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Abstract

In this paper, we study a model for calcium buffering with bistable nonlinearity. We present
some results on the stability of equilibrium states and show that there exists a threshold phe-
nomenon in our model. In comparing with the model without buffers, we see that stationary
buffers cannot destroy the asymptotic stability of the associated equilibrium states and the
threshold phenomenon. Moreover, we also investigate the propagation property of solutions
with initial data being a disturbance of one of the stable states which is confined to a half-line.
We show that the more stable state will eventually dominate the whole dynamics and that the
speed of this propagation (or invading process) is positive.
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1 Introduction

It is known that the intra-cellular space of an oocyte can become an excitable medium when
the concentration of the inositol (1,4,5)-trisphosphate (IP3) is increased [47, 27, 5, 20, 30]. Like
the other excitable systems (e.g., Belousov-Zhabotinsky reaction and FitzHugh-Nagumo model),
oocytes can generate a well-known set of wave patterns including target waves, spirals waves,
traveling pulses, and traveling fronts [33, 23, 52, 56, 30]. However, regarding the wave patterns,
there is a crucial difference between mature and immature Xenopus oocytes. This may be due to the
following facts. In immature Xenopus oocytes, target and spiral waves can be observed when the IP3

concentration is elevated [47, 27, 5, 20]. On the other hand, the fertilization calcium (Ca2+) wave
in mature Xenopus oocytes propagates across the intra-cellular space like a tide (front), moving
at a speed of 5 − 10 µms−1 with basal cytosolic calcium concentration ([Ca2+]cyt) of the order of
0.2 − 0.3 µM in front of the wave and 1.3 − 2.0 µM in its wake [40, 9, 64]. Therefore, it seems
that the cytoplasm of mature Xenopus oocytes can support two alternative stable physiological
Ca2+ concentrations, which is unusual since prolonged high [Ca2+]cyt are toxic in most of cell
types [33, 23, 52, 56]. Furthermore, experimental observation also shows the existence of a threshold
of the Ca2+ concentration below which additions of Ca2+ cannot trigger a wave [40, 64]. This kind
of threshold behavior is indeed a hallmark of bistability. Thus, it is quite interesting to understand
what mechanism can cause such phenomena.
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Actually, existing experimental evidence and many modeling studies suggest the following cel-
lular mechanism for Ca2+ waves in mature oocytes and other cell types [6, 65, 66, 5, 31, 40, 42,
29, 21, 58, 22, 9, 23, 64]. Binding of stimuli (e.g., sperm) to the receptors in the plasma membrane
results in the production of IP3. Then the IP3 diffuses rapidly and binds to the IP3R (which is
the IP3 receptor and acts as a IP3/Ca2+-mediated Ca2+ channel) on the membrane of the internal
Ca2+ store ER (endoplasmic reticulum). Hence the IP3 (Ca2+) activates the IP3R channel, through
which Ca2+ can be released from ER into cytosol. Note that there are two other components of
the Ca2+ flux across the ER membrane, i.e., direct leak through the membrane of ER and Ca2+

uptake by sarco- and endoplasmic reticulum Ca2+-ATPase (SERCA) pumps. Thus if the released
Ca2+ diffuses to neighboring ER, it will initiate further Ca2+ release from there via the so-called
Ca2+-induced Ca2+ release (CICR). Repetition of this process can then generate an advancing wave
front of Ca2+ concentration.

Finally, for physiological function of the fertilization Ca2+ wave, we recall the following fact [56]
that the cell divisions initiating development of Xenopus oocytes begin only after the fertilization
Ca2+ wave has propagated across the entire cell. Moreover, the eggs of many species, from frog
and starfish to hamster and human, exhibit propagating Ca2+ wave upon fertilization [39, 64].

2 The Mathematical Model

Before stating the model for Ca2+ waves, we make some comments and assumptions on ER and
IP3R. Although ER has very complicated irregular geometry [61], for simplicity, we will assume
that it is a homogeneous, continuous medium [21, 64, 51]. Also the Ca2+ concentration in ER
is 2 − 3 orders of magnitude greater than that in the cytosol. Therefore, it may be plausible to
assume that the Ca2+ capacity of ER is infinity everywhere [64, 59, 51, 52, 56]. Next, we will
discuss the features of the regulation of the Ca2+ channel IP3R. Actually, the key features of
the regulation of IP3R by IP3 and Ca2+ have been found and included in many modeling studies
[6, 19, 43, 14, 65, 66, 42, 29, 23, 64, 52, 56, 30]. They include the well-known bell-shaped dependence
of the channel opening on [Ca2+]cyt, which implies that Ca2+ can activate as well as inactivate the
channel opening. Hence this fact suggests that we should include a gating variable for the gated
opening of the IP3R in the model. However, we will follow [21, 59, 51, 56] to assume that the
dynamics of Ca2+ in cytosol are much slower than the gating variable for Ca2+ inactivation of the
IP3R (more discussion on this assumption will be given in section 6). Hence we will only include
the Ca2+ concentration of the cytosol in the model below, and so the Ca2+ concentration in ER
and the gating variable for the IP3R will not enter the governing equation. Note that we will also
assume that the IP3 concentration is uniform and constant [52, 56, 59].

Now we can state the model for Ca2+ waves. First, we use a simplified version of the Li and
Rinzel model [29] by Smith, Pearson, and Keizer [52, 56, 59, 51] with an assumption that Ca2+

buffers being absence. We will take Ca2+ buffers into account later. When combined with Ca2+

diffusion [4, 16, 11], the model takes the following form:

∂u

∂t
= D

∂2u

∂x2
+ f(u), (2.1)

where u denotes the concentration of free cytosolic Ca2+, D > 0 is the diffusion coefficient of the
free cytosolic Ca2+, and f(u) = Jchannel + Jpump + Jleak is the rate of change of [Ca2+]cyt due to
fluxes through the IP3R, SERCA pumps, and direct leak at each space point. Here f(u) takes the
bistable nonlinearity. Since we will only concern the qualitative properties of (2.1), for simplicity,
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in this paper we shall only consider the typical example

f(u) = u(1 − u)(u − a)

for some a ∈ (0, 1). We remark that the bistability is suggested by experimental observations [10,
18, 44, 40, 26, 9, 64] and is caused by the release and uptake properties of ER [9, 64]. Furthermore,
the three zeros of f have the following interpretation in biology: the state 0 represents a stable
resting state at basal Ca2+ concentration of the cytosol, the state 1 is a stable resting point at high
Ca2+ concentration of the cytosol, while the state a is unstable and corresponds to a threshold for
CICR. For more details on the biological motivation and interpretation of this model, the reader
is referred to Chapter 5 and 8 of Fall et al.’s book [52, 56], Keener and Sneyd’s book [23], and
references therein.

Although the model (2.1) shares many similarities with other excitable systems (e.g., the simpli-
fied version of the FitzHugh-Nagumo model), the study of Ca2+ waves still has some other crucial
differences. The most important one among them should be the existence of Ca2+ buffers. In fact,
a large fraction of cytosolic Ca2+ (around 99%) is bound to large Ca2+-binding proteins, called
Ca2+ buffers [1, 36]. Not only do these buffers restrict the diffusion of free Ca2+, they also affect
the kinetics of Ca2+ release and uptake [63], and thus they would be expected to have an important
effect on the properties of Ca2+ dynamics [1].

A simple way to model calcium buffering is to assume that Ca2+ interacts with buffers according
to the following reaction scheme

Ca2+ + Bi ⇀↽ Ca2+Bi, i = 1, · · · , n, (2.2)

where Bi and Ca2+Bi denote the unbound and bound forms of the ith buffer, respectively [63, 59,
60]. Let vi denote the concentration [Bi] of the ith buffer and bi

0 denote the total amount of the
ith buffer. Note that bi

0 = [Bi] + [Ca2+Bi]. We shall assume that bi
0 is a constant at each spatial

point for all t > 0. It follows from the law of mass action [23] that the rate of change of u due to
buffering is given by

du

dt
=

n∑
i=1

[ki
−(bi

0 − vi) − ki
+uvi], (2.3)

where the positive constants ki
+ and ki

− denote the forward and reverse rate constants of the ith
reaction (2.2), respectively. Hence if we assume that the space dimension of the cell is one, and
let Di ≥ 0, i = 1, · · · , n, be the diffusion coefficient of the ith buffer, then we have the following
buffered reaction-diffusion system:

∂u

∂t
= D

∂2u

∂x2
+ f(u) +

n∑
i=1

[ki
−(bi

0 − vi) − ki
+uvi], (x, t) ∈ R × (0,∞), (2.4)

∂vi

∂t
= Di

∂2vi

∂x2
+ ki

−(bi
0 − vi) − ki

+uvi, (x, t) ∈ R × (0,∞), i = 1, · · · , n. (2.5)

For numerical studies including Ca2+ buffers, see, for examples, [8, 21, 38, 49]. Regarding the
analytical works on buffers, we mention the well-known rapid buffer approximation (RBA). More
precisely, if we assume that the buffer has fast kinetics (relative to the other reactions in the model),
then we can reduce the full buffered model to a single quasilinear parabolic equation in which the
effective diffusion coefficient of free cytosolic Ca2+ now depends on the Ca2+ concentration (see
Wagner and Keizer [63] and Smith [54]). This approximation has been widely used in many recent
works. For example, Sneyd et al. [59] and Slepchenko et al. [51] have used this approximation
to consider the associated properties of traveling waves in the buffered bistable system. See also
Neher [34, 35, 37]), Smith [53], Smith et al. [55], etc.

3



3 Main Results

Intuitively, it is clear that the associated properties of the model (2.1) should not be affected by
the presence of infinitely slow buffers (buffers with very slow kinetics). For infinitely fast buffers
(buffers with very fast kinetics), we can use the RBA to reduce the model (2.4)-(2.5) to one single
quasilinear equation, which is more easier to deal with. However, what will happen if the buffer
is neither infinitely slow nor fast? Therefore, by considering the whole system (2.4)-(2.5), it is the
main purpose of this paper to study to what extent the (immobile) buffers can retain the properties
of the model (2.1).

First, we set some notation:

κi(u) := ki
−bi

0/(ki
+u + ki

−) for i = 1, · · · , n,

b0 = (b1
0, · · · , bn

0 ) := (κ1(0), · · · , κn(0)),
b1 = (b1

1, · · · , bn
1 ) := (κ1(a), · · · , κn(a)),

b2 = (b1
2, · · · , bn

2 ) := (κ1(1), · · · , κn(1)),
v(x, t) := (v1(x, t), · · · , vn(x, t)).

Also, for two vectors c = (c1, · · · , cn) and d = (d1, · · · , dn), the symbol c < d means ci < di for
i = 1, · · · , n, and c ≤ d means ci ≤ di for i = 1, · · · , n. Moreover, let (u(x, t),v(x, t)) denote a
classical solution of (2.4)-(2.5) with the initial data u(·, 0) ∈ [0, 1] and v(·, 0)) ∈ [b2,b0] on R. If
there is no ambiguity, we will also let u(x, t) denote a classical solution of (2.1) with the initial data
u(·, 0) ∈ [0, 1] on R. In the sequel, we will assume that all of the buffers are stationary (immobile),
i.e., Di = 0 for i = 1, · · · , n.

Now, we turn to the analysis of the model (2.4)-(2.5). First, experimental observations [9, 64]
that the Ca2+ wave propagates as a front implies that the cytoplasm of mature Xenopus oocyte
can support the existence of two alternative stable [Ca2+]cyt, i.e., exhibit the unusual property of
the bistability. Hence, it would be interesting to investigate how the buffers affect the stability of
these two physiological states of [Ca2+]cyt. In fact, Aronson and Weinberger [3, 2] have showed the
attraction basin for the physiological states of [Ca2+]cyt, 0 and 1, of the model (2.1) (i.e., the model
(2.4)-(2.5) without buffers) as follows:

(P1) Let a ∈ (0, 1). If u(x, 0) ∈ [0, a] for all x ∈ R and u(·, 0) 6≡ a, then limt→+∞ u(x, t) = 0
uniformly for x in bounded subsets of R.

(P2) Let a ∈ (0, 1). If u(x, 0) ∈ [a, 1] for all x ∈ R and u(·, 0) 6≡ a, then limt→+∞ u(x, t) = 1
uniformly for x in bounded subsets of R.

