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Abstract

We study the existence and uniqueness of traveling wave solutions for a class of two-
component reaction diffusion systems with one species being immobile. Such a system has a
variety of applications in epidemiology, bio-reactor model, and isothermal autocatalytic chemical
reaction systems. Our result not only generalizes earlier results of Ai and Huang (Proceedings
of the Royal Society of Edinburgh 2005; 135A:663–675), but also establishes the existence and
uniqueness of traveling wave solutions to the reaction-diffusion system for an isothermal auto-
catalytic chemical reaction of any order in which the autocatalyst is assumed to decay to the
inert product at a rate of the same order.
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1 Introduction

In this article, we are concerned with the following reaction-diffusion system

ut = d1uxx − f(u)vm, vt = d2vxx + [f(u) − K]vm. (1.1)

Here d1 ≥ 0, d2 ≥ 0, K > 0 and m ≥ 1 are constants, and f is a differentiable function defined on
(0,∞). The system (1.1) has been proposed as a model for several physical and biological systems
which we shall briefly discuss them below.

First, if we choose f(u) = βu and m = 1, then the system (1.1) is a diffusive epidemic model
which describes the interaction between the susceptible individual u and the infected individual v.
In this case, the reaction term βuv is of the well-known Kermack-McKendric type [17, 6]. Moreover,
positive constants β and K are the contact rate and the removal rate, respectively.

Secondly, if m = 1 and f(u) takes the form m1u/(m2 + u) with positive constants m1 and m2,
then the system (1.1) has been introduced in [7] to study the effects of the motility on the ability
of a bacterial population to survive in a flow reactor and/or to be a good competitor for a limiting
nutrient in mixed culture, if we set the flow velocity to be zero. In this situation, u stands for the

∗Department of Mathematics, National Taiwan Normal University, 88, Section 4, Ting Chou Road, Taipei 116,
Taiwan. (Email address: jsguo@math.ntnu.edu.tw).

†Department of Mathematics, National Chung Cheng University, 168, University Road, Min-Hsiung, Chia-Yi
621, Taiwan (Fax: 886-5-2720497; Email address: tsaijc@math.ccu.edu.tw). To whom the correspondence should be
addressed (J.-C. Tsai).

1



concentration of the nutrient, v is the density of the bacterial population, and f(u) describes the
nutrient uptake and growth rate of the bacterial population at nutrient concentration u. Parameter
K > 0 is the cell death rate. We remark that Kennedy and Aris [18] has also considered a similar
bio-reactor model.

The parameter m is chosen to be 1 in the previous two applications. But, the parameter
m can be different from 1 in the context of higher order autocatalytic reaction. Specifically, we
follow Merkin and Needham [21, 20, 19] to consider the general mth order isothermal autocatalytic
chemical reaction

A + mB → (m + 1)B with rate k1uvm (1.2)

with the autocatalyst B assumed to decay to the inert product C at a rate of order m,

B → C with rate k2v
m, (1.3)

where u and v are the concentration of reactant A and autocatalyst B, respectively, and the ki are
the rate constants. Then by applying the law of mass action, the above reaction schemes lead to
the system (1.1) with f(u) = k1u and K = k2. Unlike the previous examples, here m can be any
positive integer. Such autocatalytic reaction schemes have been used in many models of realistic
chemical systems. For example, it has been shown by Voronkov and Semenov [26] that the cubic
autocatalytic reaction (the reaction (1.2) with m = 2) can be used to model the almost-isothermal
flames in the carbon-sulphide-oxygen reaction. The cubic autocatalytic reaction also works well in
the iodate-arsenous acid system proposed by Saul and Showalter [24]. Furthermore, Aris, Gray and
Scott [3] have discussed that a series of bimolecular can lead to the cubic autocatalytic reaction.
On the other hand, if we ignore the effect of the decay to the inert product, then the constant K
becomes zero in (1.1). For this case, we refer the reader to the works of Billingham and Needham
[4, 5], Qi [23], Ai and Huang [2] and Chen and Qi [9]. However, as Gray [11] suggested, the decay
step (1.3) plays an important role in these autocatalytic chemical reactions. Therefore, we shall
take this step into our consideration in this paper.

Wave phenomena has been observed in a variety of chemical and biomedical sciences (see [22]).
For example, experimental observations [28] indicate that traveling waves can be generated in the
chemical system based on the cubic autocatalytic chemical reaction followed by the quadratic decay.
Specifically, suppose that initially we have the reactant A at uniform concentration, and introduce
a quantity of the aytocatalyst, B, locally into this system. Then A and B will react in this initial
zone, which results in the concentration gradients and then leads to the generation of two waves
propagating from this initial zone for the reactant A (and the autocatalyst B, respectively). The
wave for the reactant is of front type and the one for the autocatalyst is of pulse type due to the
decay. By focusing on the right half part, this leads to the study of the problem of traveling waves.
Mathematically, it has also been known [27] that traveling waves of the reaction-diffusion systems
play a key role in understanding the dynamical behavior of solutions of the system under study.
These two reasons and the rich applications of the system (1.1) necessitate a detailed study of
traveling wave solutions of (1.1).

We first define what we mean by a traveling wave solution of the system (1.1). A couple of
nonnegative functions (U, V ) ∈ C2(R)×C1(R) is said to be a traveling wave solution of (1.1) with
wave speed c ∈ R, if (u(x, t), v(x, t)) = (U(z), V (z)), z := x − ct, is a solution of (1.1) and satisfies
the boundary conditions limz→−∞(U, V ) = (a, 0) and limz→+∞(U, V ) = (b, 0) for some a ∈ (0, γ)
and b ∈ (γ,∞), where γ is a positive constant satisfying f(γ) = K. That is, (U, V ) satisfies the
ordinary differential system

d1U
′′ + cU ′ − f(U)V m = 0, d2V

′′ + cV ′ + [f(U) − K]V m = 0 (1.4)
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subject to the boundary conditions

lim
z→−∞

(U,U ′, V, V ′) = (a, 0, 0, 0), lim
z→+∞

(U,U ′, V, V ′) = (b, 0, 0, 0), (1.5)

where the prime denotes d/dz.
The existence of traveling wave solutions of (1.1) has been investigated by several authors.

When d1 = 0 and m = 1, the problem (1.4)-(1.5) can be reduced to a system of two first order
ordinary differential equations, and Källén [16] and Kennedy [18] have used the phase-plane analysis
to solve the existence and uniqueness of solutions of the problem (1.4)-(1.5) for the particular
choice f(u) = u and f(u) = m1u

m2/(m3 + um2) with some positive constants m1, m2, and m3,
respectively. For sufficiently small d1 > 0 and m = 1, Smith and Zhao [25] have employed the
so-called geometric singular perturbation theory to treat the case when f(u) = m1u/(m2 + u) for
some positive constants m1 and m2. For the other extreme case d1 > 0, d2 = 0 and m = 1, Hosono
and Ilyas [12] have considered the special case f(u) = u and used the Wazewski’s principle [10] to
show that there always exists a solution for the problem (1.4)-(1.5) with b = 1 for any c > 0. Later,
Hosono and Ilyas [13] used the shooting argument and the invariant manifold theory to include the
case d1 > 0, d2 > 0 and m = 1. Recently, Huang [15] has developed a method to treat the problem
(1.4)-(1.5) with positive d1, d2 and m = 1 for a general class of functions f which cover all of the
models mentioned above. The idea of this method was then used by Ai and Huang [1] to establish
the existence of solutions of the problem (1.4)-(1.5) with d2 = 0 and m = 1 for a class of functions
f whose assumption is slightly different from that in [15].

