
E-mail : inhon@mail.tku.edu.tw

Presented by : Ying-Hong Wang

Date : 2012/3/18

教材：
1. Roger S. Pressman. Software Engineering: a practitioner’s
approach, 6th edition. McGRAW-HILL
2. 軟體工程聯盟編撰教材

本教材僅供修習學生閱讀使用，敬請尊重智慧財產權，勿非法使用本教材內容及相關

參考資料

Software Engineering

March 18, 2012<inhon@mail.tku.edu.tw>

上課用書、參考用書暨相關規定

• 成績評定

– 出席15%、平時作業40% 、期中報告15%、期末報告20%

– 出席成績僅考核出席與否，故不接受任何請假，但每人每學期有三次免責，全

勤者於學期成績另加3分

– 演講一場：需繳交隨堂聽講報告(10%) ，若無法安排演講，此項分數併入平時

作業成績

– 一般作業遲交每24小時扣10分、隨堂作業、期中與期末報告不可遲交

– 期中報告繳交時間：4/13 1200前、期末報告繳交時間：6/8 1200前

• 上課方式

– 投影片為主、板書為輔

• 上課規定

– 手機改設震動或關機、不要私下講話

March 18, 2012<inhon@mail.tku.edu.tw> P 3

課程目標

• 瞭解軟體專案開發流程與方法

• 學習軟體專案開發程序、方法與工具

• 輔助軟體工具：ArgoUML
– 下載網站http://tw.opensourceinstall.org

March 18, 2012<inhon@mail.tku.edu.tw> P 4

調整上課心態與學習態度

• 以前修課的想法可能是求過關就好

• 以前的學習態度可能是可以順利畢業就好

• 現在妳(你)應該要為即將就業作準備

• 現在的妳(你)應該要知道為什麼要學、要學什麼

• 現在的妳(你)應該要開始思考如何面對競爭

• 現在的妳(你)應該要準備如何打贏一場又一場的競賽

• 現在的妳(你)應該思考如何成為企業需要的人才

對同學們的建議

• 在專業養成上 (Hard Skills)
– 奠定紮實的基礎

– 養成終身學習的習慣

• 在人格養成上 (Soft Skills)
– 建立正確的態度

– 處事三態：真誠、負責、合群

March 18, 2012<inhon@mail.tku.edu.tw>

Contents
• Preface

• An Overview of Software Engineering

• Software Processes

• Requirements Engineering

• Software Design

• Object-oriented Software Development

• Software Project Management and Planning

• Testing and Quality Assurance

• Overview of CMMI

March 18, 2012<inhon@mail.tku.edu.tw> P 7

Learning Objects Architecture
Overview

Software Processes

Requirement
Engineering

System Analysis

System Design

Software Project
Management and Planning

Testing and Quality Assurance

CMMI

March 18, 2012<inhon@mail.tku.edu.tw>

Contents
• Preface

• An Overview of Software Engineering

• Software Processes

• Requirements Engineering

• Software Design

• Object-oriented Software Development

• Software Project Management and Planning

• Testing and Quality Assurance

• Overview of CMMI

March 18, 2012<inhon@mail.tku.edu.tw>

Preface

• The objective of this course is to explain the Introduction of
software engineering , and provide an easy and practical
introduction to the important characteristics of software
engineering. After taking this course, students will
understand:
– what is software engineering;

– why software engineering is important;

– how to develop software and manage a software project by using
the software engineering in detail.

March 18, 2012<inhon@mail.tku.edu.tw>

軟體工程學程介紹

• 淡江大學跨院系所『軟體工程學分學程』介紹

– 設置宗旨

• 因應國內外軟體系統開發品質之發展，特別是台灣軟體產業處於印度、韓

國與中國大陸的競爭條件下，有賴於軟體系統開發程序與品質的技術以提

升相關軟體系統開發產業的品質與競爭力，是以本學程設立宗旨在於培育

本校軟體系統開發流程、品質控制與專案管理之專業人才。

– 學程必選修科目暨其學分數及應修學分總數

• 學程必選修科目如附表，學生修習本學程科目學分，其中至少應有九學分

不屬於學生主修系、所、加修學系及輔系之應修科目

– 最低修業學分數

• 23學分

– 參考網址

• http://www2.tku.edu.tw/~teix/CSIE/index.php?option=com_content&task=vie
w&id=54&Itemid=111#cc

March 18, 2012<inhon@mail.tku.edu.tw>

軟體工程學程介紹

March 18, 2012<inhon@mail.tku.edu.tw>

Contents
• Preface

• An Overview of Software Engineering

• Software Processes

• Requirements Engineering

• Software Design

• Object-oriented Software Development

• Software Project Management and Planning

• Testing and Quality Assurance

• Overview of CMMI

March 18, 2012<inhon@mail.tku.edu.tw>

An Overview of Software Engineering

Software Crisis 軟體危機

Software Myths 軟體迷思

What is Software Engineering? 什麼是軟體工程?

The Evolution of Software Industry 軟體工業的演進

March 18, 2012<inhon@mail.tku.edu.tw>

Software Crisis
• What is the Problem ?