Since [Ca2+]cyt is initially at the basal state 0, we may think of u(·, 0) as the initial stimulus (e.g., a
micro-injection of Ca2+). Hence (P1)-(P2) imply that in the absence of buffers, if u(·, 0) is smaller
than the threshold of CICR (a) everywhere, then [Ca2+]cyt will return to its basal state 0 eventually;
however, if u(·, 0) is higher than the threshold of CICR (a) over the whole cytosol, then [Ca2+]cyt

will ultimately go to the unusual elevated Ca2+ concentration 1.
On the other hand, if we take the buffers into account, then we need to focus on the model

(2.4)-(2.5). This leads to one question: What are the reasonable concentrations of the buffers to
accompany these two stable physiological states of [Ca2+]cyt, 0 and 1? Indeed, (2.3) tells us that if
[Ca2+]cyt is at the state 0 (1, resp.) and in equilibrium with the buffers, then the concentration of
the unbound form of the ith buffer, [Bi], i = 1, · · · , n, must take the value bi

0 (bi
2, resp.). In fact,

a quick calculation reveals that (0,b0) and (1,b2) are the solutions of (2.4)-(2.5). Also, note that
when [Ca2+]cyt is at the stable elevated state 1, the concentrations of the bound forms of the buffers
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are b0 − b2. Furthermore, we can see that these two states, (0,b0) and (1,b2), are stable with
respect to (2.4)-(2.5) and that their attraction basins are given in the following two properties:

(Q1) Let a ∈ (0, 1). If u(x, 0) ∈ [0, a], vi(x, 0) ∈ [bi
1, b

i
0] for all x ∈ R, i = 1, · · · , n, and u(·, 0) 6≡ a,

then limt→+∞(u(x, t),v(x, t)) = (0,b0) uniformly for x in bounded subsets of R.

(Q2) Let a ∈ (0, 1). If u(x, 0) ∈ [a, 1], vi(x, 0) ∈ [bi
2, b

i
1] for all x ∈ R, i = 1, · · · , n, and u(·, 0) 6≡ a,

then limt→+∞(u(x, t),v(x, t)) = (1,b2) uniformly for x in bounded subsets of R.

Note that the buffers consist of two kinds: one is already in the cell (endogenous buffer), the other
is added experimentally (exogeneous buffer). We let Bi, i = 1, · · · ,m, be the unbound form of
the ith endogenous buffer, and Bj , j = m + 1, · · · , n, the unbound form of the jth exogeneous
buffer. Note that initially, [Ca2+]cyt stays at the stable basal state 0 at each space point, and so the
concentration of the unbound form of the ith endogenous buffer, [Bi], i = 1, · · · ,m, must take the
value bi

0 in order to be in equilibrium with Ca2+ over the whole cytosol. Hence (Q1) suggests that
if the initial concentration of the unbound form of the jth exogeneous buffer, [Bj ], j = m+1, · · · , n,
is in [bj

1, b
j
0] everywhere, and if the initial stimulus u(·, 0) (e.g., a micro-injection of Ca2+) is less

than the threshold of CICR (a) at each space point, then [Ca2+]cyt will eventually go back to its
basal state 0 and the concentrations of the unbound forms of the buffers will return to their total
concentrations of the buffers b0. Note that in order that Ca2+ with [Ca2+] = a is in equilibrium
with the jth buffer at a localized space point, [Bj ] must take the value bj

1 by (2.3). (Q2) has a
similar implication and we omit it.

Next, we will discuss the threshold behavior of the model (2.4)-(2.5). In fact, in mature Xenopus
eggs, Ca2+ waves can not only be triggered by the entry of sperm, but also by a micro-injection of
Ca2+; and it is also reported that in order to initiate a Ca2+ wave in such a cell, the injected Ca2+

concentration must be greater than some threshold [40, 30]. Even more, similar observations have
been found on oocytes of mouse and hamster [10, 44, 26, 18, 32]. Here comes one technical question:
How can we observe such phenomena experimentally? Actually, in order to visualize the calcium
dynamics, we need to inject a fluorescent indicator (e.g., Ca2+-green dextran, BAPTA, and EGTA)
into the cell, and these indicators are exactly the (exogeneous) Ca2+ buffers. Thus it would be
interesting to see that in the presence of Ca2+ buffers, does a threshold in the magnitude/amount
of the Ca2+ injection exist in order to initiate a Ca2+ wave?

Before answering this question, we need to take another point of view to think of the notion
of a threshold. We will use Li’s idea [30] to pursue this (see also [2, 3]). Indeed, it is known that
a threshold exists in the one dimensional cell model (2.1), that is, a. However, this quantity only
describes the value of [Ca2+]cyt at each space point. Moreover, if the initial stimulus u(x, 0) (e.g.,
a micro-injection of Ca2+) is greater than a at each space point, then the corresponding solution
u(x, t) of (2.1) ([Ca2+]cyt) will evolve into the stable elevated state 1, but not a wave. Therefore,
the threshold may not be determined by the size of the injection current. However, a possible
candidate could be the total Ca2+ content of the injection pipette. Mathematically, it means that
the threshold may be determined by the L1 norm of the initial stimulus u(x, 0). In fact, Aronson
and Weinberger [3] have proved the following property of (2.4)-(2.5) without buffers (i.e. (2.1)):

(P3) Let a ∈ (0, 1). There exist positive constants C = C(a) and σ = σ(a) such that u(x, t) =
O(e−Ct) uniformly for all x in R, if ‖u(·, 0)‖1 :=

∫
R u(x, 0)dx < σ.

Initially, in the absence of a stimulus, the cytosol, governed by (2.1), is at the stable basal state 0.
Thinking of u(·, 0) as the initial stimulus (e.g., a micro-injection of Ca2+), (P3) states that in the
absence of buffers, if the L1 norm of u(·, 0) (e.g., the total Ca2+ content of the injection pipette) is
not sufficiently large, then the wave will not be triggered and the solution u(x, t) of (2.1) ([Ca2+]cyt)
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will decay exponentially fast to the basal state, which is zero in this case, as t → +∞. Interestingly,
even in the presence of immobile buffers, we can have the following property:

(Q3) Let a ∈ (0, 1). There exist positive constants C and σ depending on ki
+, ki

−, bi
0, a such that

u(x, t) = O(e−Ct) and vi(x, t) = bi
0 + O(e−Ct) for i = 1, · · · , n, uniformly for all x in R, if

(u(x, 0),v(x, 0)) = (φ(x),b0) on R with ‖φ‖1 :=
∫
R φ(x)dx < σ.

Note that the cytosol, mediated by (2.4)-(2.5), is initially at the basal state (0,b0). Thinking of
φ(·) as the initial stimulus (e.g., a micro-injection of Ca2+), then (Q3) implies that in the presence
of uniformly distributed buffers, a threshold of the L1 norm of the initial stimulus φ(·) (e.g., the
total Ca2+ content of the injection pipette) to trigger a wave indeed exists; and this threshold may
depend on the total concentration b0 and the kinetic properties of the buffers. Moreover, if the
L1 norm of φ(·) (e.g., the total Ca2+ content of the injection pipette) is not bigger than such a
threshold, then the cell will return to its basal state (0,b0) exponentially fast. This result appears to
agree with the following experimental observations [10, 18, 44, 32, 40, 26, 30]: a localized increase in
[Ca2+]cyt to a high value introduced by a small amount of Ca2+ will only induce a localized transient,
but not trigger a wave. We briefly discuss the assumption: Buffers are uniformly distributed at
t = 0. As before, we let Bi, i = 1, · · · ,m, be the unbound form of the ith endogenous buffer,
and Bj , j = m + 1, · · · , n, the unbound form of the jth exogeneous buffer. Since initially, the ith
endogenous buffer should be in equilibrium with Ca2+ over the whole cytosol, and so [Bi] must take
the value bi

0. Hence all of the endogenous buffers satisfy this assumption. Thus in order to fulfill
this assumption, we only distribute the exogeneous buffers uniformly over the whole cell at t = 0.

The above discussion suggests the following problem: Does a highly localized increase in
[Ca2+]cyt (a Ca2+ spike) in a sufficiently large interval (area) evolve into a traveling front? To
answer this, we firstly recall the following technical property from [2, 3, 7]:

Let a ∈ (0, 1/2). Then there is a unique χ ∈ (a, 1) such that
∫ χ
0 f(q)dq = 0. Also, for any

given η ∈ (χ, 1), there exists a constant dη ∈ R+ and a solution qη(x) of

Dq′′ + f(q) = 0 (3.6)

in (−dη, dη) such that 0 = qη(±dη) < qη(x) ≤ η = qη(0) for x ∈ (−dη, dη) and xq′η(x) < 0 for
x ∈ (−dη, dη) \ {0}.

Now, we can give a partial answer to the above question. Indeed, for one dimensional cell with the
absence of buffers, Aronson and Weinberger [3] have proved the following property for (2.1):

(P4) Let a ∈ (0, 1/2). If u(x, 0) ≥ qη(x− x0) in (x0 − dη, x0 + dη) for some η ∈ (χ, 1) and x0 ∈ R,
then we have limt→+∞ u(x, t) = 1 uniformly for x in bounded subsets of R.

Thinking of u(·, 0) as the initial stimulus (e.g., a micro-injection Ca2+) and dη the size of the initial
stimulus, then (P4) says that in the absence of buffers, if the magnitude and the size of a localized
stimulus u(·, 0) is sufficiently large or u(·, 0) lies above the comparison function qη, then [Ca2+]cyt,
governed by (2.1), will evolve into another stable state 1. Furthermore, in the presence of buffers
with one assumption on the initial data, we still can show a similar result as stated below.

(Q4) Let a ∈ (0, 1/2). If u(x, 0) ≥ qη(x − x0) and vi(x, 0) = κi(u(x, 0)), i = 1, · · · , n, in (x0 −
dη, x0+dη) for some η ∈ (χ, 1) and x0 ∈ R, then limt→+∞(u(x, t),v(x, t)) = (1,b2) uniformly
for x in bounded subsets of R.
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We discuss the constraint on the initial data v(·, 0) of the buffers in (Q4). In fact, if the buffer Bi,
i = 1, · · · , n, has kinetics which are much faster than the time scale of the other Ca2+ reactions,
then following Wagner and Keizer [63, 59], we may conclude that to a first order approximation,
vi satisfies the following:

vi = ki
−bi

0/(ki
+u + ki

−) = κi(u).

Therefore, the initial constraint vi(x, 0) = κi(u(x, 0)), i = 1, · · · , n, is fulfilled by the buffers with
fast kinetics. In particular, the popular fluorescent indicators in biological experiments, like fura-2
and Calcium Green, have such required properties [41]. We remark that by (Q3)-(Q4), we could
expect that there is a threshold effect for the system (2.4)-(2.5). Hence, this not only generalizes
(P3)-(P4), but also tells us that stationary buffers cannot destroy the threshold phenomenon.

Now, we briefly discuss Ca2+ waves of the system (2.4)-(2.5). Actually, a partial answer to the
question of wave activity is given in [60] recently. Recall from [13] that for any a ∈ (0, 1) there
exists a stable monotone traveling wave solution u of (2.1) connecting the stable states 0 and 1 with
speed c in the form u(x, t) = U(x + ct). On the other hand, for a ∈ (0, 1/2) it is shown in [60] that
there exists a monotone traveling wave solution (u,v), v := (v1, · · · , vn), of the system (2.4)-(2.5)
with speed c0 > 0 in the form u(x, t) = U(x + c0t), vi(x, t) = Vi(x + c0t), i = 1, · · · , n, such that

(U ,V1, · · · ,Vn)(−∞) = (0,b0), (U ,V1, · · · ,Vn)(+∞) = (1,b2).

Moreover, this traveling wave solution is asymptotically stable in the sense that if a solution (u,v)
of (2.4)-(2.5) which vaguely resembles this traveling wave solution at the initial time, then there
exists x0 ∈ R such that

lim
t→+∞

|u(x, t) − U(x + c0t + x0)| = 0, (3.7)

lim
t→+∞

|vi(x, t) − Vi(x + c0t + x0)| = 0, i = 1, · · · , n, (3.8)

uniformly with respect to x ∈ R. Therefore, we conclude that stationary buffers cannot eliminate
the wave activity.

Finally, we want to investigate the propagation property for solutions of (2.4)-(2.5). In particu-
lar, we are interested in the case when the disturbance of the stable state which is initially confined
to a half-line (−∞, x0] for some x0 ∈ R. Inspired by work on the wave activity [3, 2, 25], we shall
investigate the large time behavior of u(ξ−st, t) and vi(ξ−st, t), i = 1, · · · , n, as t → +∞ for small
values of the wave speed s, where u(x, t) and vi(x, t) solve (2.4)-(2.5). More precisely, we have the
following propagation property.