We note that m is always equal to 1 in all of the above results. The only result (to the authors’
knowledge) for the problem (1.4)-(1.5) with m > 1 is by Hosono [14], where the author considered
the special case d1 = 0 and f(u) = u so that the problem (1.4)-(1.5) can be reduced to a planar
system and the phase-plane analysis can be employed. On the other hand, this reduction is not
available, if d1 > 0 and m > 1. In this paper, we shall develop another means to deal with the
problem (1.4)-(1.5) for the extreme case when d1 > 0, d2 = 0 and m > 1. We shall assume that
the function f satisfies the following conditions:

(A1) There exists a unique number γ > 0 such that f(γ) = K and

f(u) ∈ (0,K) for all u ∈ (0, γ), f(u) > K for all u ∈ (γ,∞).

(A2) f ′ > 0 on (0, u0) for some u0 ∈ (0, γ) and satisfies∫ γ

0+

1
f(u)

du = ∞.

(A3) lim infu→∞ f(u) > K.

We first state our main theorem on the existence of traveling waves as follows.

Theorem 1 Let d1 > 0, d2 = 0 and m > 1. Suppose that f satisfies the assumptions (A1)-(A3).
Then, for each given a ∈ (0, γ), there is a nonnegative constant c(a) such that for each c > c(a),
there exists a unique solution (U, V ) (up to a translation) to (1.4)-(1.5) for some b = b(a, c) ∈
(γ,∞). Moreover, U ′ > 0 on R, V ′ > 0 on (−∞, z1) and V ′ < 0 on (z1, +∞), where z1 is defined
by U(z1) = γ. Conversely, for each given b > γ, there is a nonnegative constant c̄(b) such that for
each c > c̄(b), there exists a solution (U, V ) to (1.4)-(1.5) for some a ∈ (0, γ).

Next, we have the following theorem on the lower bounds of wave speed.
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Theorem 2 Let the assumptions of Theorem 1 be in force. If m ∈ (1, 2], then c(a) = 0 for all
a ∈ (0, γ) and c̄(b) = 0 for all b > γ. If m > 2, then c(a) is bounded on (ε, γ) for each ε ∈ (0, γ),
c(a) → 0 as a → γ−, and c(a) → +∞ as a → 0+.

By a result of Ai and Huang [1] and Theorem 2, we see that a traveling wave exists for any
positive wave speed, if m ∈ [1, 2]. We conjecture that the property of zero minimum wave speed
should hold for all m ≥ 1. For m > 2, due to some technical difficulties, we can only provide here
a lower bound estimate for the wave speed as the quantity c(a). We shall leave this important
question as an open problem.

We also have the following properties for b(a, c).

Theorem 3 Let the assumptions of Theorem 1 be in force. Then for each given a0 ∈ (0, γ) and c
such that c > c(â) for all â ∈ (a0 − δ0, a0 + δ1) and for some δ0 ∈ (0, a0) and δ1 ∈ (0, γ−a0), b(a, c)
is continuous at a = a0. Moreover, it holds

lim
a→γ−

b(a, c) = γ for each given c > 0,

b(a, c) > a + K

∫ u0

a

1
f(u)

du for each c > c(a),

where u0 is given in the assumption (A2).
If we further assume that f satisfies the extra assumption:

(A4) f ′ > 0 on (0,+∞),

then b = b(a, c) is strictly decreasing in a ∈ (0, γ).

We note that the reaction term f in the existing models [16, 18, 7, 21, 20, 19] satisfies the
assumptions (A1)-(A4). Hence our result establishes the existence and uniqueness of traveling
wave solutions to the reaction-diffusion system associated with the reactions (1.2)-(1.3) (i.e., the
system (1.1) with f(u) = k1u and K = k2) for an isothermal autocatalytic chemical reaction of
any order in which the autocatalyst is assumed to decay to the inert product at a rate of the same
order.

The method of our proof is based on the method in [1] (see also [15]), where the authors only con-
cern the case m = 1. However, since we have m > 1, a solution (U(z), U ′(z), V (z)) of the problem
(1.4)-(1.5) has to lie on a two-dimensional centre manifold for negative t with |t| À 1, while the cor-
responding solution (U(z), U ′(z), V (z)) for the case m = 1 lies on the unique unstable manifold for
negative t with |t| À 1. Therefore, it is highly nontrivial to establish the local existence and unique-
ness of the solution (U(z), V (z)) to (1.4) with the condition limz→−∞(U(z), U ′(z), V (z)) = (a, 0, 0)
for a given a ∈ (0, γ). The other point is that the growth rate of the V component of a solution
(U, V ) to (1.4) is faster than the linear rate. Therefore, a possible candidate for a solution of the
problem (1.4)-(1.5) may blow up in finite time. Lastly, the V component of a traveling wave solu-
tion (U, V ) of (1.1) must decay to zero in an algebraic rate, not exponentially fast. Due to these
reasons, we need some new techniques and more delicate estimates than those in [1] to overcome
these difficulties.

The paper is organized as follows. In section 2, we first use the centre manifold theory to
establish the local existence and uniqueness of the solution (U, V ) to (1.4) with the condition
limz→−∞(U,U ′, V ) = (a, 0, 0) for a given a ∈ (0, γ). Then we show that such a solution is globally
defined provided c > c(a) for some c(a) ≥ 0. Finally, in section 3, we establish several auxiliary
lemmas to prove Theorems 1-3.
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2 Existence of traveling wave solutions

2.1 Basic results

Hereafter we shall always assume m > 1 and c > 0. Introducing the new variables and parameters

t =
√

d1z and c̃ = c/
√

d1,

the system of differential equations (1.4) with d2 = 0 becomes

U ′′ + cU ′ − f(U)V m = 0, cV ′ + [f(U) − K]V m = 0, (2.1)

which is equivalent to

U ′ = W, W ′ = −cW + f(U)V m, V ′ =
1
c
[K − f(U)]V m, (2.2)

where for simplicity we have written c̃ as c. In order to solve the existence of traveling wave
solutions of (1.1), we consider the following (initial value) problem (Pa): U ′

W ′

V ′

 =

 W
−cW + f(U)V m

[K − f(U)]V m/c

 , V > 0, (2.3)

lim
t→−∞

(U(t), W (t), V (t)) = (a, 0, 0). (2.4)