• 84 % of all software projects do not finish on time and within budget (Survey
conducted by Standish Group)

– 8000 projects in US in 1995

– More than 3o % of all projects were cancelled

– 189 % over budget

• Key issues:
– Software firms are always pressured to perform under unrealisticdeadlines.

– The clients ask for new features, just before the end of the project, and unclear
requirements.

– Software itself is awfully complex.

– Uncertainties throughout the development project.

March 18, 2012<inhon@mail.tku.edu.tw>

The Cost of Change

Definition Development After release

1x

1.5-6x

60-100x

軟體越早修改，所需的成本越低

March 18, 2012<inhon@mail.tku.edu.tw>

Real Cases
• Bank of America Master Net System

– Trust business. 1982.

– Spend 18 months in deep research & analysis of the target system.
• �Original budget: 20 million.

• �Original Schedule: 9 months, due on 1984/12/31.

• �Not until March-1987, and spent 60 million.

• �Lost 600 millions business

– Eventually, gave up the software system and 34 billion trust accounts
transferred.

• Other cases:
– Explosion of Ariane-5 prototype in 1996 (原型機爆炸事件)

– Explosion of Boeing’s Delta III rocket. (火箭爆炸事件)

March 18, 2012Copyright from: United States Department of Agriculture

March 18, 2012<inhon@mail.tku.edu.tw>

Problems of Software

• General issues 一般議題

– HW vs. SW 硬體與軟體的比較

– Productivity: build new programs from scratch

– Maintenance: maintain existing programs

March 18, 2012<inhon@mail.tku.edu.tw>

Characteristics of Software

Software Hardware

logical system element

developed/engineered

Not ware out but deteriorate

Usually custom-built

physical system element

Manufactured

ware out

assembled from existing Component

-no spare parts -yes, with spare parts

March 18, 2012<inhon@mail.tku.edu.tw>

Failure Curve for Hardware (Ware out)

March 18, 2012<inhon@mail.tku.edu.tw>

Failure Curve for Software (Deterioration Not Ware Out)

March 18, 2012<inhon@mail.tku.edu.tw>

Software Myths

• Management Myths

– We already have a book that’s full of standards and
procedures for building software. Won’t that provide my
people with everything they need to know?

– My people do have state-of-the-art software
development tools; after all, we buy them the newest
computers

– If we get behind schedule, we can add more
programmers and catch up

March 18, 2012<inhon@mail.tku.edu.tw>

Software Myths

• Customer Myths

– A general statement of objectives is sufficient to begin
writing programs – we can fill in the details later

– Project requirements continually change, but change
can be easily accommodated because software is
flexible

March 18, 2012<inhon@mail.tku.edu.tw>

Software Myths

• Practitioner’s Myths
– Once we write the program and get it to work, our job is

done

– Until I get the program “running” I really have no way
of assessing its quality

– The only deliverable for a successful project is the
working program

March 18, 2012<inhon@mail.tku.edu.tw>

What is Software?

• Software includes
– computer programs

– documents

– data & data structures

March 18, 2012<inhon@mail.tku.edu.tw>

The Definition of Software?

March 18, 2012<inhon@mail.tku.edu.tw>

The Different Architectures of
Software

March 18, 2012<inhon@mail.tku.edu.tw>

What is Software Engineering?

March 18, 2012<inhon@mail.tku.edu.tw>

What is Software Engineering?

• Definition
–學者Stephen R. Schach (2002)對軟體工程的定義為＂

一門專業學門，針對在預算內生產並準時交付無錯

誤且滿足客戶需求之軟體＂

– 軟體工程所包括的內容為：軟體工程是一門以研究

如何以系統化、規範化、和量化之工程原則和方法

來進行俱經濟效益之軟體開發和維護的學科

– 軟體工程包括了兩方面之內容：軟體開發技術和軟

體專案管理

March 18, 2012<inhon@mail.tku.edu.tw>

What is Software Engineering?

March 18, 2012<inhon@mail.tku.edu.tw>

What is Software Engineering?

• Software engineering is a discipline that integrates
methods, tools, and procedures for the
development of computer software.
– Method: introduce a way to build software

– Tool: automatic, semi-auto support for methods

– Procedure: define the sequence in which methods will
be applied, the controls that help ensure quality and
coordinate changes.

March 18, 2012<inhon@mail.tku.edu.tw>

Generic View of Software Engineering

• Definition: What

• Development: How

• Maintenance: Changes

March 18, 2012<inhon@mail.tku.edu.tw>

Generic View of Software Engineering

• 軟體工程的四個構面 (4Ps): People, Process,
Project, and Product

March 18, 2012<inhon@mail.tku.edu.tw>

Traditional Software Engineering

Software Design

DataProcess Behavior

Entity-Relation
Diagram

Data Flow
Diagram

State Transition
Diagram

March 18, 2012<inhon@mail.tku.edu.tw>

Object-Oriented Software Engineering

Software Design

FunctionObject Behavior

Data Flow
Diagram

Class
Diagram State Chart

March 18, 2012<inhon@mail.tku.edu.tw>

The Evolution of Software Industry

• Independent Programming Service (Era 1)

• Software Product (Era 2)

• Enterprise Solution (Era 3)

• Packaged Software for the Mass (Era 4)

• Internet Software and Services (Era 5)

March 18, 2012<inhon@mail.tku.edu.tw>

Independent Programming Services (Era 1)

• Feb 1955, Elmer Kubie and John Sheldon founded
CUC
– the First Software Company that devoted to the

construction of software especially for hardware
company.