(Q5) Assume that a ∈ (0, 1/2). Then there exists a positive constant ĉ0 such that for any s < ĉ0

we have limt→+∞(u(ξ− st),v(ξ− st, t)) = (1,b2) uniformly for ξ in [η,+∞) for all η ∈ R, if
u(x, 0) = 1, v(x, 0) = b2 for all x ≥ x0 for some x0 ∈ R. A similar result holds for the case
a ∈ (1/2, 1).

Note that the parameter s which appears in the above property represents the speed of prop-
agation of a disturbance. We may also explain (Q5) as follows. Recall that (0,b0) and (1,b2) are
two stable equilibrium states of the system (2.4)-(2.5). Then (Q5) tells us how these two stable
states interact with each other. For example, when a ∈ (0, 1/2), the state (1,b2) is more stable than
(0,b0), it is natural to expect that the state (1,b2) will eventually dominate the whole dynamics.
On the other hand, when a ∈ (1/2, 1), the state (0,b0) is more stable than (1,b2), the state (0,b0)
will eventually dominate. The property (Q5) shows that the speed of this propagation (or invading
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process) is positive. Note that this result could be comparable to those obtained by Aronson and
Weinberger [3, 2] and Klaasen and Troy [25].

The main idea to prove (Q1)-(Q5) is to use the comparison principle by constructing suitable su-
per and sub solutions. This idea is based on the works of Aronson and Weinberger [3], Hastings [17],
Klaasen and Troy [24, 25], and Schonbek [50].

We now outline the structure of the remaining of this paper as follows. In Section 4, we shall
develop a proposition of invariance region and a comparison principle for the system (2.4)-(2.5).
Then the proofs of the main results (Q1)-(Q5) are given in Section 5, with all of the proofs of
necessary technical lemmas being deferred to the appendix. Finally, a summary and discussion are
given in Section 6.

4 Mathematical Preliminaries

Given positive constants ki
+, ki

−, i = 1, · · · , n, we set

F (u,v) := f(u) +
n∑

i=1

Gi(u,v), f(u) := u(1 − u)(u − a),

Gi(u,v) := ki
−bi

0 − (ki
+u + ki

−)vi, i = 1, · · · , n.

By assuming that all of the buffers are immobile, we can rewrite (2.4)-(2.5) as the following system.

∂u

∂t
= D

∂2u

∂x2
+ F (u,v), (x, t) ∈ R × R+, (R+ := (0,∞)) (4.1)

∂vi

∂t
= Gi(u,v), (x, t) ∈ R × R+, i = 1, · · · , n. (4.2)

We remark that Gi(u,v) = 0 if and only if vi = κi(u). We shall investigate the asymptotic
behavior as t → +∞ of the solution of (4.1)-(4.2) with the initial data

u(x, 0) = φ(x), vi(x, 0) = ψi(x), i = 1, · · · , n, for x ∈ R. (4.3)

We will briefly discuss the existence of the classical solution of (4.1)-(4.3). In fact, if φ(x) and
ψi(x), i = 1, · · · , n, are sufficiently smooth and satisfy that 0 ≤ φ(x) ≤ 1 and bi

2 ≤ ψi(x) ≤ bi
0 for

all x ∈ R and i = 1, · · · , n, then a similar argument as in [46] shows that the problem (4.1)-(4.3)
has a unique solution (u(x, t),v(x, t)) of class C3 on R× [0,∞). Note that (u(x, t),v(x, t)) satisfies

u(x, t) =
∫
R

K(x, y, t)φ(y)dy

+
∫ t

0

∫
R

K(x, y, t − s)F (u(y, s),v(y, s))dyds, (4.4)

vi(x, t) = ψi(x) +
∫ t

0
Gi(u(x, s),v(x, s))ds, (4.5)

where
K(x, y, t) :=

1
2
√

πDt
e−(x−y)2/(4Dt).

Suppose that φ and ψi, i = 1, · · · , n, are uniformly Hölder continuous in R with exponent α
for some α ∈ (0, 1). From (4.4) and (4.5), using an iteration method of Evans and Shenk [12],
regularity theory of parabolic equations (cf. [15]) and invariance region theory, we can show that
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there is a unique solution (u,v) defined for all t > 0 such that u ∈ C2,1(R×R+)∩C0(R× [0,∞)),
vi ∈ C0(R×R+), and vi,t ∈ C0(R×R+) for i = 1, · · · , n, where the set C2,1(R×R+) consists of all
functions that are once continuously differentiable in t and twice continuously differentiable in x for
all (x, t) ∈ R×R+, and the set C0(R× [0,∞)) consists of continuous functions in R× [0,∞). Both
here and below, for functions g(x) and h(x, t), a constant δ ∈ (0, 1), and a set Ω ⊂ R × [0,+∞),
we define

|g|0 ≡ sup
x∈R

|g(x)|, [g]δ ≡ sup
x,y∈R, x 6=y

{|g(x) − g(y)|/|x − y|δ}

Cδ(R) := {g ∈ C0(R) | |g|0 + [g]δ < ∞},
[h]δ;Ω ≡ sup

(x,t),(y,s)∈Ω, (x,t)6=(y,s)
{|h(x, t) − h(y, s)|/(|x − y|δ + |t − s|δ/2)},

|h|0;Ω ≡ sup
(x,t)∈Ω

|h(x, t)|, |h|δ;Ω ≡ |h|0;Ω + [h]δ;Ω,

Cδ(Ω) := {h ∈ C0(Ω) | |h|0;Ω + [h]δ;Ω < ∞}.

Therefore, except otherwise stated, we shall assume that the initial data φ(x) and ψi(x), i =
1, · · · , n, are in Cα(R) for some α ∈ (0, 1).

First, we have the following proposition of invariance regions.

Proposition 1 (Invariance Region) Let (u,v) be a global solution of (4.1)-(4.2) with 0 ≤ u(x, 0) ≤
1 and b2 ≤ v(x, 0) ≤ b0 for all x ∈ R. Then the followings hold.

(1) 0 ≤ u(x, t) ≤ 1 and b2 ≤ v(x, t) ≤ b0 for all (x, t) ∈ R × R+.

(2) If 0 ≤ u(x, 0) ≤ a and b1 ≤ v(x, 0) ≤ b0 for all x ∈ R, then 0 ≤ u(x, t) ≤ a and
b1 ≤ v(x, t) ≤ b0 for all (x, t) ∈ R × R+.

(3) If a ≤ u(x, 0) ≤ 1 and b2 ≤ v(x, 0) ≤ b1 for all x ∈ R, then a ≤ u(x, t) ≤ 1 and
b2 ≤ v(x, t) ≤ b1 for all (x, t) ∈ R × R+.

Proof. We shall only consider the case when 0 ≤ u(x, 0) ≤ 1 and b2 ≤ v(x, 0) ≤ b0 for all x ∈ R,
since the proof for the other two cases are similar. However, the proof follows from Theorem 14.11
on p.203 and Corollary 14.9 on p.202 of [57] (see also [48]). The outer normal conditions on the
boundary of the set {(u,v) | 0 ≤ u ≤ 1, bi

2 ≤ vi ≤ bi
0, i = 1, · · · , n} follow from the properties of F

and Gi, i = 1, · · · , n.
Throughout this paper, we shall always assume that the initial data φ(x) and ψi(x), i = 1, · · · , n,

are in [0, 1] and [bi
2, b

i
0], respectively.

The next proposition is a comparison theorem for the system (4.1)-(4.2).

Proposition 2 (Comparison Principle) Let (uj ,vj), j = 1, 2, be the solution of (4.1)-(4.2) on
(â, b̂) × R+ with 0 ≤ u1(x, 0) ≤ u2(x, 0) ≤ 1 and b2 ≤ v2(x, 0) ≤ v1(x, 0) ≤ b0 for all x ∈ R.
If â 6= −∞, we assume that 0 ≤ u1(â, t) ≤ u2(â, t) ≤ 1 and b2 ≤ v2(â, t) ≤ v1(â, t) ≤ b0 for all
t > 0; if b̂ 6= +∞, we assume that 0 ≤ u1(b̂, t) ≤ u2(b̂, t) ≤ 1 and b2 ≤ v2(b̂, t) ≤ v1(b̂, t) ≤ b0 for
all t > 0. Then the following statements hold.

(1) u1(x, t) ≤ u2(x, t) and v2(x, t) ≤ v1(x, t) for all (x, t) ∈ (â, b̂) × R+.

(2) If 0 ≤ u1(x, 0) < u2(x, 0) ≤ 1 for all x ∈ (c, d) ⊆ (â, b̂), then we have u1(x, t) < u2(x, t) and
v2(x, t) < v1(x, t) for all (x, t) ∈ (â, b̂) × R+.
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Proof. Set v1 = (v11, · · · , v1n), v2 = (v21, · · · , v2n), and (ũ, ṽ) = (u1 − u2,v2 − v1). Then (ũ, ṽ)
satisfies

L1[ũ, ṽ] = F (u1,v1) − F (u2,v2) := [f1(x, t)ũ −
n∑

i=1

f1i(x, t)ṽi], (4.6)

L2i[ũ, ṽ] = Gi(u2,v2) − Gi(u1,v1) := [−g2i(x, t)ũ + g̃2i(x, t)ṽi], i = 1, · · · , n, (4.7)

together with the initial data

ũ(x, 0) = u1(x, 0) − u2(x, 0), ṽi(x, 0) = v2i(x, 0) − v1i(x, 0), i = 1, · · · , n,

where

L1[u,v] = ut − Duxx,
L2i[u,v] = vi,t,
f1(x, t) = Fu(θ1u1 + (1 − θ1)u2, θ1v1 + (1 − θ1)v2)(x, t),
f1i(x, t) = Fvi(θ1u1 + (1 − θ1)u2, θ1v1 + (1 − θ1)v2)(x, t),
g2i(x, t) = Gi,u(θ2iu1 + (1 − θ2i)u2, θ2iv1 + (1 − θ2i)v2)(x, t),
g̃2i(x, t) = Gi,vi(θ2iu1 + (1 − θ2i)u2, θ2iv1 + (1 − θ2i)v2)(x, t),

for some θ1 = θ1(u1,v1, u2,v2) ∈ (0, 1), θ2i = θ2i(u1,v1, u2,v2) ∈ (0, 1) and i = 1, · · · , n.
We claim that the region {ũ ≤ 0, ṽi ≤ 0, i = 1, · · · , n} is invariant under the flow (4.6)-(4.7).

Indeed, from Proposition 1 and the definitions of F and Gi, it follows that

f1i(x, t) < 0 and g2i(x, t) < 0 for all (x, t) ∈ (â, b̂) × [0, +∞) and i = 1, · · · , n. (4.8)

Also, note that ũ(x, 0) ≤ 0 and ṽ(x, 0) ≤ 0 for all x ∈ (â, b̂) with the correct inequalities on the
boundary sets if â 6= −∞ or b̂ 6= +∞. Therefore, for each i = 1, · · · , n, by Theorem 14.11 of [57, p.
203] we have ũ(x, t) ≤ 0 and ṽ(x, t) ≤ 0 for all (x, t) ∈ (â, b̂) × [0, +∞).

Now we turn to the proof of the second part. First, we claim that ũ(x, t) < 0 for all (x, t) ∈
(â, b̂) × R+. By our assumption, it follows that

ũ(x, 0) < 0 for all x ∈ (c, d). (4.9)

For contradiction, we suppose that there exist x1 ∈ (â, b̂) and t1 > 0 such that ũ(x1, t1) = 0. Choose
a bounded interval (a1, b1) ⊂ (â, b̂) such that a1 < x1 < b1 and (a1, b1) ∩ (c, d) 6= ∅. Then we have
ũ(a1, t) ≤ 0, ṽ(a1, t) ≤ 0 and ũ(b1, t) ≤ 0, ṽ(b1, t) ≤ 0 for all t ∈ [0, t1], and ũ(x, 0) ≤ 0, ṽ(x, 0) ≤ 0
for all x ∈ [a1, b1]. Although the diffusion coefficients of ṽi in our system is 0 for i = 1, · · · , n,
however, scrutinizing the proof of Theorem 13 in [45, pp. 189-190], we can conclude that ũ ≡ 0 on
[a1, b1] × [0, t1], a contradiction to (4.9). Therefore, we have ũ(x, t) < 0 for all (x, t) ∈ (â, b̂) × R+.