Hereafter, we will let (U,W, V ) be a solution of (2.2) satisfying the initial condition

lim
t→−∞

(U(t), W (t), V (t)) = (a, 0, 0) (2.5)

for a given a ∈ (0, γ). The maximal existence interval of (U,W, V ) will be denoted by (−∞, T ) (T
may be +∞). Adding the equations in (2.1) together, we have that

U ′′ + cU ′ + cV ′ = KV m. (2.6)

Fix t0 ∈ (−∞, T ) and t ∈ (t0, T ). By a simple computation, it is easy to verify the following
equalities (see also [1]):

U ′(t) = U ′(t0)e−c(t−t0) +
∫ t

t0

e−c(t−s)f(U(s))V m(s)ds, (2.7)

U(t) = U(t0) +
1
c
[1 − e−c(t−t0)]U ′(t0)

+
1
c

∫ t

t0

[1 − e−c(t−s)]f(U(s))V m(s)ds, (2.8)

U ′(t) + cU(t) + cV (t) = U ′(t0) + cU(t0) + cV (t0) + K

∫ t

t0

V m(s)ds. (2.9)

Letting t0 → −∞ in (2.7), (2.8) and (2.9), it yields that

U ′(t) =
∫ t

−∞
e−c(t−s)f(U(s))V m(s)ds, (2.10)

U(t) = a +
1
c

∫ t

−∞
[1 − e−c(t−s)]f(U(s))V m(s)ds, (2.11)

U ′(t) + cU(t) + cV (t) = ca + K

∫ t

−∞
V m(s)ds. (2.12)
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Also, we have

V (t) = V (t0) exp
[1
c

∫ t

t0

[K − f(U(s))V m−1(s)ds]
]
, (2.13)

V (t) =
( 1

V 1−m(t0) + (m − 1)
∫ t
t0

[(f(U(s)) − K)/c]ds

) 1
m−1

. (2.14)

Note that (2.14) holds only when m 6= 1.
With an elementary calculation, we see that the matrix for the linearized system of (2.3) at the

critical point (a, 0, 0) with a > 0 is given by

A0 =

 0 1 0
0 −c 0
0 0 0

 .

We note that the resulting linearized system is independent of the order of the reaction m (if
m > 1) and the choice of the equilibrium point (a, 0, 0). The eigenvalues of A0 are λ1 = λ2 = 0 and
λ3 = −c, and the corresponding eigenvectors are (1, 0, 0)t, (0, 0, 1)t, and (1,−c, 0)t, respectively.
Hence (2.3) has a two-dimensional centre manifold at the equilibrium point (a, 0, 0) with a > 0.
Moreover, any solution of the problem (Pa) (if it exists) would lie on such a centre manifold.

In the coming subsections, we will discuss the uniqueness and existence of solutions of the
problem (Pa). Specifically, for each given a ∈ (0, γ) and c > 0, we establish the uniqueness and
local existence of solutions of the problem (Pa) in subsection 2.2; and in subsection 2.3, we will
show that such a solution can be globally defined provided c > c(a) for some constant c(a) ≥ 0.

2.2 Local existence and uniqueness of solutions of (Pa)

To begin with, we will use the centre manifold theory (cf. [8]) to investigate the local dynamics
of the flow of (2.3) near the equilibrium point (a, 0, 0). In this subsection, we will always assume
a ∈ (0, γ). Set the change of variables U − a

W
V

 = S0

 x
y
z

 , S0 =

 1 0 1
0 0 −c
0 1 0

 .

Then we have  x
y
z

 =

 U + W
c − a

V

−W
c

 ,

and the problem (Pa) is reduced to the following (initial value) problem (P̂a): x′

y′

z′

 =

 0 0 0
0 0 0
0 0 −c

 ·

 x
y
z

 +

 1
cf(x + z + a)ym

1
c [K − f(x + z + a)]ym

−1
cf(x + z + a)ym

 , y > 0, (2.15)

lim
t→−∞

(x(t), y(t), z(t)) = (0, 0, 0). (2.16)

Moreover, any centre manifold of (2.3) at the equilibrium point (a, 0, 0) is transformed into a centre
manifold of (2.15) at the origin, whose tangent space is spanned by (1, 0, 0)t and (0, 1, 0)t, and
which can be characterized by a surface

Wc(0) := {(x, y, z) ∈ R3| z = ψ(x, y) for |x| < δ0}
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for some smooth function ψ and sufficiently small δ0 with ψ(0, 0) = ψx(0, 0) = ψy(0, 0) = 0. Here
we denote x = (x, y)t and |x| =

√
x2 + y2.

For a given ψ which characterizes a centre manifold of (2.15) at the origin, the governing
equations of the flow on this centre manifold are given by

x′ = f(x + ψ(x, y) + a)ym/c, y′ = [K − f(x + ψ(x, y) + a)]ym/c. (2.17)

We first study the uniqueness and existence of a solution (x(t), y(t)) to (2.17) with the condition
limt→−∞(x(t), y(t)) = (0, 0) and y(t) > 0 for negative t with |t| À 1. We shall denote this initial
value problem as the problem (Qa). As before, we assume a ∈ (0, γ).

Lemma 2.1 (i) There exists a unique solution (x(t), y(t)) (up to a translation) of the problem
(Qa) which is defined on (−∞, T ) for some T ∈ R ∪ {+∞}.

(ii) x > 0, y > 0, x′ > 0, and y′ > 0 on (−∞, T ).

(iii) For each ε ∈ (0, min{f(a),K − f(a)}/2), there exists a negative tε with |tε| À 1 such that

C1,a,−ε

( y1−m(tε)
Ca,−ε(m − 1)

+ tε − t
) 1

1−m
< x(t) < C1,a,ε

( y1−m(tε)
Ca,ε(m − 1)

+ tε − t
) 1

1−m
, (2.18)

C2,a,−ε

( y1−m(tε)
Ca,−ε(m − 1)

+ tε − t
) 1

1−m
< y(t) < C2,a,ε

( y1−m(tε)
Ca,ε(m − 1)

+ tε − t
) 1

1−m (2.19)

for t ≤ tε, where

C1,a,±ε :=
(m − 1

c

) 1
1−m

(
f(a) ± ε

)(
K − f(a) ± ε

) m
1−m

,

C2,a,±ε :=
(m − 1

c

) 1
1−m

(
K − f(a) ± ε

) 1
1−m

,

Ca,±ε := (K − f(a) ± ε)/c.

(iv) Let (xai , yai), i = 1, 2, be the solution of (Qai) with a1, a2 ∈ (0, γ) and a2 > a1. If f ′ > 0 on
(0, γ), then ya2(t) > ya1(t) for negative t with |t| À 1.

(v) Let (Uai , Vai), i = 1, 2, be the solution of (Pai) with a1, a2 ∈ (0, γ) and a2 > a1. If f ′ > 0 on
(0, γ), then Va2(t) > Va1(t) for negative t with |t| À 1.

Proof. To solve the problem (Qa), it is suffices to consider the following initial value problem (Q̂a):

dy

dx
=

K − f(x + ψ(x, y) + a)
f(x + ψ(x, y) + a)

, y(0) = 0.

