s), (4.2)

where

K1(s) :=

∫ R(s)

−R(s)

ρ(y)z−1(y, s)dy. (4.3)

Note that, by (3.2), (1.11), (3.3) and (3.4), we have

|J1(s)| 6 C exp
(
− 1

8
es/2

)
. (4.4)

Therefore, in order to verify the function E(s) defined by (4.1) is a Lyapunov
function, we need to derive some useful estimates for h(s) and the derivative of
the function K1(s) defined by (4.3) to ensure the integrability of h(s)K ′1(s) over
[s0,∞).
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4.1. Estimates for h(s)

Recall that h(s) = g(T − e−s). From the definition of h(s), we derive

√
λ h−1/2(s)− 1

=

∫ 1

−1

u−1(x, T − e−s)dx = e−s/6
∫ R(s)

−R(s)

z−1(y, s)dy

= e−s/6

{∫ R(s)

−R(s)

ρ(y)z−1(y, s)dy +

∫ R(s)

−R(s)

[1− ρ(y)]z−1(y, s)dy

}
, e−s/6{K1(s) +K2(s)}.

The power series (1+w)−1 =
∑∞
j=0(−1)jwj is absolutely convergent for |w| < 1.

Therefore we can differentiate this equality in w to obtain

(1 + w)−2 = −
∞∑
j=0

(−1)jjwj−1 =

∞∑
j=0

(−1)j(j + 1)wj for |w| < 1.

It follows that

λ−1h(s) = (1 + e−s/6K2)−2
(

1 +
e−s/6K1

1 + e−s/6K2

)−2

= (1 + e−s/6K2)−2
∞∑
j=0

bj

( e−s/6K1

1 + e−s/6K2

)j
, (4.5)

where bj = (−1)j(j + 1), j > 0. The series is uniformly convergent whenever∣∣∣ e−s/6K1

1+e−s/6K2

∣∣∣ < 1.

We first establish

Lemma 4.1. Let β ∈ (2, 3) close to 3 and let

u∗ := lim
t→T

∫ 1

−1

u−1(x, t)dx > 0.

Then, for γ1 = 1
2 −

1
β > 0 and γ > 0 given in Lemma 2.5, we have

|e−s/6K1(s)| 6 Ce−γ1s, |e−s/6K2(s)− u∗| 6 Ce−γs. (4.6)

for all s > s0.

Proof. By (2.1), z(y, s) > ces/3−s/β |y|2/β , so that

e−s/6z−1(y, s) 6 c−1e−s/6+s/β−s/3|y|−2/β , ∀ |y| 6 R(s), s > s0. (4.7)

Since 2 < β < 3, we have − 1
6 + 1

β −
1
3 = −γ1 < 0. It follows that |e−s/6K1(s)| 6

Ce−γ1s for all s > s0. Using this in the relation∫ 1

−1

u−1(x, T − e−s)dx = e−s/6(K1 +K2),
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applying also Lemma 2.5, we immediately obtain the second estimate in (4.6).
This proves the lemma.

Recall from (3.12) that∫ s+1

s

∫ R(s)

−R(s)

ρ(y)z−k(y, s)dyds 6 C

for any s > s0 for any 1 6 k 6 2. This actually implies

Lemma 4.2. For any α > 0∫ ∞
s0

e−αsK1(s)ds 6 C,

∫ ∞
s0

e−αsK2
1 (s)ds 6 C. (4.8)

Proof. We break the integral into an infinite series:∫ ∞
s0

e−αsK1(s)ds =

∞∑
j=0

∫ s0+j+1

s0+j

e−αsK1(s)ds

6
∞∑
j=0

e−α(s0+j)

∫ s0+j+1

s0+j

K1(s)ds

6 C

∞∑
j=0

e−α(s0+j) 6 C.

By Hölder’s inequality

K2
1 (s) =

(∫ R(s)

−R(s)

ρz−1dy
)2

6 C

∫ R(s)

−R(s)

ρz−2dy,

so that the second inequality can be established in a similar manner.

4.2. Estimates for the derivative of K2

Our key lemma is as follows

Lemma 4.3. There exists γ2 > 0 such that∣∣∣ d
ds

(
e−s/6K2(s)

)∣∣∣ 6 Ce−γ2s
(

1 +

∫ R(s)

−R(s)

ρ|zs|dy
)
. (4.9)

Proof. We write K2 as 2
∫ R(s)

0
(1− ρ)z−1dy. Then for any L > 0, using (1.11),

we have

dK2

ds
= −2

∫ R(s)

0

(1− ρ)z−2zsdy + 2(1− ρ(R(s))z−1(R(s), s)R′(s)

= 2

∫ L

0

ρ
(
1− ρ−1

)
z−2zsdy + (1− ρ(es/2))es/6

+2

∫ R(s)

L

ρz−2zsdy − 2

∫ R(s)

L

z−2zsdy

, M1 +M2 +M3 +M4.