Finally, we prove that ṽ(x, t) < 0 for all (x, t) ∈ (â, b̂) × R+. Indeed, fix i ∈ {1, · · · , n} and
for contradiction, we assume that there exist x2 ∈ (â, b̂) and t2 > 0 such that ṽi(x2, t2) = 0. Since
ṽi ≤ 0 on (â, b̂) × [0, +∞), we have ṽi,t(x2, t2) = ∂ṽi/∂t(x2, t2) ≥ 0. On the other hand, using the
fact that ũ(x2, t2) < 0 and (4.7)-(4.8), it follows that

ṽi,t(x2, t2) = −g2i(x2, t2)ũ(x2, t2) + g̃2i(x2, t2)ṽi(x2, t2)
< g̃2i(x2, t2)ṽi(x2, t2) = 0,

a contradiction. Thus we have ṽi(x, t) < 0 for all (x, t) ∈ (â, b̂)×R+. The proof is completed.

We shall quote some results from [7] about solutions of the equation (3.6). These results will
play a very important role in the proof of our theorems.
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First, we define the functional

H(q) =
1
D

∫ q

0
f(s)ds.

Note that
E[q](x) :=

1
2
(q′)2(x) + H(q(x))

is constant along any trajectory of (3.6). Assume that a ∈ (0, 1/2). Then there exists a unique
positive number χ ∈ (a, 1) such that H(χ) = 0. The trajectory through the regular point (χ, 0) in
the phase plane (q, q′) is the locus of points (q, q′) satisfying (q′)2/2 + H(q) = 0. It is therefore a
closed curve which intersects the q-axis at (χ, 0) and (0, 0). We denote the corresponding solution
as qχ with qχ(0) = χ. Moreover, for any given η ∈ (χ, 1), there exists a constant dη ∈ R+ and a
function qη(x) such that qη(x) is a solution of (3.6) in (−dη, dη) such that 0 = qη(±dη) < qη(x) ≤
η = qη(0) in (−dη, dη) and xq′η(x) < 0 for x ∈ (−dη, dη) \ {0}.

The following proposition is the main tool for our discussion.

Proposition 3 Fix l ∈ {0, a}. Let q be a solution of (3.6) in (â, b̂) such that l ≤ q ≤ 1 in (â, b̂),
where −∞ ≤ â < b̂ ≤ +∞. Here we assume that q(â) = l, if â > −∞; and q(b̂) = l, if b̂ < +∞.
Let (u,v) be the solution of (4.1)-(4.2) with the initial values

u(x, 0) =

{
q(x) in (â, b̂),
l otherwise,

and vi(x, 0) = κi(u(x, 0)), i = 1, · · · , n.

Then u(x, t+h) ≥ u(x, t) and v(x, t+h) ≤ v(x, t) for all (x, t) ∈ R× [0, +∞) for any h > 0. Also,
there exists a solution w of (3.6) in R with the property

w ≥ q in (â, b̂), w ∈ [l, 1] on R (4.10)

such that
lim

t→+∞
u(x, t) = w(x), lim

t→+∞
vi(x, t) = κi(w(x)), i = 1, · · · , n,

uniformly for x in any bounded interval of R. Moreover, if w̃ is a solution of (3.6) with the property
(4.10) and σ̃i(x) := κi(w̃(x)), i = 1, · · · , n, for all x ∈ R, then we have w̃ ≥ w and σ̃i ≤ σi on R
for i = 1, · · · , n.

Proof. We assume that â > −∞ and b̂ < +∞, since the other cases â > −∞ or b̂ < +∞ can be
handled in a similar way. By Proposition 1, we have u(x, t) ∈ [l, 1] and vi(x, t) ∈ [bi

2, κi(l)] for all
(x, t) ∈ R × [0, +∞) and i = 1, · · · , n. Set p := (p1, · · · , pn), where pi(x) := κi(q(x)), i = 1, · · · , n.
Note that (q,p) and (u,v) are solutions of (4.1)-(4.2) on (â, b̂) × R+ such that q(x) = u(x, 0),
p(x) = v(x, 0) for all x ∈ (â, b̂), and l = q(â) ≤ u(â, t), l = q(b̂) ≤ u(b̂, t), vi(â, t) ≤ pi(â) = κi(l),
vi(b̂, t) ≤ pi(b̂) = κi(l) for all t > 0 and i = 1, · · · , n. Then, by applying Proposition 2, we obtain
that u(x, t) ≥ q(x) and v(x, t) ≤ p(x) for all (x, t) ∈ (â, b̂) × R+. Therefore, for any h > 0 and
each i = 1, · · · , n, we have

u(x, h) ≥ u(x, 0) and vi(x, h) ≤ vi(x, 0) for all x ∈ R.

Apply Proposition 2 again, we conclude that for any h > 0 and each i = 1, · · · , n,

u(x, t + h) ≥ u(x, t) and vi(x, t + h) ≤ vi(x, t) for all (x, t) ∈ R × R+.
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Noting that u ≤ 1 on R × R+, it follows that for each x ∈ R, u(x, t) is nondecreasing in t and
bounded above, and so the limit limt→+∞ u(x, t) = w(x) exists for all x ∈ R. Clearly, (4.10) holds.
Similarly, for each x ∈ R and i = 1, · · · , n, vi(x, t) is nonincreasing and bounded below by bi

2, and
so the limit limt→+∞ vi(x, t) = σi(x) exists for all x ∈ R.

Using the bounds of u and v, by applying the interior Lp estimate (cf. Theorem 7.13 of [28, p.
172], for example) to (4.1) and Sobolev’s embedding theorems, it is easy to show that there exists
a positive constant c1, depending only on D, ki

+, ki
−, b0, |u(·, 0)|α, such that

|u|α;Q ≤ c1, Q := R × [0, +∞). (4.11)

Next, we claim that there exists c2, determined by D, ki
+, ki

−, b0, |u(·, 0)|α, |vi(·, 0)|α, such that

|vi|α;Q ≤ c2. (4.12)

Indeed, fix i ∈ {1, · · · , n}. Solving (4.2), we obtain that

vi(x, t) = e−
∫ t

0
(ki

+u(x,s)+ki
−)dsψi(x) + ki

−bi
0

∫ t

0
e
∫ s

t
(ki

+u(x,τ)+ki
−)dτds.

For (x, t), (y, t) ∈ Q with x 6= y, we have

|vi(x, t) − vi(y, t)| ≤ |e−
∫ t

0
(ki

+u(x,s)+ki
−)ds − e−

∫ t

0
(ki

+u(y,s)+ki
−)ds|ψi(x)

+e−
∫ t

0
(ki

+u(y,s)+ki
−)ds|ψi(x) − ψi(y)|

+ki
−bi

0

∫ t

0
|e

∫ s

t
(ki

+u(x,τ)+ki
−)dτ − e

∫ s

t
(ki

+u(y,τ)+ki
−)dτ |ds

:= I + II + III.

Using bi
2 ≤ ψi(x) ≤ bi

0 for all x ∈ R, [u]α;Q ≤ c1, and the inequality

|e−x1 − e−x2 | ≤ |x1 − x2| for all x1, x2 ≥ 0,

it follows that

I ≤ |e−ki
−t(

∫ t

0
ki

+u(x, s)ds −
∫ t

0
ki

+u(y, s)ds)|ψi(x)

≤ c1k
i
+bi

0te
−ki

−t|x − y|α

for all t ≥ 0. For II, we have
II ≤ [ψi]α|x − y|α.

Similarly, we can estimate III as the following.

III ≤ ki
−bi

0

∫ t

0
eki

−(s−t)ki
+|

∫ s

t
(u(x, τ) − u(y, τ))dτ |ds

≤ c1k
i
+ki

−bi
0(

∫ t

0
(t − s)eki

−(s−t)ds)|x − y|α

≤ c1k
i
+ki

−bi
0[(e

−ki
−t + 1 + ki

−te−ki
−t)/(ki

−)2]|x − y|α.

From these estimates on I, II and III, we conclude that there exists c2, determined by D, ki
+, ki

−,
b0, |u(·, 0)|α, |vi(·, 0)|α, such that

|vi(x, t) − vi(y, t)| ≤ c2|x − y|α for all (x, t), (y, t) ∈ Q and i = 1, · · · , n. (4.13)
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For (x, t), (x, s) ∈ Q, by applying the mean-value theorem to (4.2), there exists a constant which
is still denoted by c2, such that

|vi(x, t) − vi(x, s)| ≤ c2|t − s| for all (x, t), (x, s) ∈ Q and i = 1, · · · , n. (4.14)

Now, for all (x, t), (y, s) ∈ Q, from (4.13), (4.14), and the following inequality

|vi(x, t) − vi(y, s)|
|x − y|α + |t − s|α/2

≤ |vi(x, t) − vi(y, t)|
|x − y|α

+
|vi(y, t) − vi(y, s)|

|t − s|α/2
,

the claim (4.12) follows.
Therefore, (4.11), (4.12), and the Schauder estimates (see Theorem 5 of [15, p. 64]) imply

that [u]α;Q, |ux|0;Q, |uxx|0;Q, [uxx]α;Q, |ut|0;Q, and [ut]α;Q are bounded uniformly. Furthermore,
from (4.2) and (4.12) it follows that [vi]α;Q, |vi,t|0;Q, and [vi,t]α;Q, i = 1, · · · , n, are also uniformly
bounded. Then we can conclude that, for each bounded x interval, the t parameterized families of
functions u, uxx, ut, vi, vi,t are equicontinuous in x and hence converge uniformly to w, wxx, 0, σi,
0, respectively, as t → ∞. Thus w satisfies (3.6) and σi satisfies σi = κi(w) for i = 1, · · · , n.

Finally, if w̃ is a solution of (3.6) with the property (4.10) and σ̃i(x) = κi(w̃(x)), i = 1, · · · , n,
then we have w̃(x) ≥ u(x, 0) and σ̃i(x) ≤ vi(x, 0) for all x ∈ R and i = 1, · · · , n. Then, by applying
Proposition 2, we obtain that w̃(x) ≥ u(x, t) and σ̃i(x) ≤ vi(x, t) for all (x, t) ∈ R × R+ and
i = 1, · · · , n. This implies that w̃ ≥ w and σ̃i ≤ σi on R for i = 1, · · · , n. Thus the theorem
follows.

5 Proofs of Main Results

For reader’s convenience, all of the proofs of lemmas in this section are deferred to the appendix.

5.1 Stability of the equilibrium state (1,b2)

In this subsection, we determine the stability of the equilibrium state (1,b2) of (4.1)-(4.2) and
obtain its attraction region.

Theorem 1 Let a ∈ (0, 1) and (u,v) be a solution of (4.1)-(4.2) satisfying that u(x, 0) ∈ [a, 1],
vi(x, 0) ∈ [bi

2, b
i
1] for all x ∈ R and i = 1, · · · , n, and u(·, 0) 6≡ a. Then

lim
t→+∞

(u(x, t),v(x, t)) = (1,b2)

uniformly for x in bounded subsets of R.

Proof. Since u(·, 0) 6≡ a, by Proposition 2, we conclude that u(x, t) > a and v(x, t) < b1 for all
(x, t) ∈ R × R+. Let h > 0. Let ε ∈ (0, 1 − a) be sufficiently small such that u(x, h) ≥ a + ε and
vi(x, h) ≤ bi

1 − ε for all x ∈ [−δ1, δ1] and i = 1, · · · , n, where δ1 is defined in Lemma 7.1 of the
appendix. Then from Lemma 7.1 it follows that there exist a solution q(x) of (3.6) and x̂ ∈ (0, δ1)
such that q(x) ∈ (a, a + ε] for all x ∈ (−x̂, x̂) and q(±x̂) = a. Then from Propositions 2 and 3 it
follows that

lim inf
t→+∞

u(x, t) ≥ w(x) and lim sup
t→+∞

vi(x, t) ≤ σi(x) for all x ∈ R,

where w(x) satisfies (3.6) in R, σi(x) = κi(w(x)), i = 1, · · · , n, and a ≤ q(x) ≤ w(x) ≤ 1,
bi
2 ≤ σi(x) ≤ κi(q(x)) ≤ bi

1 for all x ∈ (−x̂, x̂).
If we can show that w ≡ 1 and σi ≡ bi

2 for i = 1, · · · , n, then the proof is completed. Indeed,
since w(x) ∈ [a, 1] and satisfies (3.6) for all x ∈ R, it follows from the phase plane analysis that
either w ≡ a or 1. Since w(0) ≥ q(0) > a, we must have w ≡ 1, and so σi ≡ bi

2 on R for i = 1, · · · , n.
This completes the proof.
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5.2 Stability of the equilibrium state (0,b0)

In this subsection, we derive the asymptotic stability of the equilibrium state (0,b0) of (4.1)-(4.2)
as follows. Since the proof of the following theorem is similar to that of Theorem 1, we shall omit
it.