Recall that ψ(x, y) = o(|x|). Here we write x = (x, y) and |x| =
√

x2 + y2. Hence if x and y are
sufficiently small, the above problem is equivalent to the problem

dy

dx
=

K − f(a)
f(a)

+ N(x, y), y(0) = 0,

where N(x, y) is smooth in x and y and O(
√

x2 + y2). Therefore, by the standard theory of
differential equations, we can conclude that there exists a unique solution y(x) of (Q̂a) defined on
[0, x0] for some sufficiently small x0 > 0 such that y(x) > 0, K−f(x+ψ(x, y(x))+a) > (K−f(a))/2,
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and f(x + ψ(x, y(x)) + a) > f(a)/2 for all x ∈ [0, x0]. Using this and (2.17), the assertions (i) and
(ii) follows.

To investigate the asymptotical behavior of (x(t), y(t)), we first note that (2.17) is reduced to
the following system:

x′ =
(
f(a) + O(|x|

)
ym/c

y′ =
(
K − f(a) + O(|x|

)
ym/c

for all x and y sufficiently small. Hence for each given ε ∈ (0,min{f(a),K − f(a)}/2), we can
choose a negative tε with |tε| À 1 such that

f(a) − ε

c
ym(t) < x′(t) <

f(a) + ε

c
ym(t) (2.20)

K − f(a) − ε

c
ym(t) < y′(t) <

K − f(a) + ε

c
ym(t) (2.21)

holds for t ≤ tε. Now by integrating the inequality (2.21) from −∞ to tε, we see that (2.19) holds.
Then by substituting (2.19) into (2.20) and integrating the resulting inequality from −∞ to tε, we
then obtain (2.18). This establishes the assertion (iii).

Now we turn to the proof of the assertion (iv). Since f ′ > 0 on (0, γ), we can fix a sufficiently
small ε0 ∈ (0, mini=1,2{f(ai),K − f(ai)}/2) such that C1,a2,−ε0 > C1,a1,ε0 and C2,a2,−ε0 > C2,a1,ε0 .
By the assertion (iii), we can choose a negative tε0 with |tε0 | À 1 such that

C2,ai,−ε0

( y1−m
ai

(tε0)
Cai,−ε0(m − 1)

+ tε0 − t
) 1

1−m
< yai(t) < C2,ai,ε0

( y1−m
ai

(tε0)
Cai,ε0(m − 1)

+ tε0 − t
) 1

1−m

hold for t ≤ tε0 and i = 1, 2. Together with the choices of Ci,ai,±ε0 , i = 1, 2, we can conclude that
ya2(t) > ya1(t) for all t ≤ t1 and for some t1 < tε0 .

Finally, with the help of the assertion (iv) and the relationship between the variables (x, y) and
(U, V ), we then obtain the assertion (v). The proof is thus completed.

We shall find the asymptotic expansion of any centre manifold. To this end, we first note that
a centre manifold of (2.15) at the origin characterized by ψ satisfies the relation (see [8]):

−cψ(x, y) − f(x + ψ(x, y) + a)
ym

c

= ψx(x, y)f(x + ψ(x, y) + a)
ym

c
+ ψy(x, y)[K − f(x + ψ(x, y) + a)]

ym

c

for all x with |x| < δ0 and some δ0 > 0. Since this is an identity for all x with |x| < δ0, we then
obtain

ψ(x, y) = −(f(a) + O(|x|))y
m

c2
. (2.22)

Notice that the leading term in (2.22) is independent of ψ.

Lemma 2.2 For each c > 0 and a ∈ (0, γ), there exists a unique solution (U, V ) (up to a trans-
lation) of (2.1) which is defined on (−∞, T ) for some T ∈ R ∪ {+∞}, such that the following
hold:

(i) U(t) > a, U ′(t) > 0, and V (t) > 0 for all t ∈ (−∞, T ).

(ii) V ′(t)(γ − U(t)) > 0 for U(t) 6= γ.
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(iii) limt→−∞(U(t), U ′(t), V (t)) = (a, 0, 0).

(iv) (U,W, V ) = (U(t), U ′(t), V (t)) lies on a surface W = Ψ(U, V ) for negative t with |t| À 1
which takes the form

W =
(f(a)

c
+ O(

√
(U − a)2 + V 2)

)
· V m.

Proof. Take any ψ which characterizes a centre manifold of (2.15) at the origin. From Lemma 2.1,
it follows that there exists a unique solution (x(t), y(t)) (up to a translation) of (2.17) (with respect
to this given ψ) defined for all t ∈ (−∞, 0] (by a suitable shift of t) such that x > 0, y > 0,
x′ > 0, and y′ > 0 on (−∞, 0], and limt→−∞(x(t), y(t)) = (0, 0). Therefore, by (2.22), there exists
a solution (x(t), y(t), z(t)) of the problem (P̂a) defined on (−∞, 0] such that x > 0, y > 0, z < 0,
x′ > 0, and y′ > 0 on (−∞, 0], and limt→−∞(x(t), y(t), z(t)) = (0, 0, 0).

Next, we want to show the uniqueness of solution to (P̂a). The idea of the proof is inspired
by [2]. Since any solution of (P̂a) must lie on a centre manifold of (2.15) at (0, 0, 0), it suffices to
show that (x(t), y(t), z(t)) is independent of the choice of ψ. Suppose that ψi, i = 1, 2, are the
representations of two centre manifolds of (2.15) at (0, 0, 0). Let (x(t), y(t)) be the solution of (2.17)
with ψ = ψ1 obtained above. Then (x(t), y(t), z(t)) := (x(t), y(t), ψ1(x(t), y(t))) is a solution of the
problem (P̂a) defined on (−∞, 0].

Note that for negative t with |t| À 1, (x(t), y(t), ψ2(x(t), y(t))) lies on the centre manifold
associated with ψ2. We claim that z(t) = ψ2(x(t), y(t)) for negative t with |t| À 1. To this end, we
claim that η(t) := z(t) − ψ2(x(t), y(t)) = 0 for negative t with |t| À 1. Note that η(t) is bounded.
Recall that the centre manifold (x, y, ψ2(x, y)) satisfies

ψ2,xf(x + ψ2 + a)
ym

c
+ ψ2,y[K − f(x + ψ2 + a)]

ym

c
= −cψ2 − f(x + ψ2 + a)

ym

c
(2.23)

for all sufficiently small x, y. Here, for simplicity, we write ∂ψ2/∂x and ∂ψ2/∂x as ψ2,x and ψ2,y,
respectively, and ignore the arguments of ψ2, ψ2,x, ψ2,y. Also note that z(t) satisfies

z′(t) = −cz(t) − f(x(t) + z(t) + a)
ym(t)

c

for all t ∈ (−∞, 0]. Subtracting (2.23) from this equation, we obtain

η′(t) = −cη(t) −
[
f
(
x(t) + z(t) + a

)
− f

(
x(t) + ψ2(x(t), y(t)) + a

)]ym(t)
c

+ψ2,x(x(t), y(t))
[
f
(
x(t) + ψ2(x(t), y(t)) + a

)
− f

(
x(t) + z(t) + a

)]ym(t)
c

+ψ2,y(x(t), y(t))
[
f
(
x(t) + z(t) + a

)
− f

(
x(t) + ψ2(x(t), y(t)) + a

)]ym(t)
c

for negative t with |t| À 1. It follows from the mean-value theorem that

η′(t) = −cη(t) + M(t)ym(t)η(t)

for negative t with |t| À 1 and for some bounded function M(t). Solving the above equation and
using η(−∞) = 0, we have