18

By (2.1), z−2 6 C|y|−4/βe(2/3−2/β)s. It is also clear that, for |y| 6 L, |1−ρ−1| 6
C|y|2. It follows that the first term on the right-hand side is estimated by

|M1| =
∣∣∣2 ∫ L

0

ρ
(
1− ρ−1

)
z−2zsdy

∣∣∣
6 C

∫ L

0

ρ|y|2−4/βe(−2/3+2/β)s|zs|dy 6 Ce(−2/3+2/β)s

∫ L

0

ρ|zs|ds,

so that, if we take 0 < γ2 6 1
6 +

(
2
3 −

2
β

)
(this is possible if we take β close to

3),

e−s/6|M1| 6 Ce−γ2s
∫ L

0

ρ|zs|ds. (4.10)

It is clear that the second term

|e−s/6M2 − 1| = |ρ(es/2)| 6 C exp
(
− 1

8
es/2

)
6 Ce−γ2s. (4.11)

We assume that L > L1. Since z(y, s) > c0 for y > L, by (3.18) and zy > 0, the
third term is bounded by

e−s/6|M3| =
∣∣∣2e−s/6 ∫ R(s)

L

ρz−2zsdy
∣∣∣ 6 Ce−s/6

∫ R(s)

L

ρ|zs|ds. (4.12)

It remains to estimate M4. Using the equation (1.10), we get

M4 = −2

∫ R(s)

L

z−2zsds = 2

∫ R(s)

L

z−2
{
− zyy +

1

2
yzy −

1

3
z + h(s)z−2

}
ds

= 2

{
− 2

∫ R(s)

L

z−3z2
ydy +

1

2

∫ R(s)

L

z−1dy +

[
− z−2zy

∣∣∣R(s)

L
− 1

2
yz−1

∣∣∣R(s)

L

]

−1

3

∫ R(s)

L

z−1dy + h(s)

∫ R(s)

L

z−4dy

}

=
1

3

∫ R(s)

L

z−1dy +
(
− es/6 + Lz−1(L)− 2z−2zy

∣∣∣R(s)

L

)
−4

∫ R(s)

L

z−3z2
ydy + 2h(s)

∫ R(s)

L

z−4dy

, M41 +M42 +M43 +M44.

Clearly,
|e−s/6M42 + 1| 6 Ce−s/6. (4.13)

To estimate M43, we use Lemma 2.4 to derive

|zy(y, s)| 6 Ce−s/6|ye−s/2|−1/2 6 Ces/12|y|−1/2 6 Ces/12 for y > L.

It follows that

|M43| 6 C

∫ R(s)

L

es/12z−2zydy 6 Ces/12z−1(L, s) 6 Ces/12,
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by using (3.18) twice, and so

e−s/6|M43| 6 Ce−s/12. (4.14)

To estimate M44, by (2.1), we have

z−4(y, s) 6 c−4e(4/β−4/3)s|y|−8/β .

Hence, if we choose β so that 0 < γ2 6 1
6 −

4
β + 4

3 , we get

e−s/6|M44| 6 Ce−s/6+(4/β−4/3)s

∫ ∞
L

|y|−8/βdy 6 Ce−γ2s. (4.15)

Combining all these estimates, we find∣∣∣ d
ds

(
e−s/6K2

)∣∣∣ 6 Ce−γ2s
(

1 +

∫ R(s)

−R(s)

ρ|zs|dy
)

+
∣∣∣− 1

6
e−s/6K2 +

1

3
e−s/6

∫ R(s)

L

z−1dy
∣∣∣.

The last term is estimated by∣∣∣− 1

6
e−s/6K2 +

1

3
e−s/6

∫ R(s)

L

z−1dy
∣∣∣

=
1

6
e−s/6

∣∣∣K2 −
∫
|y|>L

z−1dy
∣∣∣

6
1

6
e−s/6

(∫
|y|6L

z−1dy +

∫ R(s)

−R(s)

ρz−1dy
)

6 Ce−γ1s,

where (4.7) was used in the last inequality. Therefore, the lemma is proved.

4.3. The conclusion

We shall now always assume s� 1 so that 0 < e−s/6K1 <
1
2 and e−s/6K2 >

1
2u∗ > 0. This is possible by using (4.6). Therefore, the series defined in (4.5)
is uniformly convergent.

We now proceed to estimate

λ−1h(s)
dK1

ds
= (1 + e−s/6K2)−2

∞∑
j=0

(−1)j
( e−s/6

1 + e−s/6K2

)j dKj+1
1

ds
.