Theorem 2 Let a ∈ (0, 1) and (u,v) be a solution of (4.1)-(4.2) satisfying that u(x, 0) ∈ [0, a],
vi(x, 0) ∈ [bi

1, b
i
0] for all x ∈ R and i = 1, · · · , n, and u(·, 0) 6≡ a, then

lim
t→+∞

(u(x, t),v(x, t)) = (0,b0)

uniformly for x in bounded subsets of R.

5.3 Threshold phenomenon

In this subsection, we mainly concern the threshold phenomenon for our system. For this, we first
note that one can view the initial data (u(x, 0),v(x, 0)) as a perturbation of either the equilibrium
state (1,b2) or (0,b0). And we shall show that a disturbance (u(x, 0),v(x, 0)) of the state (0,b0)
which is not sufficiently large on a sufficiently large interval will eventually go to the state (0,b0),
and so this implies that (0,b0) is asymptotically stable with respect to such perturbation. More
precisely, we have the following theorem.

Theorem 3 Let a ∈ (0, 1) and (u,v) be the solution of (4.1)-(4.2) with the initial value (φ,b0).
Then there exist positive constants C = C(ki

+, ki
−, bi

0, a) and σ = σ(ki
+, ki

−, bi
0, a) such that

u(x, t) = O(e−Ct) and vi(x, t) = bi
0 + O(e−Ct) for i = 1, · · · , n,

uniformly in R, if ‖φ‖1 :=
∫
R φ(x)dx < σ.

In order to prove Theorem 3, we first have the following lemma which is a weaker version of
Theorem 2.

Lemma 5.1 Let (u(x, t),v(x, t)) ∈ [0, 1] × [b1
2, b

1
0] × · · · × [bn

2 , bn
0 ] be a solution of (4.1)-(4.2) on

R × [0, +∞). If there exists γ ∈ (0, a) such that u(x, 0) ∈ [0, γ] and v(x, 0) ∈ [κ1(γ), b1
0] × · · · ×

[κn(γ), bn
0 ] for all x ∈ R, then there exists a positive constant C = C(ki

+, ki
−, bi

0, a) such that

u(x, t) = O(e−Ct) and vi(x, t) = bi
0 + O(e−Ct) for i = 1, · · · , n,

uniformly in R.

Inspired by the idea of Schonbek [50], we can estimate the L∞ norm of the solution (u,v) of
(4.1)-(4.2) by the L1 norm of the initial condition. More precisely, we have the following lemma.

Lemma 5.2 Let (u,v) be the solution of (4.1)-(4.2) with the initial value (φ,b0) at t = 0. Then
there exists a positive constant C such that

u(x, t) +
n∑

i=1

(bi
0 − vi(x, t)) ≤ C(

1√
t

+
√

t + eCt +
√

teCt + t
√

teCt)‖φ‖1 (5.1)

for all (x, t) ∈ R × [0, +∞), where ‖φ‖1 is defined by ‖φ‖1 =
∫
R φ(x)dx.
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Now, we are ready to prove Theorem 3.

Proof of Theorem 3. By Lemma 5.2, we have

u(x, 1) +
n∑

i=1

(bi
0 − vi(x, 1)) ≤ C(2 + 3eC)‖φ‖1 for all x ∈ R,

where C is defined in Lemma 5.2. This implies that we can choose σ > 0 such that u(x, 1) < a/2
and vi(x, 1) > κi(a/2) for all x ∈ R and i = 1, · · · , n, if ‖φ‖1 < σ. Combining this with Lemma 5.1,
the theorem follows.

The following theorem shows us that (u,v) ≡ (1,b2) is asymptotically stable with respect to
some perturbation.

Theorem 4 Let a ∈ (0, 1/2) and (u,v) be a solution of (4.1)-(4.2) on R × R+. If

u(x, 0) ≥ qη(x − x0), v(x, 0) = κi(u(x, 0)), i = 1, · · · , n, in (x0 − dη, x0 + dη)

for some η ∈ (χ, 1) and for some x0, then we have

lim
t→+∞

u(x, t) = 1 and lim
t→+∞

vi(x, t) = bi
2, i = 1, · · · , n

for all x ∈ R.

Proof. By Proposition 2, we may assume that u(x, 0) = qη(x − x0). Then we apply Proposition 3
with (q(x), p1(x), · · · , pn(x)) = (qη(x), κ1(qη(x)), · · · , κn(qη(x))). What left to prove is that τ ≡ 1
on R. However, this follows from the phase plane consideration (see also [3]). This completes the
proof.

Theorems 3 and 4 show the existence of a threshold phenomenon for the system (4.1)-(4.2).
Therefore, stationary buffers cannot destroy the threshold phenomenon.

5.4 Propagation phenomenon

Recall that (0,b0) and (1,b2) are two stable states of the system (4.1)-(4.2). In this subsection, we
shall investigate how these two stable states interact with each other. Recall from [60] that, under
certain assumptions, for a ∈ (0, 1/2) there exists a traveling wave solution (u,v) of (4.1)-(4.2) with
speed c0 > 0 in the form u(x, t) = U(x + c0t), vi(x, t) = Vi(x + c0t), i = 1, · · · , n, such that

(U ,V1, · · · ,Vn)(−∞) = (0,b0), (U ,V1, · · · ,Vn)(+∞) = (1,b2).

Moreover, it is also shown [60] that this traveling wave solution is asymptotically stable in a certain
sense (see (3.7) and (3.8) in section 3). Roughly speaking, under certain conditions on the initial
data, a solution (u,v) of (4.1)-(4.2) converges to a translation of this traveling wave solution as
t → +∞. Note that the state (1,b2) is more stable than the state (0,b0), if a ∈ (0, 1/2). Therefore,
it is natural to expect that the state (1,b2) will eventually dominate the whole dynamics. The
existence of a traveling wave solution shows that this invading process is of positive speed.

Suppose that (u,v) is a sufficiently smooth solution of (4.1)-(4.2) such that u(x, 0) = 1 and
v(x, 0) = b2 for all x ≥ x0 for some x0 ∈ R. No assumption is made on the behavior of (u,v) for
x < x0, t = 0, except that 0 ≤ u ≤ 1 and b2 ≤ v ≤ b0 (as we always assume). Suppose that we can
choose functions (w0(x),V0(x)) with w0(x) ≤ u(x, 0) and V0(x) ≥ v(x, 0), such that the conditions
of Stability Theorem of [60] hold. Let (w,V) be the solution of (4.1)-(4.2) with the initial data
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(w0,V0). Then, by a comparison, we have w(x, t) ≤ u(x, t) ≤ 1 and b2 ≤ v(x, t) ≤ V(x, t) for all
x ∈ R and t ≥ 0. Also, by the stability result of [60], there is a constant x0, such that

|w(x, t) − U(x + c0t + x0)| → 0, |Vi(x, t) − Vi(x + c0t + x0)| → 0

as t → +∞ uniformly for all x ∈ R.
Now, given any s < c0, for any ξ ∈ R we write

w(ξ − st, t) = U(ξ − st + c0t + x0) + [w(ξ − st, t) − U(ξ − st + c0t + x0)],
Vi(ξ − st, t) = Vi(ξ − st + c0t + x0) + [Vi(ξ − st, t) − Vi(ξ − st + c0t + x0)].

Then we obtain that
lim

t→+∞
(u(ξ − st, t),v(ξ − st, t)) = (1,b2) (5.2)

uniformly for ξ ∈ [η,+∞) for all η ∈ R.
We remark that for a ∈ (1/2, 1), by a similar argument as the case for a ∈ (0, 1/2), we can

show that there exists a traveling wave solution of the system (4.1)-(4.2). But, the stability of this
traveling wave solution is still unknown.

However, without knowing the existence and stability of traveling wave solution, we shall prove
in this subsection that (5.2) holds. For this, we introduce the moving coordinate ρ = x + ct for
some c > 0. Then the system (4.1)-(4.2) is reduced to the following system:

∂u

∂t
= D

∂2u

∂ρ2
− c

∂u

∂ρ
+ F (u,v), (5.3)

∂vi

∂t
= −c

∂vi

∂ρ
+ Gi(u,v), i = 1, · · · , n. (5.4)

We shall always assume in this subsection that the solution is sufficiently smooth.
Note that the associated steady state solutions (q,p), p = (p1, · · · , pn), of (5.3)-(5.4) satisfy the

following ordinary differential equations:

Dq′′ − cq′ + F (q,p) = 0, (5.5)
−cp′i + Gi(q,p) = 0, i = 1, · · · , n. (5.6)

We shall consider the solution of (5.5)-(5.6) in R+ with

q(0) = 1, q′(0) = −β, pi(0) = bi
2, p′i(0) = 0, i = 1, · · · , n, c = min{ε, β}, (5.7)

where β > 0 is a parameter and ε is a given fixed positive constant.
Then we have the following key lemma in this subsection.

Lemma 5.3 Let a ∈ (1/2, 1). Then for each ε > 0 there exists β = β(ε) > 0 such that the solution
(q,p) of (5.5)-(5.7) exists in [0,∞) and it satisfies

(1) 0 < q < 1 and q′ < 0 on (0, +∞),

(2) b2 < p(ρ) < b0 and p′ > 0 on (0, +∞),

(3) limρ→+∞(q(ρ), q′(ρ),p(ρ)) = (0, 0,b0).

With this key lemma, we can use the idea of Klaasen and Troy [25] to prove one of the main
theorems of this subsection.
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Theorem 5 Let a ∈ (1/2, 1). Suppose that (u,v) is a sufficiently smooth solution of (4.1)-(4.2)
such that u(x, 0) = 0 and v(x, 0) = b0 for all x ≥ x0 for some x0 ∈ R. Then there exists a positive
constant ĉ0 such that for any s < ĉ0 we have

lim
t→+∞

(u(ξ − st, t),v(ξ − st, t)) = (0,b0)

uniformly for ξ ∈ [η,+∞) for all η ∈ R.

Proof. First, under the assumptions of the theorem, it follows from Proposition 1 that 0 ≤ u(x, t) ≤
1 and b2 ≤ v(x, t) ≤ b0 for all (x, t) ∈ R × R+.

For each ε > 0, let c(ε) := min{ε, β(ε)}, where β(ε) is the constant obtained in Lemma 5.3. Set
ĉ0 := supε>0{c(ε)}.

Given s < ĉ0. Choose ε > 0 such that s < c(ε) < ĉ0. Let β, q,p, c be obtained in Lemma 5.3
corresponding to this ε. For this c, we define ū(ρ, t) := u(ρ − ct, t) and v̄(ρ, t) := v(ρ − ct, t).
Then (ū, v̄) satisfy (5.3)-(5.4) with the initial condition (ū(ρ, 0), v̄(ρ, 0)) = (u(ρ, 0),v(ρ, 0)). Thus,
if ρ > x0, then ū(ρ, 0) = 0 ≤ q(ρ − x0) and v̄(ρ, 0) = b0 ≥ p(ρ − x0). Also, note that ū(x0, t) ≤
1 = q(x0 − x0) and v̄(x0, t) ≥ b2 = p(x0 − x0) for all t > 0. Then an analogue comparison
principle to Proposition 2 can be proved for the system (5.3)-(5.4). Therefore, we conclude that
ū(ρ, t) ≤ q(ρ − x0) and v̄(ρ, t) ≥ p(ρ − x0) for ρ ≥ x0 and t > 0.

Now, for ξ ∈ R, let ρ = ξ + (c − s)t, then we have

0 ≤ u(ξ − st, t) = u(ρ − ct, t) = ū(ρ, t) ≤ q(ρ − x0),
p(ρ − x0) ≤ v̄(ρ, t) = v(ρ − ct, t) = v(ξ − st, t) ≤ b0

for ρ > x0 and t > 0. Noting that ρ = ξ +(c− s)t → +∞ as t → +∞, it follows that q(ρ−x0) → 0
and p(ρ − x0) → b0 as t → +∞. Therefore, we have

lim
t→+∞

(u(ξ − st, t),v(ξ − st, t)) = (0,b0).

Moreover, the convergence is uniform on [η,+∞) for any η ∈ R. The theorem follows.