η(t) =
∫ t

−∞
e−c(t−s)M(s)ym(s)η(s)ds

9



for negative t with |t| À 1. Since M(t) is bounded and y(t) → 0 as t → −∞, there exists a
negative s0 with |s0| À 1 such that |M(s)ym(s)| ≤ c/2 for all s ∈ (−∞, s0]. Together with the
above equation, it yields

|η(t)| ≤ c

2

∫ t

−∞
e−c(t−s)|η(s)|ds

≤ 1
2

sup
s∈(−∞,s0]

|η(s)|

for all t ∈ (−∞, s0]. Hence we have η(t) = 0 for all t ∈ (−∞, s0].
Therefore, z(t) = ψ2(x(t), y(t))) for negative t with |t| À 1 and so (x(t), y(t)) is also a solution

of (2.17) with ψ = ψ2 satisfying the condition limt→−∞(x(t), y(t)) = (0, 0). Then, by part (i) of
Lemma 2.1, we obtain the uniqueness solution to (P̂a).

Finally, transferring back to the origin variable (U,W, V ), we can conclude that there exists a
unique solution (U(t),W (t), V (t)) (up to a translation) of the problem (Pa) defined on the maximal
existence interval (−∞, T ) such that U > a, U ′ = W > 0, V > 0 for negative t with |t| À 1, and
limt→−∞(U(t), U ′(t), V (t)) = (a, 0, 0). Furthermore, with the help of the third equation in (2.2),
(2.10), (2.11), and (2.13), we have that U > a, U ′ > 0, V > 0 on (−∞, T ), and V ′(t)(γ −U(t)) > 0
for U(t) 6= γ. Also, statement (iv) follows from (2.22). This proves the lemma.

2.3 Global existence of solutions of (Pa)

For each a ∈ (0, γ) and c > 0, the unique solution (U, V ) of (2.1) obtained in Lemma 2.2 is a good
candidate for a solution to (1.4)-(1.5). However, since m > 1, from the third equation in (2.2) we
see that (U, V ) may blow up in finite time. In this subsection, we will show that such a solution is
globally defined if c is suitably chosen.

First we observe the following lemma.

Lemma 2.3 Let (U,W, V ) be a solution of (Pa) defined on (−∞, T ). If V is bounded on (−∞, T ),
then we have T = +∞.

Proof. The proof is a slight modification of that of [1, part (i) of Lemma 2.1]. Fix a t0 ∈ (−∞, T ).
Using Lemma 2.2 and the boundedness of V , there exists a positive constant M such that U > a,
U ′ > 0, and V m−1 ∈ (0,M/K) on (−∞, T ). Therefore from (2.9) it follows that for all t ∈ (t0, T ),
there holds

U ′(t) + cU(t) + cV (t) = U ′(t0) + cU(t0) + cV (t0) + K

∫ t

t0

V m(s)ds

≤ U ′(t0) + cU(t0) + cV (t0) + M

∫ t

t0

V (s)ds

≤ U ′(t0) + cU(t0) + cV (t0) +
M

c

∫ t

t0

(U ′(s) + cU(s) + cV (s))ds

which together with an application of Gronwall’s inequality yields

U ′(t) + cU(t) + cV (t) ≤ [U ′(t0) + cU(t0) + cV (t0)]eM(t−t0)/c

for all t ∈ (t0, T ). Recall that U > a, U ′ > 0, and V > 0 on (−∞, T ). The above inequality implies
T = +∞. This completes the proof.

Now we come to the goal of this subsection.
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Lemma 2.4 Let (U,W, V ) be a solution of (Pa) defined on (−∞, T ). Then there exists a constant
c(a) ≥ 0 such that T = +∞, if c > c(a). Moreover, if m ∈ (1, 2], then c(a) = 0 for all a ∈ (0, γ);
and if m > 2, then c(a) is bounded on (ε, γ) for each ε ∈ (0, γ), c(a) → 0 as a → γ−, and
c(a) → +∞ as a → 0+.

Proof. We first define the quantity c(a). Note that L(a) := minu∈[a,γ] f(u) is a well-defined
positive constant for each a ∈ (0, γ), and lima→0+ L(a) = 0. Set l(n) := inf{k ∈ (0, +∞)| kx ≥
xm for all x ∈ [0, n]}. Note that l(n) = nm−1. Now we consider the case m > 2. There exists a
unique least positive integer n0 = n0(a) ∈ N such that

n0 >
γ
(

maxs∈[a,γ](K − f(s))
)

L(a)
.

Notice that n0 is decreasing in a ∈ (0, γ), n0 = 1 for a ∈ (0, γ) with |γ − a| ¿ 1, and n0 ↗ +∞ as
a ↘ 0+. Note that the function

hn : c −→ c
mK

c · l(n) + c

is increasing on (0, +∞) such that limc→0+ hn(c) = 0 and limc→+∞ hn(c) = 1 for each n ∈ N. Hence
we can choose a positive number c(a) such that

c(a)
mK
c(a) · l(n0) + c(a)

=
1
n0

·
γ
(

maxs∈[a,γ](K − f(s))
)

L(a)
.

It is easy to see that c(a) → 0 as a → γ−, and c(a) is bounded on (ε, γ) for each ε ∈ (0, γ).
Furthermore, from L(0+) = 0 it follows that c(a) → +∞ as a → 0+. Notice that hn ≥ hn+1 and
hn is increasing on (0,+∞) for each n ∈ N. Then with the choice of n0 and c(a), we have

n0∑
n=1

cL(a)(
mK

c · l(n) + c
)
·
(

maxs∈[a,γ](K − f(s))
) ≥ γ (2.24)

for all c ≥ c(a). On the other hand, if m ∈ (1, 2], we define c(a) = 0 for each a ∈ (0, γ). Note
that

∑∞
n=1

1
l(n) = +∞ for m ∈ (1, 2]. Hence for each fixed m ∈ (1, 2], c > 0 and a ∈ (0, γ), we can

choose a sufficiently large n0 = n0(a, c,m) ∈ N such that (2.24) holds.
Now we will show that the solution (U,W, V ) of (Pa) is globally defined, if c > c(a). Suppose

on the contrary that T < +∞. Note that from the third equation in (2.2), we have V ′(t) < 0 if
U(t) > γ. Hence from Lemma 2.3 and parts (i) and (ii) of Lemma 2.2, it follows that V (t) ↗ +∞
and U(t) ↗ U0 as t → T− for some U0 ∈ (a, γ]. Also note that V (−∞) = 0.