Applying integration by parts, we have

λ−1

∫ s2

s1

h(s)
dK1

ds
ds =

[ ∞∑
j=0

(−1)j
e−js/6

(1 + e−s/6K2)j+2
Kj+1

1

]∣∣∣s2
s1

−
∞∑
j=0

(−1)j
∫ s2

s1

Kj+1
1 (s)

d

ds

{ e−js/6

(1 + e−s/6K2)j+2

}
ds

, K21 +K22.
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First, we write K21 as[
K1

1

(1 + e−s/6K2)2

∞∑
j=0

(−1)j
( e−s/6K1

1 + e−s/6K2

)j]∣∣∣s2
s1

;

the quantity 1
(1+e−s/6K2)2

∑∞
j=0(−1)j

(
e−s/6K1

1+e−s/6K2

)j
is uniformly bounded, by

(4.6). Therefore,

|K21| 6 C(|K1(s2)|+ |K1(s1)|).

To estimate K22, we compute

d

ds

{ e−js/6

(1 + e−s/6K2)j+2

}
= − j

6

e−js/6

(1 + e−s/6K2)j+2
− e−js/6(j + 2)

(1 + e−s/6K2)j+3

d

ds

(
e−s/6K2

)
,

so that

K22 =

∞∑
j=1

(−1)j
j

6

∫ s2

s1

Kj+1
1 (s)

e−js/6

(1 + e−s/6K2)j+2
ds

+

∞∑
j=0

(−1)j
∫ s2

s1

Kj+1
1 (s)

e−js/6(j + 2)

(1 + e−s/6K2)j+3

d

ds

(
e−s/6K2

)
ds

, K221 +K222.

Clearly,∣∣∣ ∞∑
j=1

(−1)j
j

6
Kj+1

1

e−js/6

(1 + e−s/6K2)j+2

∣∣∣
= e−s/6K2

1

∣∣∣ ∞∑
j=1

(−1)j
j

6

1

(1 + e−s/6K2)3

( e−s/6K1

(1 + e−s/6K2)

)j−1∣∣∣
6 Ce−s/6K2

1 ,

so that, by Lemma 4.2,

|K221| 6 C

∫ s2

s1

e−s/6K2
1 (s)ds 6 C.

Similarly, ∣∣∣ ∞∑
j=0

(−1)jKj+1
1

e−js/6(j + 2)

(1 + e−s/6K2)j+3

∣∣∣
=

∣∣∣ ∞∑
j=0

(−1)j(j + 2)
K1

(1 + e−s/6K2)3

( e−s/6K1

(1 + e−s/6K2)

)j∣∣∣
6 CK1,
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so that, by Lemma 4.3, for small ε > 0,

|K222| 6 C

∫ s2

s1

e−γ2sK1(s)
(

1 +

∫ R(s)

−R(s)

ρ|zs|dy
)
ds

6 C + C

∫ s2

s1

e−γ2sK1(s)
(∫ R(s)

−R(s)

ρ|zs|dy
)
ds

6 C + ε

∫ s2

s1

∫ R(s)

−R(s)

ρ|zs|2dy + Cε−1

∫ s2

s1

e−2γ2sK2
1 (s)ds

6 Cε−1 + ε

∫ s2

s1

∫ R(s)

−R(s)

ρ|zs|2dy.

Combining these estimates, we find

|K22| 6 Cε−1 + ε

∫ s2

s1

∫ R(s)

−R(s)

ρ|zs|2dy.

Since
∫ s1+1

s1
K1(s)ds < C, we can choose sj → ∞ such that K1(sj) < C.

Therefore, we have proved

Lemma 4.4. There exists sj →∞ such that

λ−1
∣∣∣ ∫ sj

s1

h(s)
dK1

ds
ds
∣∣∣ 6 Cε−1 + ε

∫ sj

s1

∫ R(s)

−R(s)

ρ|zs|2dy (4.16)

for some small positive constant ε.

With Lemma 4.4, we are ready to verify that E(s) is actually a Lyapunov
function as follows. Indeed, by integrating (4.2) from s1 to any sj and using
(4.16), it follows that∫ sj

s1

∫ R(s)

−R(s)

ρ(y)z2
sdyds = E(s1)− E(sj) +

∫ sj

s1

h(s)
dK1(s)

ds
ds+

∫ sj

s1

J1(s)ds

6 Cε−1 + λε

∫ sj

s1

∫ R(s)

−R(s)

ρ(y)z2
sdyds.

Taking a fixed ε ∈ (0, λ−1/2), we obtain

Lemma 4.5. It holds ∫ ∞
s1

∫ R(s)

−R(s)

ρ(y)z2
sdyds <∞. (4.17)

Applying (4.17) to Lemma 3.3, we find that now that z(y, s) is uniformly
bounded from below by a positive constant, we can immediately apply parabolic
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estimates to derive uniform C2+α,1+α/2 estimates. The standard method im-
plies that z(y, s) converges uniformly on any compact set to the constant w∞
(depending on the solution itself). This completes the proof of Theorem 2.

Proof of Theorem 3: Using the relationship (1.9) and apply Theorem 2, we
conclude Theorem 3.
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