Proceeding as in the proof of Lemma 5.3, we can prove the following lemma.

Lemma 5.4 Let a ∈ (0, 1/2). Then for each ε > 0 there exists β = β(ε) > 0 such that the solution
(q, q′,p) of (5.5)-(5.6) with the following initial conditions

q(0) = 0, q′(0) = β, pi(0) = bi
0, p′i(0) = 0, i = 1, · · · , n, c = min{ε, β},

exists in [0,∞) and it satisfies

(1) 0 < q < 1 and q′ > 0 on (0, +∞),

(2) b2 < p < b0 and p′ < 0 on (0, +∞),

(3) limρ→+∞(q(ρ), q′(ρ),p(ρ)) = (1, 0,b2).

Then, by a similar argument, we have the following theorem.

Theorem 6 Let a ∈ (0, 1/2). Suppose that (u,v) is a sufficiently smooth solution of (4.1)-(4.2)
such that u(x, 0) = 1 and v(x, 0) = b2 for all x ≥ x0 for some x0 ∈ R. Then there exists a positive
constant ĉ0 such that for any s < ĉ0 we have

lim
t→+∞

(u(ξ − st, t),v(ξ − st, t)) = (1,b2)

uniformly for ξ ∈ [η,+∞) for all η ∈ R.
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6 Summary and Discussion

In this paper, we consider the buffered bistable system (2.4)-(2.5) as a model for the fertilization
Ca2+ wave, which is a simplified version of the Li and Rinzel model [29] by Smith, Pearson, and
Keizer [52, 56, 59, 51] with an crucial improvement, i.e., the kinetics of the buffers are not necessarily
fast with respect to the Ca2+ reactions. Our main concern is to study how the (immobile) buffers
affect the properties of the model (2.1). For instance, can the addition of buffers eliminate wave
activity? how much do buffers affect the stability properties of the associated steady states? Can
the addition of buffers destroy the threshold phenomenon?

By constructing suitable super and sub solutions, we can prove that stationary buffers cannot
destroy the asymptotic stability of the equilibrium states u ≡ 0 and u ≡ 1 of the bistable equa-
tion (2.1) without buffers. This implies that immobile buffers preserve the important feature of
mature Xenopus eggs–a bistable physiological state of Ca2+ in the cytosol [9, 64, 40]. Moreover, if we
view u(·, 0) as the initial stimulus (e.g., a micro-injection of Ca2+ into the cytosol) and its L1 norm
(e.g., the total Ca2+ content in the injection pipette) is not greater than some threshold, then even
in the presence of uniformly distributed immobile exogeneous buffers (e.g., BAPTA and EGTA),
the Ca2+ wave will not be triggered and [Ca2+]cyt will return to its basal state 0 exponentially fast.
On the other hand, in the presence of immobile buffers with fast kinetics, we prove that for some
localized initial stimulus on a sufficiently large region, [Ca2+]cyt will evolve into the stable elevated
state 1. These results seem to be in good agreement with experimental observations: a calcium
spike introduced by a tiny amount of Ca2+ only induces a localized transient, but not trigger a
wave; however, if a spike with large enough size and magnitude may let [Ca2+]cyt evolve to the high
Ca2+ concentration, even a wave [40, 51, 30]. Also note that these phenomena are visualized only
by injecting the fluorescent indicators (e.g., fura-2) which are exactly Ca2+ buffers. Therefore, we
could expect that even in the presence of immobile buffers, there is still a threshold effect for the
system (2.1). Finally, we investigate the propagation property of solutions with initial data being
a disturbance of one of the stable states which is confined to a half-line. We show that the more
stable state will eventually dominate the whole dynamics and that the speed of this propagation
(or invading process) is positive.

We remark that all of previous studies [59, 51, 56, 63] have made the assumption that buffers
have very fast kinetics with respect to the other reactions, with which the RBA can be applied.
On the other hand, in this study, neither the assumption that buffers have very fast kinetics nor
the assumption that buffers are in excess is made (and so the so-called RBA and excess buffer
approximation (EBA) [54] are not employed in our study). Hence, our results complement the
previous studies [59, 51, 56, 63] partially, where the RBA have been employed.

In this paper, we only consider the case: all of the buffers are immobile. However, there are
mobile endogenous buffers in the cytosol, even more, many indicator dyes are mobile (e.g., fura-
2). Therefore, it seems to be crucial to know whether or not our results hold for mobile buffers.
For example, if we apply our method to calculate the attraction basins for the two important
physiological states, (0,b0) and (1,b2) of (2.4)-(2.5), it leads to the existence of non-constant
equilibrium solutions of the following system:

D
∂2u

∂x2
+ f(u) +

n∑
i=1

[ki
−(bi

0 − vi) − ki
+uvi] = 0, x ∈ R, (6.1)

Di
∂2vi

∂x2
+ ki

−(bi
0 − vi) − ki

+uvi = 0, x ∈ R, i = 1, · · · , n, (6.2)

which is still open. The generalization of (Q4) to mobile buffers will also encounter the system (6.1)-
(6.2). These will be left as our future study. On the other hand, for the existence of a traveling
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wave of (2.4)-(2.5) with mobile buffers, we may apply the method of Volpert et al. [62] to get the
existence of a traveling wave with some assumptions on the kinetic properties of buffers. Combining
this with our previous result [60], it shows that only mobile buffers can prevent the existence of
waves. Moreover, if we assume that all of the buffers have fast kinetics, then the system (2.4)-(2.5)
can be reduced to a single quasilinear equation via the so-called RBA. Along this line, the authors
in [59, 51] have applied numerical methods to study the effect of one rapid mobile buffer on the
traveling wave of the reduced system, and obtained many interesting relationships between the
wave speed and the associated kinetic properties of the buffer. Although these numerical results
in [59, 51] are only for one single mobile buffer and limited by the assumption of RBA, these results
may provide a clue to our future analytical study of the system (2.4)-(2.5) on the relationships
between the properties of traveling waves and the kinetic characteristics of multiple mobile buffers.

Although our results may suggest that the model (2.4)-(2.5) can explain the crucial bistable
property, the threshold phenomena, and the propagation property of mature Xenopus eggs, there
are some delicate phenomena (e.g., the shape and speed of the wave [9, 64, 30]) which cannot be
understood with (2.4)-(2.5). This may be due to the limitations of the model (2.4)-(2.5) by the main
facts that (1) they involve only one spatial dimension; (2) they do not include the gating variable for
Ca2+ inactivation of the IP3R explicitly [66, 29, 4, 64]; (3) they neglect the effect of Ca2+ depletion
of the ER [21], i.e., the Ca2+ concentration in the ER is not necessarily infinite; (4) the influence of
the inhomogeneity of parameters is not included (e.g., The inhomogeneous distribution of the ER,
IP3R, and SERCA pumps in the cell [61, 36, 64, 30]). By replacing the Ca2+ diffusion constant
(D) with the effective diffusion constant in buffered medium and incorporating (2), Wagner et
al. [64] have obtained a two-variable model which is based on De Young-Keizer model [66] and Li-
Rinzel model [29]. Using such a model, Wagner et al. [64] have performed simulations to argue that
bistability and inhomogeneities in the Ca2+ release properties are required to explain the shape and
speed of the fertilization Ca2+ wave in the disk. Although their study can explain many delicate
features of the shape and speed of the fertilization Ca2+ wave, they did not consider the effect of
the buffers explicitly, which seems to be crucial [36]. By using one dimensional version of Wagner
et al.’s model and including one mobile buffer with fast kinetics (thus RBA can be employed),
Slepchenko et al. [51] found that there is a typical hysteresis loop in the wave speed dependence
on the total buffer concentration. This raises an interesting question for our future study: Does
such a loop also exist in the presence of buffers without fast kinetics? Finally, by incorporating (2),
(3), and (4), Li [30] has modified Wagner et al.’s model to obtain a three-variable model without
including the effect of buffers explicitly. By numerical simulation, Li [30] has discovered a new
traveling front, called Tango waves. But the effect of buffers, even buffers with fast kinetics, on
such a wave is still unknown.

7 Appendix

In this section, we collect the lemmas which are used in the proofs of main results. Also, we give
the proofs of the lemmas stated in that section.

7.1 One Auxiliary Lemma

First, the following lemma can easily be proved by a phase plane analysis.

Lemma 7.1 Let a ∈ (0, 1).
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(1) For any sufficiently small ε ∈ (0, 1−a), there exist η ∈ (a, a+ε] and δ1 > 0, with δ1 = δ1(ε) → 0
as ε → 0, such that q′ < 0 on (0, xη), q′ > 0 on (−xη, 0), and q(−xη) = q(xη) = a for some
xη ∈ (0, δ1) for any solution q of (3.6) with q(0) = η and q′(0) = 0. Moreover, if we set
pi(x) = κi(qi(x)), i = 1, · · · , n, on [−xη, xη], then we have p′i > 0 on (0, xη), p′i < 0 on
(−xη, 0), and pi(−xη) = pi(xη) = κi(a).

(2) For any sufficiently small ε ∈ (0, a), there exist η ∈ [a− ε, a) and δ1 > 0, with δ1 = δ1(ε) → 0
as ε → 0, such that q′ > 0 on (0, xη), q′ < 0 on (−xη, 0), and q(−xη) = q(xη) = a for
some xη ∈ (0, δ1) for any solution q of (3.6) with q(0) = η and q′(0) = 0. Moreover, if we
set pi(x) = κi(qi(x)), i = 1, · · · , n, on [−xη, xη], then we have p′i < 0 on (0, xη), p′i > 0 on
(−xη, 0), and pi(−xη) = pi(xη) = κi(a).

7.2 Proof of Lemma 5.1.

In order to prove Lemma 5.1, we first prove the following lemma.

Lemma 7.2 Let (u,v) be the sufficiently smooth solution of (4.1)-(4.2) such that ut(x, 0) ≤ 0,
vi,t(x, 0) ≥ 0 for all x ∈ R and i = 1, · · · , n. Then ut(x, t) ≤ 0, vi,t(x, t) ≥ 0 for all (x, t) ∈
R × [0, +∞) and i = 1, · · · , n.

Proof. Define b(x, t) = ut(x, t) and hi(x, t) = −vi,t(x, t), i = 1, · · · , n, on R × [0,+∞). Then b and
hi satisfy the following system

bt − Dbxx = Fu(u,v)(x, t)b −
n∑

j=1

Fvj (u,v)(x, t)hj ,

hi,t = −Gi,u(u,v)(x, t)b + Gi,vi(u,v)(x, t)hi,

together with the initial data

b(x, 0) = ut(x, 0) ≤ 0 and hi(x, 0) = −vt(x, 0) ≤ 0,

where hi,t = ∂hi/∂t for i = 1, · · · , n. Recall that Fvi(u,v) = −(ki
+u + ki

−) < 0 and Gi,u(u,v) =
−ki

+vi < 0 for all (u,v) ∈ [0, 1]× [b1
2, b

1
0]×· · ·× [bn

2 , bn
0 ] and i = 1, · · · , n, and that (u(x, t),v(x, t)) ∈

[0, 1] × [b1
2, b

1
0] × · · · × [bn

2 , bn
0 ] for all (x, t) ∈ R × [0, +∞). Thus Fvi(u(x, t),v(x, t)) < 0 and

Gi,u(u(x, t),v(x, t)) < 0 for all (x, t) ∈ R× [0, +∞) and i = 1, · · · , n. Combining this with the fact
that b(x, 0) ≤ 0 and hi(x, 0) ≤ 0 for all x ∈ R and i = 1, · · · , n, it follows from Theorem 14.11 of
[57, p. 203] that b(x, t) ≤ 0 and hi(x, t) ≤ 0 for all (x, t) ∈ R × [0, +∞) and i = 1, · · · , n. This
completes the proof.

Proof of Lemma 5.1. Let (ũ, ṽ) be the solution of (4.1)-(4.2) with the initial conditions

ũ(x, 0) = γ and ṽi(x, 0) = κi(γ), i = 1, · · · , n, for all x ∈ R.

It is clear that (ũ, ṽ) is independent of x, and so we may set ũ(x, t) := ũ(t) and ṽi(x, t) := ṽi(t),
i = 1, · · · , n, on R × [0, +∞). Moreover, (ũ, ṽ) satisfies the following system

ut = f(u) +
n∑

i=1

[ki
−(bi

0 − vi) − ki
+uvi], t ∈ (0,+∞), (7.1)

vi,t = ki
−(bi

0 − vi) − ki
+uvi, t ∈ (0,+∞), i = 1, · · · , n, (7.2)
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with the initial data
u(0) = γ and vi(0) = κi(γ), i = 1, · · · , n.