Set sn := sup{s ∈ (−∞, T )| V (t) < n for all t ∈ (−∞, s]} for each n ∈ N. Then sn is well-
defined for each n ∈ N, and si < sj if i < j. It follows from (2.2) that for each n ∈ N and for all
t ∈ (−∞, sn] ( W

V m

)′
= −m

( W

V m+1

)
V ′ +

W ′

V m

= −m(K − f(U))
c

(W

V

)
+

(
− c · W

V m
+ f(U)

)
≥ −m(K − f(U))

c

( W

V m/l(n)

)
+

(
− c · W

V m
+ f(U)

)
,
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by using the definitions of sn and l(n). Hence we have( W

V m

)′
≥ −

(mK

c
· l(n) + c

) W

V m
+ f(U).

Recall from part (iv) of Lemma 2.2 that limt→−∞ W (t)/V m(t) = f(a)/c. Then an integration of
the above inequality gives

W (t)
V m(t)

≥
∫ t

−∞
e−[mK

c
·l(n)+c](t−s)f(U(s))ds

≥ L(a)/[
mK

c
· l(n) + c]

for all t ∈ (−∞, sn]. This, together with the third equation in (2.2), yields

U ′(t) = W (t) ≥ L(a)
mK

c · l(n) + c
· cV ′(t)
K − f(U(t))

≥ cL(a)
mK

c · l(n) + c
· V ′(t)
maxs∈[a,γ](K − f(s))

for all t ∈ (−∞, sn]. Integrating the above inequality over [sn−1, sn] with s0 = −∞, we then have

U(sn) − U(sn−1) ≥
cL(a)(

mK
c · l(n) + c

)
·
(

maxs∈[a,γ](K − f(s))
)

for all n = 1, . . . , n0. Summing this inequality from n = 1 to n0, we then obtain

U(sn0) − a ≥
n0∑

n=1

cL(a)(
mK

c · l(n) + c
)
·
(

maxs∈[a,γ](K − f(s))
) .

This is a contradiction to (2.24), thereby completing the proof of this lemma.

3 Proofs of main results

Throughout this section, we will let (U(t; a, c),W (t; a, c), V (t; a, c)) be a unique solution of (Pa)
with c > c(a) defined on (−∞,∞) which was shown to exist in Section 2. We also denote by b(a, c)
the limit limt→+∞ U(t; a, c) which will be shown to exist in Lemma 3.1. If there is no ambiguity,
we will write (U(t; a, c),W (t; a, c), V (t; a, c)) and b(a, c) as (U(t),W (t), V (t)) and b, respectively.
Before giving the proofs of Theorems 1-3, we need some preparation.

3.1 Auxiliary lemmas

Lemma 3.1 For a ∈ (0, γ), (U,U ′, V ) satisfies the following:

(i) there exists a t1 ∈ R such that U(t1) = γ, V ′ > 0 on (−∞, t1) and V ′ < 0 on (t1,∞);

(ii) we have the limit limt→∞(U(t), U ′(t), V (t)) = (b, 0, 0), where b ∈ (γ,∞).
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Proof. First, we consider part (i). The proof of part (i) is similar to that of [1, part (ii) of Lemma
2.1]. Since the argument is short, we sketch it here for the convenience of the reader.

Set t1 := sup{t ∈ R : U < γ on (−∞, t]}. Since U(t) ∈ (a, γ) for negative t with |t| À 1, we
can choose a t0 such that U < γ on (−∞, t0], and set

t̂1 := t0 +
1
c

+
γ − a

k1V m(t0)
, k1 := min

{f(u)
c

: U(t0) ≤ u ≤ γ
}

.

Now we claim that t1 ≤ t̂1. For contradiction, we assume that t1 > t̂1. Then we have U(t) < γ
for all t ∈ (t0, t̂1]. From part (i) and (ii) of Lemma 2.2 it follows that U ′(t0) > 0, V ′(t) > 0 and
V (t) > V (t0) for all t ∈ (t0, t̂1]. These facts, together with (2.8) and the choice of t̂1, give

U(t̂1) > a + k1V
m(t0)

∫ t̂1

t0

[1 − e−c(t̂1−s)]ds

= a + k1V
m(t0)

[
t̂1 − t0 −

1 − e−c(t̂1−t0)

c

]
> γ,

a contradiction. Hence t1 ≤ t̂1 < +∞. By using the continuity of U , we then have that U(t1) = γ.
The assertion for V then follows from part (ii) of Lemma 2.2.

Now we consider part (ii). Fix t2 ∈ (t1,∞) and set

ρ := inf
{f(u) − K

c
: u ∈ [U(t2),∞)

}
,

which is positive by assumptions (A1) and (A3). By using (2.14) with t0 = t2, we have that

V (t) ≤
( 1

V 1−m(t2) + (m − 1)ρ(t − t2)

) 1
m−1

for all t ≥ t2. Hence V (t) → 0 as t → ∞. Furthermore, since m/(m−1) > 1, there exists a positive
constant K1 such that for all t ∈ [t2,∞), there holds∫ t

t2

V m(s)ds ≤
∫ t

t2

( 1
V 1−m(t2) + (m − 1)ρ(s − t2)

) m
m−1

ds ≤ K1.

Together with (2.12), it yields

U ′(t) + cU(t) + cV (t) ≤ ca + K

∫ t2

−∞
V m(s)ds + KK1

for all t ≥ t2. Recall that U , U ′ and V are positive on R. Then the above inequality implies that
U is bounded above. Hence U(t) ↗ b as t → +∞ for some b = b(a, c) ∈ (γ,∞).

Now we will show that U ′(t) → 0 as t → +∞. To this end, we note that the function

h : t →
∫ t

−∞
ecsf(U(s))V m(s)ds

is increasing on R. Therefore, h(+∞) := limt→+∞ h(t) exists. If h(+∞) is finite, then by applying
(2.10), we then obtain

lim
t→+∞

U ′(t) = lim
t→+∞

e−cth(t) = 0.

If h(+∞) = +∞, then by using (2.10) and l’Hôpital’s rule, it yields

lim
t→+∞

U ′(t) = lim
t→+∞

h(t)
ect

= lim
t→+∞

f(U(t))V m(t)/c = 0.

Hence U ′(t) → 0 as t → +∞ in any case. This completes the proof.
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Lemma 3.2 Let t1 be such that U(t1; a, c) = γ. The following statements hold:

(i) For each given c > 0, there exists a δ0 ∈ (0, 1/2) such that if a ∈ (γ − δ, γ) with δ ∈ (0, δ0],
we have V (t1; a, c) ≤ δ.

(ii) For each given c > 0, it holds lima→γ− b(a, c) = γ.

Proof. We first prove (i). Let

M := sup
s∈[γ/2,γ]

|f ′(s)| and δ1 := min
{ (2m−1 − 1)K

2m+2(m − 1)M
,
((2m−2 − 1/2)c2

(m − 1)M

)1/m}
.