By Lemma 7.2, we have ũt(t) ≤ 0, ṽi,t(t) ≥ 0 for all t ∈ [0, +∞) and i = 1, · · · , n. Using this
fact and noting that (ũ(t), ṽ(t)) ∈ [0, 1] × [b1

2, b
1
0] × · · · × [bn

2 , bn
0 ] for all t ∈ R+, it follows that the

limits ū =: limt→+∞ ũ(t) and v̄i =: limt→+∞ ṽi(t), i = 1, · · · , n, exist and satisfy that ū ∈ [0, γ) and
v̄i ∈ [κi(γ), bi

0] for i = 1, · · · , n.
Next we claim that ū = 0 and v̄i = bi

0 for i = 1, · · · , n. Indeed, we may choose a sequence
of {tm}m∈N such that limm→+∞ tm = +∞ and limm→+∞ ũ′(tm) = limm→+∞ ṽ′i(tm) = 0 for i =
1, · · · , n. Evaluating (7.1)-(7.2) at t = tm and taking the limit, we obtain that

f(ū) = ki
−(bi

0 − v̄i) − ki
+ūv̄i = 0

for i = 1, · · · , n. Recall that ū ∈ [0, γ) and v̄i ∈ [κi(γ), bi
0] for i = 1, · · · , n, this implies that ū = 0

and v̄i = bi
0 for i = 1, · · · , n. Therefore, (ũ, ṽ) tends to (0, b1

0, · · · , bn
0 ) as t → +∞. Moreover,

since all the eigenvalues of the linearized system of (7.1)-(7.2) around the constant solution (0,b0)
are negative, there exists a positive constant C = C(ki

+, ki
−, bi

0, a) such that ũ(t) = O(e−Ct) and
ṽi(t) = bi

0 + O(e−Ct) for i = 1, · · · , n.
Note that u(x, 0) ≤ ũ(x, 0) and v(x, 0) ≥ ṽ(x, 0) for all x ∈ R. Thus we can apply Proposition 2

to conclude that u(x, t) ≤ ũ(x, t) and v(x, t) ≥ ṽ(x, t) for all (x, t) ∈ R × [0,+∞). Noting that
u(x, t) ≥ 0 and v(x, t) ≤ b0, for all (x, t) ∈ R × [0, +∞), we reach our conclusion.

7.3 Proof of Lemma 5.2.

Set W (x, t) = (u(x, t), ṽ(x, t)) = (u(x, t), (b0 − v)(x, t)) on R × [0, +∞). Then the components of
W satisfy the following system

∂u

∂t
= D

∂2u

∂x2
+ F̃ (u, ṽ), (x, t) ∈ R × (0, +∞), (7.3)

∂ṽi

∂t
= G̃i(u, ṽ), (x, t) ∈ R × (0, +∞), i = 1, · · · , n, (7.4)

with the initial data

u(x, 0) = φ(x), ṽi(x, 0) = 0, x ∈ R, i = 1, · · · , n, (7.5)

where F̃ (u, ṽ) = f(u)+
∑n

i=1[k
i
−ṽi−ki

+u(bi
0−ṽi)] and G̃i(u, ṽ) = −ki

−ṽi+ki
+u(bi

0−ṽi) for i = 1, · · · , n.
Also, note that for all (x, t) ∈ R × R+, the components of W can be written as

u(x, t) = L(x, t) +
∫ t

0

∫
R

K(x, y, t − s)F̃ (W (y, s))dyds, (7.6)

ṽi(x, t) =
∫ t

0
ki

+e−ki
−(t−s)u(x, s)vi(x, s)ds, i = 1, · · · , n, (7.7)

where
L(x, t) =

∫
R

K(x, y, t)φ(y)dy and K(x, y, t) =
1

2
√

πDt
e−(x−y)2/(4Dt).

By Proposition 1, we have that 0 ≤ u ≤ 1 and b2 ≤ v ≤ b0 on R×R+. Therefore, the solution
W = (u, ṽ) of (7.3)-(7.5) satisfies 0 ≤ u ≤ 1 and 0 ≤ ṽ ≤ b0 −b2 on R×R+. It follows that there
exists a constant C = C(ki

+, ki
−, bi

0, a) such that for all (x, t) ∈ R × [0, +∞) and each i = 1, · · · , n,
we have

|F̃ (W (x, t))| ≤ C|W (x, t)| and |ki
+u(x, t)vi(x, t)| ≤ C|W (x, t)|. (7.8)
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Both here and below, we define |W (x, t)| by |W (x, t)| := u(x, t) +
∑n

i=1 ṽ(x, t). Throughout the
proof of this lemma, C always denote a constant, which may be different from sentence to sentence,
but they depend only on D, ki

+, ki
−, bi

0, and a.
Thus, by (7.6), (7.7), and (7.8) we obtain that

|W (x, t)| = u(x, t) +
n∑

i=1

ṽ(x, t)

≤ L(x, t) + C

∫ t

0

∫
R

K(x, y, t − s)|W (y, s)|dyds

+C

∫ t

0
|W (x, s)|ds (7.9)

for all (x, t) ∈ R × [0, +∞).
Now, we estimate the first two terms on the right-hand side of (7.9). For the first term, we have

the following bound

L(x, t) ≤ C√
t
‖φ‖1 (7.10)

for all (x, t) ∈ R × R+. To estimate the second term, we observe that∫ t

0

∫
R

K(x, y, t − s)|W (y, s)|dyds ≤ C

∫ t

0

∫
R

|W (y, s)|√
t − s

dyds (7.11)

for all (x, t) ∈ R × R+.
If we can show that the right-hand side of (7.11) is bounded above by C(

√
t +

√
teCt)‖φ‖1 for

all t > 0 for some positive constant C, then, by (7.10) and by applying the Gronwall’s inequality
to (7.9), we can obtain the desired inequality (5.1).

For this, we first estimate the L1 norm of |W (x, t)|. More precisely, we claim that∫ t

0

∫
R
|W (y, s)|dyds ≤ CeCt‖φ‖1 (7.12)

for all t > 0 for some positive constant C. Indeed, integrating (7.9) over R × [0, t] yields that for
each t > 0, ∫ t

0

∫
R
|W (x, s)|dxds ≤

∫ t

0

∫
R

L(x, s)dxds

+C

∫ t

0

∫
R

∫ s

0

∫
R

K(x, y, s − τ)|W (y, τ)|dydτdxds

+C

∫ t

0

∫
R

∫ s

0
|W (x, τ)|dτdxds

≤
∫ t

0

∫
R

∫
R

K(x, y, s)φ(y)dydxds

+C

∫ t

0

∫
R

∫ s

0

∫
R

K(x, y, s − τ)|W (y, τ)|dydτdxds

+C

∫ t

0

∫
R

∫ s

0
|W (x, τ)|dτdxds

= I(t) + II(t) + III(t). (7.13)
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Note that
∫
R K(x, y, t) = 1 for all t > 0. Changing the order of integration in I(t) and II(t) and

integrating over x first, it follows that

I(t) ≤ t‖φ‖1 and II(t) ≤ C

∫ t

0

∫ s

0

∫
R
|W (y, τ)|dydτds

for all t > 0. Combing these two inequalities with (7.13), we obtain that∫ t

0

∫
R
|W (x, s)|dxds ≤ t‖φ‖1 + C

∫ t

0

∫ s

0

∫
R
|W (x, τ)|dxdτds.

Thus the Gronwall’s inequality gives the claim (7.12).
Now, we turn to estimate the right-hand side of (7.11). Using (7.9) and a similar argument as

used in (7.13), we obtain that for each t > 0,∫ t

0

∫
R

|W (x, s)|√
t − s

dxds ≤
∫ t

0

∫
R

∫
R

K(x, y, s)φ(y)√
t − s

dydxds

+C

∫ t

0

∫
R

∫ s

0

∫
R

K(x, y, s − τ)|W (y, τ)|√
t − s

dydτdxds

+C

∫ t

0

∫
R

∫ s

0

|W (x, τ)|√
t − s

dτdxds

= IV (t) + V (t) + V I(t). (7.14)

We first estimate the bound for IV (t). Changing the order of integration and integrating over x
first, it follows that

IV (t) ≤ C
√

t‖φ‖1

for all t > 0. For V (t), we use Fubini’s Theorem and (7.12) to obtain

V (t) ≤ C

∫ t

0

∫
R

∫ s

0

∫
R

K(x, y, s − τ)|W (y, τ)|√
t − s

dydτdxds

≤ C

∫ t

0

∫ s

0

∫
R

|W (y, τ)|√
t − s

dydτds

= C

∫ t

0

∫
R

∫ t

τ

|W (y, τ)|√
t − s

dsdydτ

= C

∫ t

0

∫
R

√
t − τ |W (y, τ)|dydτ

≤ C
√

t

∫ t

0

∫
R
|W (y, τ)|dydτ ≤ C

√
teCt‖φ‖1

for all t > 0. Similar arguments lead to the bound for V I(t), i.e.,

V I(t) = C

∫ t

0

∫
R

∫ t

τ

|W (x, τ)|√
t − s

dsdxdτ

= C

∫ t

0

∫
R

√
t − τ |W (x, τ)|dxdτ

≤ C
√

t

∫ t

0

∫
R
|W (x, τ)|dxdτ

≤ C
√

teCt‖φ‖1.
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Combing these bounds for IV (t), V (t), and V I(t), from (7.14) it follows that∫ t

0

∫
R

|W (x, s)|√
t − s

dxds ≤ C(
√

t +
√

teCt)‖φ‖1.

This completes the estimate of the right-hand side of (7.11).
Finally, we use (7.10), (7.11), and (7.9) to get

|W (x, t)| ≤ C(
1√
t

+
√

t +
√

teCt)‖φ‖1 + C

∫ t

0
|W (x, s)|ds

for all t > 0. Then, by applying the Gronwall’s inequality to the above inequality, we obtain that

|W (x, t)| ≤ C(
1√
t

+
√

t + eCt +
√

teCt + t
√

teCt)‖φ‖1

for all (x, t) ∈ R × R+. This completes the proof.

7.4 Proof of Lemma 5.3.

In order to prove Lemma 5.3, we set

τ = ρ/c, · = d/dτ, θ = c2/D, q̇ = z. (7.15)

Then we can rewrite (5.5)-(5.6) as the following first order system of differential equations

q̇ = z, (7.16)
ż = θ(z − F (q,p)), (7.17)
ṗi = Gi(q,p), i = 1, · · · , n, (7.18)

while the condition (5.7) becomes the following

q(0) = 1, z(0) = −cβ, pi(0) = bi
2, ṗi(0) = 0, i = 1, · · · , n, c = min{ε, β}. (7.19)

Therefore, it remains to show the following lemma.

Lemma 7.3 Let a ∈ (1/2, 1). Then for each ε > 0 there exists β = β(ε) > 0 such that the solution
(q, z,p) of (7.16)-(7.19) exists in [0,∞) and it satisfies

(1) 0 < q < 1 and z < 0 on (0, +∞),

(2) b2 < p(τ) < b0 and ṗ > 0 on (0, +∞),

(3) limτ→+∞(q(τ), z(τ),p(τ)) = (0, 0,b0).

From now on we shall fix ε > 0. We shall adapt the method used in [24, 17] (see also [60]) to
prove Lemma 7.3. We denote the maximum existence interval of the solution of (7.16)-(7.19) for a
given β > 0 by [0, T ), where T = T (β) > 0. Then we have

Lemma 7.4 Let (q, z,p) be the solution of (7.16)-(7.19) in [0, T ) for a given β > 0. Then 0 <
q < 1, z < 0, b2 < p < b0, and ṗ > 0 for τ > 0 near τ = 0.

This lemma implies that τ0 and q̄ in the following definition are well-defined.
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Definition 1 Let (q, z,p) be the solution of (7.16)-(7.19) for a given β > 0. Let τ0 = τ0(β) be the
first zero of q̇ if it exists; and set τ0 = T if q̇ < 0 on (0, T ). We also set q̄ := q̄(β) = q(τ0(β)) (q̄
may be −∞).

By this definition and Lemma 7.4, we have the following lemma.

Lemma 7.5 Let (q, z,p) be the solution of (7.16)-(7.19) for a given β > 0. Then q < 1 and z < 0
on (0, τ0).

Since q̇ < 0 on (0, τ0), we can express z and pi, i = 1, · · · , n, as functions of q for q ∈ (q̄, 1). Let
Z(q) = z(τ(q)) and Pi(q) = pi(τ(q)), i = 1, · · · , n, for q ∈ (q̄, 1). Set P = (P1, · · · , Pn). Then Z and
P satisfy the following equations

Ż :=
dZ

dq
= θ(1 − F (q,P)

Z
), (7.20)

Ṗi :=
dPi

dq
=

Gi(q,P)
Z

, i = 1, · · · , n, (7.21)

for q ∈ (q̄, 1) with the terminal conditions

Z(1) = −cβ, P(1) = b2. (7.22)

Note that Z(q) < 0 for q ∈ (q̄, 1) and Z(q̄) = 0 if q̄ is finite.

Lemma 7.6 Let (q, z,p) be the solution of (7.16)-(7.19) for a given β > 0. Assume that q̄ ≥ 0.
Then we have bi

2 < Pi(q) < κi(q) for all q ∈ (q̄, 1) and i = 1, · · · , n. Moreover, ṗi > 0 on (0, τ0) for
i = 1, · · · , n.

Proof. Fix i ∈ {1, · · · , n}. Noting that q > 0, z = q̇ < 0 on (0, τ0), and ṗi > 0 on (0, τ̂) for some
τ̂ > 0, and using (7.18), we have Pi(q) < κi(q) for all q ∈ (q̂, 1) for some q̂ ∈ [q̄, 1). We claim
that Pi(q) < κi(q) for all q ∈ (q̄, 1). Otherwise, there exists q1 > q̄ such that Pi(q) < κi(q) for all
q ∈ (q1, 1) and Pi(q1) = κi(q1). Then, by (7.21), Ṗi(q1) = 0. Moreover, from (7.21) and Lemma 7.5
it follows that Ṗi < 0 on (q1, 1). Hence P̈i(q1) ≤ 0. On the other hand, differentiating (7.21) and
using Ṗi(q1) = 0, we obtain

P̈i(q1) = −
ki

+Pi(q1)
Z(q1)

> 0,

a contradiction. Therefore, we have Pi(q) < κi(q) for all q ∈ (q̄, 1).
Combining this with the fact that Z < 0 on (q̄, 1), we have Ṗi < 0 on (q̄, 1), and so ṗi > 0 on

(0, τ0). Moreover, from Pi(1) = bi
2 it follows that Pi(q) > bi

2 for all q ∈ (q̄, 1). This completes the
proof.

Lemma 7.7 Let a ∈ (0, 1). Suppose that (5.5)-(5.7) has a solution (q,p) for some β > 0 with
0 < q < 1 and q′ < 0 on (0, +∞). Then we have a ∈ (1/2, 1).

Proof. Multiplying (5.5) and (5.6) by q′ and integrating them from 0 to +∞, we get

−Dβ2/2 − c

[∫ +∞

0
(q′)2(ρ)dρ −

n∑
i=1

∫ +∞

0
q′(ρ)p′i(ρ)dρ

]
= −

∫ 0

1
f(q)dq = (1 − 2a)/12.

By Lemma 7.6, p′i(ρ) = ṗi(τ)/c > 0 on (0, +∞) for i = 1, · · · , n. Thus the left hand side of the
above equation is negative. It follows that a ∈ (1/2, 1). Hence the proof is completed.
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Lemma 7.8 There exists no solution (q, z,p) of (7.16)-(7.19) satisfying that q(τ0) = 0, q̇(τ0) = 0
and q̈(τ0) ≥ 0 for some finite τ0.

Proof. Suppose that there is a solution (q, z,p) of (7.16)-(7.19) such that q(τ0) = 0, q̇(τ0) = 0 and
q̈(τ0) ≥ 0 for some finite τ0 for some β > 0. Recall from Lemma 7.6 that ṗi(τ0) ≥ 0 for i = 1, · · · , n.
Hence q̈(τ0) ≤ 0, by (7.17), and so q̈(τ0) = 0. Therefore, using (7.17)-(7.18) and the definitions of
F and Gi, i = 1, · · · , n, it follows that ṗi(τ0) = 0 for i = 1, · · · , n. This implies that q ≡ 0 and
pi ≡ κi(0) = bi

0, i = 1, · · · , n, on [0, τ0], by the uniqueness theorem for the differential equations, a
contradiction. This completes the proof.

Now, we are ready to prove Lemma 7.3.

Proof of Lemma 7.3. We divide the proof into the following steps.

Step 1. We claim that q̄ < a and Z(a) ≤ −cβ − θ(1− a) for any β > 0. Indeed, by Lemma 7.6 and
Lemma 7.5, we have Gi(q,P(q)) > 0 and Ṗi(q) < 0 for all q ∈ (q̄, 1) and i = 1, · · · , n, as long as
q̄ ≥ 0. Also, note that f(q) > 0 for all q ∈ (a, 1). Combining these two facts with the definitions of
F and Gi, i = 1, · · · , n, we obtain that F (q,P(q)) > 0 and Gi(q,P(q)) > 0 for all q ∈ (max{q̄, a}, 1)
and i = 1, · · · , n. Thus if q̄ ≥ a, then using (7.20) and noting that Z < 0 on (q̄, 1), it follows that
Ż ≥ θ > 0 on (q̄, 1). This implies that Z(q̄) < 0, a contradiction. Therefore, we have q̄ < a.

Moreover, noting that F (q,P(q)) > 0 and Z(q) < 0 for all q ∈ [a, 1), and using (7.20) again, it
follows that Ż ≥ θ on [a, 1). Hence Z(a) ≤ −cβ − θ(1 − a).

Step 2. We claim that there exists a finite τ̂ such that q̇ < 0 on (0, τ̂ ] and q(τ̂) = 0, if β is
sufficiently large. By Lemma 7.6, we have bi

2 < Pi(q) < κi(q) for all q ∈ (q̄, 1) and i = 1, · · · , n, as
long as q̄ ≥ 0. Let

B = sup{| F (q,P) | | 0 ≤ q ≤ 1, bi
2 ≤ Pi ≤ κi(q) for i = 1, · · · , n}.

Choose β0 such that β0 > max{2B/ε, ε}. Then we claim that q̄(β) < 0 for all β > β0. Suppose
that q̄ := q̄(β̃) ≥ 0 for some β̃ > β0. Let (Zβ̃ , Pβ̃,1, · · · , Pβ̃,n) be the corresponding solution of
(7.20)-(7.22). Note that the corresponding c is given by c̃ = ε. Then we have Zβ̃(q) < −εβ̃ for
all q ∈ (q̂, a] for some q̂ ∈ (0, a) and Zβ̃(q̂) = −εβ̃, since Zβ̃(a) ≤ −εβ̃ − θ̃(1 − a), by Step 1, and
Zβ̃(q) = 0 for some q < a. On the other hand, from (7.20) it follows that

Żβ̃(q) = θ̃(1 −
F (q,Pβ̃)

Zβ̃

)

≥ θ̃(1 − B/(εβ̃))
> θ̃/2

for all q ∈ [q̂, a]. This implies that Zβ̃(q) < −εβ̃ − θ̃(1 − a) for all q ∈ [q̂, a], a contradiction.
Therefore, if β > β0, we have q̄ < 0, and so Z(q) < 0 for all q ∈ [0, 1). Hence there exists a finite τ̂
such that q̇ < 0 on (0, τ̂ ] and q(τ̂) = 0.

Step 3. We show that there exists a sufficiently small β > 0 such that q̇(τ0) = 0 and q(τ0) ∈ (0, a)
for some finite τ0. If not, then there exists a sequence {βj}j∈N with limj→∞ βj = 0 such that the
corresponding solutions (qj ,pj) of (7.16)-(7.19) satisfy that q̇j < 0 on (0, τ̂j) and qj(τ̂j) = 0 for
some τ̂j (τ̂j may be infinite). Notice that qj(τ) ↘ 0 as τ → ∞, if q̇j < 0 and qj > 0 in (0,∞). Here
the fact q̄ < a is used.

Let Pj = (Pj,1, · · · , Pj,n). Multiplying (7.20) with Zj and integrating from 1 to q, we obtain

Zj(q)2

2
= (cjβj)2/2 + θj

∫ q

1
(Zj(s) − F (s,Pj(s)))ds (7.23)
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for all q ∈ [0, 1]. By Lemma 7.6, we have bi
2 < Pj,i(q) ≤ κi(q) for all q ∈ [0, 1] and i = 1, · · · , n.

Note that Zj(q) < 0 for all q ∈ (0, 1). Thus if we let Aj = sup0≤q≤1 |Zj(q)|, then it follows from
(7.23) that A2

j/2 ≤ (cjβj)2/2 + θj(Aj + B). Using the definition of θj , this implies that

lim
j→∞

Aj = 0. (7.24)

Solving (7.21) with an integration by parts, we obtain that

Pj,i(q) = κi(q) −
∫ q

1
κ′

i(η) exp[−
∫ q

η
([ki

+s + ki
−]/Zj(s))ds]dη

for all q ∈ [0, 1] and i = 1, · · · , n. Then it follows from (7.24) that

lim
j→∞

Pj,i(q) = κi(q) (7.25)

uniformly for q ∈ [0, 1] for i = 1, · · · , n. From (7.23) it follows that∫ 0

1
F (s,Pj(s))ds ≤

∫ 0

1
Zj(s)ds + Dβ2

j /2. (7.26)

Letting j → ∞ in (7.26), using (7.24) and (7.25), we obtain that∫ 0

1
F (s, κ1(s), · · · , κn(s))ds = (2a − 1)/12 ≤ 0,

a contradiction to the fact that a ∈ (1/2, 1).

Step 4. We reach the conclusion. Let (qβ , zβ ,pβ) be the solution of (7.16)-(7.19) for a given β > 0.
Define

P1 = {β > 0 | q̇β < 0 on (0, τ̂ ] and qβ(τ̂) = 0 for some finite τ̂},
P2 = {β > 0 | q̇β(τ0) = 0 for some τ0 ∈ R+ and qβ(τ0) ∈ [0, 1)}.

Then P1 is nonempty by Step 2. Clearly, P1 is open by continuous dependence on the parameter
β. Also, P2 is nonempty by Step 3. For each β ∈ P2, let τ0 = τ0(β) be the first zero of q̇β , then
we have q̈β(τ0) ≥ 0. By Lemma 7.8 and Step 1, we have qβ(τ0) ∈ (0, a). Next we claim that
q̈β(τ0) > 0. If not, then q̈β(τ0) = 0. By (7.16)-(7.17), we have F (qβ(τ0),pβ(τ0)) = 0. Also, recall
from Lemma 7.6 that ṗβ,i(τ0) ≥ 0 for i = 1, · · · , n. Combining these two facts with this fact that
f(u) < 0 for u ∈ (0, a), we obtain that ṗβ,i0(τ0) > 0 for some i0 ∈ {1, · · · , n}. From this, (7.17),
and the definition of F , it follows that d3qβ/dt3(τ0) = −θ

∑n
i=1 Fvi ṗβ,i(τ0) > 0, a contradiction to

the definition of τ0. Thus q̈β(τ0) > 0 and this implies that P2 is open.
By Step 2 and the above discussion, P2 is nonempty open set which is bounded above. Therefore,

the number β∗ := supP2 exists and β∗ ∈ (0,∞) \ (P1 ∪ P2). Let (qβ∗ ,pβ∗) be the corresponding
solution of (7.16)-(7.19) with this β∗. Then q̇β∗ < 0 for all τ ∈ (0, +∞) and qβ∗(τ) → 0 as
τ → +∞. Moreover, by Lemma 7.6, we have ṗβ∗,i > 0 on (0, +∞) for i = 1, · · · , n. Now we claim
that pβ∗,i(τ) → bi

0 as τ → +∞ for i = 1, · · · , n. Indeed, fix i ∈ {1, · · · , n}, using Lemma 7.6 and
noting that qβ∗ ∈ (0, 1) on (0, +∞), we have pβ∗,i ∈ (bi

2, b
i
0) on (0, +∞). Using this fact and noting

that ṗβ∗,i > 0 on (0, +∞), it follows that there exists l ∈ (bi
2, b

i
0] such that pβ∗,i → l as τ → +∞.

Hence we can choose a sequence s1 < s2 < · · · < sm < · · · with sm → +∞ as m → +∞ satisfying
that qβ∗(sm) → 0, pβ∗,i(sm) → l and ṗβ∗,i(sm) → 0 as m → +∞. From this and (7.18) it follows
that l = bi

0. Hence the proof is completed.
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