Note that f(γ) = K and lima→γ− c(a) = 0 by Lemma 2.4. Therefore we can choose a δ0 ∈
(0, min{γ/4, δ1, 1/2}) such that f(u) ≥ K/2 for all u ∈ [γ − δ0, γ], and c > c(a) for all a ∈
(γ−δ0, γ). In the remaining of the proof, for simplicity, we will write (U(t; a, c),W (t; a, c), V (t; a, c))
as (U(t),W (t), V (t)). We will show that this δ0 satisfies the required property. For this, we fix
a δ ∈ (0, δ0] and a ∈ (γ − δ, γ). Since δ/2 < δ, it suffices to prove the case when V (t1) > δ/2.
To begin with, since V ′ > 0 on (−∞, t1), we can choose a t0 ∈ (−∞, t1) with the property that
V (t0) = δ/2. Taking into account the fact that U(t) ∈ (γ − δ, γ) and V ′(t) > 0 for all t ∈ [t0, t1),
we have that f(U(t))V m(t) ≥ Kδm/2m+1 for all t ∈ [t0, t1]. Together with (2.8) and U ′(t0) > 0, it
yields

U(t1) = U(t0) +
1
c
[1 − e−c(t1−t0)]U ′(t0) +

1
c

∫ t1

t0

[1 − e−c(t1−s)]f(U(s))V m(s)ds

> U(t0) +
Kδm

2m+1c
(t1 − t0 −

1
c
),

which implies

t1 − t0 <
2m+1c

Kδm
[U(t1) − U(t0)] +

1
c

<
2m+1c

Kδm
(γ − a) +

1
c

<
2m+1c

K
δ1−m +

1
c
. (since a ∈ (γ − δ, γ))

With the help of (2.14) and the above estimate on t1 − t0, V (t1) can be estimated as follows:

V 1−m(t1) = V 1−m(t0) + (m − 1)
∫ t1

t0

[(f(U(s)) − K)/c]ds

≥ (
δ

2
)1−m − m − 1

c
· sup

s∈[γ/2,γ]
|f ′(s)| · sup

s∈[t0,t1]
|U(s) − γ| · (t1 − t0)

(by the mean-value theorem and f(γ) = K)

≥ (
δ

2
)1−m − m − 1

c
· Mδ ·

(2m+1c

K
δ1−m +

1
c

)
(since U(t) ∈ (γ − δ, γ) for all t ∈ [t0, t1))

≥
(
2m−1 − (m − 1)M2m+1

K
δ
)
δ1−m − (m − 1)M

c2
δ

≥
(
2m−1 − (2m−1 − 1)/2

)
δ1−m − (m − 1)M

c2
δ

(since δ < (2m−1 − 1)K/[2m+2(m − 1)M ])
≥ δ1−m. (since δ < δ1)
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This gives V (t1) ≤ δ, thereby completing the proof of (i).
Now we turn to show (ii). Given a sufficiently small ε > 0. It suffices to show that there exists

a δ > 0 such that b(a, c) ∈ (γ, γ + ε], if a ∈ (γ − δ, γ). We first give the definition of the required δ.
Indeed, we choose a p > 1 such that m/[p(m− 1)] > 1, and let q > 1 satisfy 1/p + 1/q = 1. Define

δ := min
{

δ0,
c2ε

4K1(1 + 2c)
, (

ε

2
)q

(K1

c2
+

K1

c
+

K1C
m
2

c[ m
p(m−1) − 1]

)−q}
where

K1 := max{f(u) : u ∈ [0, γ + ε},

ρ1 := inf
{f(u) − K

c
: γ +

ε

2
≤ u ≤ γ + ε

}
,

C2 :=
(
p

1
p q

1
q

((m − 1)ρ1

c

)1− 1
q
) 1

1−m
,

and δ0 is defined in the assertion (i). We claim that this δ satisfies the required property. Fix
a ∈ (γ − δ, γ). Without loss of generality, we may assume that b = b(a, c) > γ + ε/2. Hence we can
choose a t2 > t1 with the property that U(t2) = γ + ε/2.

Define T2 := sup{t ∈ (t2,∞) : U(t) < γ + ε}. Then it remains to show that T2 = ∞. In fact,
by Young’s inequality, we have

V 1−m(t2) +
(m − 1)ρ1

c
(t − t2)

=
(m − 1)ρ1

c

([
q

1
q V

1−m
q (t2)

(
c

(m−1)ρ1

) 1
q
]q

q
+

[
p

1
p (t − t2)

1
p

]p

p

)
≥ C1−m

2 V
1−m

q (t2)(t − t2)
1
p

for all t ≥ t2. It follows from the definition of ρ1, (2.14) and the above estimate that

V (t) =
( 1

V 1−m(t2) + (m − 1)
∫ t
t2

[(f(U(s)) − K)/c]ds

) 1
m−1

≤
( 1

V 1−m(t2) + (m − 1)ρ1(t − t2)/c

) 1
m−1

≤ C2V
1
q (t2)(t − t2)

1
p(1−m) (3.1)

≤ C2V
1
q (t1)(t − t2)

1
p(1−m) (since V (t1) = sup

s∈R
V (s))

≤ C2δ
1
q (t − t2)

1
p(1−m) (by the assertion (i))

for all t ∈ (t2, T2). Now we use (2.10) to estimate U ′(t2) as follows:

U ′(t2) =
∫ t2

−∞
e−c(t2−s)f(U(s))V m(s)ds

≤ K1V
m(t1)

∫ t2

−∞
e−c(t2−s)ds

=
K1V

m(t1)
c

<
K1δ

c
.
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With these preparations, we can come to the assertion of the claim. First we show that T2−t2 >
2. Indeed, combining the above estimate on U ′(t2) with (2.8), it yields that for all t ∈ (t2, T2) we
have

U(t) < U(t2) +
U ′(t2)

c
+

K1

c

∫ t

t2

V m(s)ds

≤ U(t2) +
U ′(t2)

c
+

K1V
m(t1)
c

(t − t2)

< γ +
ε

2
+

K1δ

c2
+

K1δ

c
(t − t2).

This together with the definition of δ imply that T2−t2 > 2. (Otherwise, we have U(T2) ≤ γ+3ε/4,
a contradiction to the definition of T2.) Therefore, by using (2.8) again, it follows that for all
t ∈ (t2, T2), we have

U(t) < U(t2) +
U ′(t2)

c
+

K1

c

∫ t2+1

t2

V m(s)ds +
K1

c

∫ t

t2+1
V m(s)ds

≤ U(t2) +
U ′(t2)

c
+

K1V
m(t1)
c

+
K1

c

∫ t

t2+1
V m(s)ds (since V (t1) = sup

s∈R
V (s))

< γ +
ε

2
+

K1δ

c2
+

K1δ

c
+

K1

c

∫ t

t2+1
Cm

2 δ
1
q (s − t2)

m
p(1−m) ds (by (3.1) and δ ∈ (0, 1))

< γ +
ε

2
+

K1δ
1
q

c2
+

K1δ
1
q

c
+

K1C
m
2 δ

1
q

c[ m
p(m−1) − 1]

(since δ ∈ (0, 1))

≤ γ + ε. (by the definition of δ)

This implies that T2 = ∞ and hence the proof is completed.

The proof of the following lemma is only a slight modification of [1, Lemma 2.3], and so we
omit it.

Lemma 3.3 It holds
b(a, c) > a + K

∫ u0

a

1
f(u)

du

for any a ∈ (0, γ) and c > c(a), where u0 is defined in the assumption (A2).

Lemma 3.4 For each given a0 ∈ (0, γ) and c such that c > c(â) for all â ∈ (a0 − δ0, a0 + δ1) and
for some δ0 ∈ (0, a0) and δ1 ∈ (0, γ − a0), the function b(a, c) is continuous at a = a0.

Proof. For each given a ∈ (a0 − δ0, a0 + δ1), we let (U(t; a), U ′(t; a), V (t; a)) be the solution
of the problem (1.4)-(1.5) such that U(0; a) = γ. We note that (U(t; a), U ′(t; a), V (t; a)) with
a ∈ (a0 − δ0, a0 + δ1) is globally defined by the choice of c and Lemma 2.4. Set

b0 = b(a0), ε0 =
1
4
(b0 − γ), ρ0 = inf

{f(u) − K

c
: u ∈ [b0 − ε0, b0 + ε0]

}
,

K0 = max{f(u) : u ∈ [b0 − ε0, b0 + ε0]
}

, C2 :=
(
p

1
p q

1
q

((m − 1)ρ0

c

)1− 1
q
) 1

1−m
.

Here we choose p, q > 1 such that m/[p(m − 1)] > 1 and 1/p + 1/q = 1. Fix a ε ∈ (0, ε0/2). Using
the fact that limt→+∞(U(t; a0), U ′(t; a0), V (t; a0)) = (b0, 0, 0), we can choose a sufficiently large t2
such that

b0 − 1
4ε < U(t; a0) < b0, 0 < U ′(t; a0) < c

32ε, and

0 < V (t; a0) < min
{(

3c
64K0

ε
) 1

m
,
(

3c
64K0

·
[ m
p(m−1)

−1]

Cm
2

ε
) q

m
}
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for all t ≥ t2. Recall that for any negative t with |t| À 1, (U(t; a), U ′(t; a), V (t; a)) lies on the centre
manifold of the system (2.3) at (a, 0, 0). Hence by using the representation (2.22) of this centre mani-
fold and the proof of existence of solutions to the system (2.17), we see that (U(t; a), U ′(t; a), V (t; a))
is continuous on (−∞, t̂2] for some negative t̂2 with |t̂2| À 1. Then, in the interval [t̂2, t2], we use
the standard theory for the continuous dependence of solutions of differential equations on the pa-
rameters to conclude that there is a positive δ such that for all a ∈ (a0−δ, a0+δ) ⊂ (a0−δ0, a0+δ1)
there hold

b0 − 1
2ε < U(t2; a) < b0 + 1

2ε, 0 < U ′(t2; a) < c
16ε, and

0 < V (t2; a) < min
{(

3c
32K0

ε
) 1

m
,
(

3c
32K0

·
[ m
p(m−1)

−1]

Cm
2

ε
) q

m
}

.
(3.2)

Here we have used the fact that U ′(·; a) > 0 and V (·; a) > 0 on R.
Set T2 := sup{t ∈ (t2,∞) : |U(t; a) − b0| < ε}. Then it remains to show T2 = ∞. First, by

using a similar argument as in (3.1), we have that

V (t; a) ≤ C2V
1
q (t2, a)(t − t2)

1
p(1−m) (3.3)

for all t ∈ (t2, T2). Next we show that T2 − t2 > 2. Indeed, by applying (2.8) (with t0 = t2) and
using the definition of K0, it yields that

U(t; a) < U(t2; a) +
U ′(t2; a)

c
+

K0

c

∫ t

t2

V m(s; a)ds

≤ U(t2; a) +
U ′(t2; a)

c
+

K0V
m(t2; a)
c

(t − t2) (since V ′(·; a) < 0 on [t2, T2))

≤ b0 +
1
2
ε +

1
16

ε +
3ε

32
(t − t2) (by (3.2))

for all t ∈ (t2, T2). This implies that T2 − t2 > 2, since otherwise, we have U(T2; a) ≤ b0 + 3ε/4,
a contradiction to the definition of T2. Therefore, with the aid of (2.8), the fact V ′(·; a) < 0 on
[t2, T2) and the definition of K0, it follows that

U(t; a) < U(t2; a) +
U ′(t2; a)

c
+

K0

c

∫ t2+1

t2

V m(s; a)ds +
K0

c

∫ t

t2+1
V m(s; a)ds

≤ U(t2; a) +
U ′(t2; a)

c
+

K0V
m(t2; a)
c

+
K0

c

∫ t

t2+1
V m(s; a)ds

≤ b0 +
1
2
ε +

1
16

ε +
3
32

ε +
K0

c

∫ t

t2+1
Cm

2 V
m
q (t2; a)(s − t2)

m
p(1−m) ds (by (3.2), (3.3))

≤ b0 +
21
32

ε +
K0C

m
2 V

m
q (t2; a)

c[ m
p(m−1) − 1]

≤ b0 +
3
4
ε (by (3.2))

for all t ∈ (t2, T2). This implies that T2 = ∞, thereby completing the proof.

3.2 Proofs of Theorems 1-3

Now we are ready to prove Theorems 1-3. Indeed, the first part of Theorem 1 and Theorem 2
immediately follow from Lemma 2.4. The first part of Theorem 3 follows from Lemmas 3.2, 3.3
and 3.4.

Next, we will show that for each given b0 > γ, there is a nonnegative constant c̄(b0) such that
for each c > c̄(b0), there exists a solution (U, V ) to (1.4)-(1.5) for some a ∈ (0, γ). Indeed, by
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Lemmas 3.3 and the fact that ∫ u0

0+

1
f(u)

du = +∞,

we can choose a â ∈ (0, γ) such that b(â, c) > b0 for all c > c(â). Set c̄(b0) := supa∈[â,γ) c(a). Recall
from part (ii) of Lemma 3.2 that lima→γ− b(a, c) = γ for each c > 0. Together with Lemma 3.4,
we can conclude that for each c > c̄(b0) there exists a a(b0, c) ∈ (â, γ) such that b(a(b0, c), c) = b0.
Hence the ”converse” part of Theorem 1 follows.

Finally, we turn to the proof of second part of Theorem 3. Given 0 < a1 < a2 < γ. Set
bi := limt→+∞ U(t; ai), i = 1, 2. Let (U(t; ai), U ′(t; ai), V (t; ai)), i = 1, 2, be the solution of the
problem (1.4)-(1.5) such that U(0; ai) = γ. We can conclude from part (v) of Lemma 2.1 and
part (iv) of Lemma 2.2 that U(t; a1) < U(t; a2), U ′(t; a1) < U ′(t; a2), and V (t; a1) < V (t; a2) for
negative t with |t| À 1. Then following the arguments of [1, pp. 671–673] we have b1 > b2.
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