• Promoting Software Industry: two Major Projects,
– SABRE, airline reservation system, $30 million.

– SAGE, air defense system (1949~1962)
• 700/1000 programmers in the US. $8 billion.

March 18, 2012<inhon@mail.tku.edu.tw>

Software Product (Era 2)

• 1964 Martin Goetz developed Flowchart Software
-- Autoflow for RCA, but rejected.
– Sale to the customer of RCA & IBM.

– Develop and market software products not specifically
designed for a particular hardware platform.

• MARK IV, a pre-runner for the database
management system.

• IBM unbundled software from hardware.

March 18, 2012<inhon@mail.tku.edu.tw>

Enterprise Solutions (Era 3)

• Dietmar Hopp. IBM Germany
– Systems, Applications and Products (SAP) $3.3billion (1997)

– Setting up shop in Walldorf, Germany.

– Marked by the emergence of enterprise solutions providers.

e.g. Baan 1978. Netherlands. $680 million (1997)

Oracle 1977. U.S.

Larry Ellison.

– ERP, $45 billion (1997)

March 18, 2012<inhon@mail.tku.edu.tw>

Packaged Software for the Masses (Era 4)

• Software products for the masses. 1979.
– VisiCalc, Spreadsheet program.

• August 1981: The deal of the century.
– Bill Gates bought the first version of the OS from a small firm called

Seattle Computer Products for $50,000 without telling them it was for
IBM.

– The development of the IBM PC, 1981, initiated a 4th software era.

• PC-based mass-market software. Few additional services are required
for installation.

– Microsoft reached revenues of $11.6 billion. Packaged Software Products,
$57 billion (1997)

March 18, 2012<inhon@mail.tku.edu.tw>

Internet Software and Services (Era5)

• Internet and value-added services period, 1994.
– started with Netscape’s browser software for the

internet.

March 18, 2012<inhon@mail.tku.edu.tw>

IT Market

Hardware
products

Hardware
maintenance

Software Products
& Services

Processing Services
and Internet Services

Embedded
Software

Professional
Service

Software
Products

Enterprise
Solution

Packaged
Mass-Market
Software

March 18, 2012<inhon@mail.tku.edu.tw>

Software Products and Services

Enterprise
Solutions

IBM
Oracle
Computer Associates
SAP
HP
Fujitsu
Hitachi
Parametric Technology
People Soft
Siemens

Packaged Mass-Market
Software

Microsoft
IBM
Computer Associates
Adobe
Novell
Symantec
Intuit
Autodesk
Apple
The Learning Company

Professional Software
Services

Anderson Consulting
IBM
EDS
CSC
Science Applications
Cap Gemini
Hp
DEC
Fujitsu
BSO Origin

March 18, 2012<inhon@mail.tku.edu.tw>

Contents
• Preface

• An Overview of Software Engineering

• Software Processes

• Requirements Engineering

• Software Design

• Object-oriented Software Development

• Software Project Management and Planning

• Testing and Quality Assurance

• Overview of CMMI

March 18, 2012<inhon@mail.tku.edu.tw>

Software Processes

• Introduction to Software Process

• Software Life Cycle

• Software Process Models

• Comparison of Different Models

March 18, 2012<inhon@mail.tku.edu.tw>

What is a Process

• A sequence of steps performed for a given purpose.

• Integrating people, tools and procedures together.

• A set of activities, methods, practices and transformations
that people employ to develop and maintain software and
the associated products, including project plans, design
documents, code, test case and user manuals.

March 18, 2012<inhon@mail.tku.edu.tw>

Software Life Cycle
• Requirement acquisition (problem statements)

– To describe the problem to be solved and providing a conceptual overview of the
proposed system

• Requirement analysis

• Requirement specification

• System analysis

• System design, Detail design

• Coding

• Testing

• Maintenance

March 18, 2012<inhon@mail.tku.edu.tw>

Draft of Software Life Cycle

• Requirement analysis

• Design

• Implementation

• Testing

• Maintenance

March 18, 2012<inhon@mail.tku.edu.tw>

Generic View of Software Life Cycle

• Definition: What

• Development: How

• Maintenance: Change

March 18, 2012<inhon@mail.tku.edu.tw>

Requirement Analysis

• A process of discovering, refinement, modeling and
specification.
– Principles: represent information domain of a problem

• Information flow: data & control changes

• Information content: composite term.

• Information structure: organization

– Modeling: (graphical & textual description)
• Modeling methods: SA, OOA, JSD, DSSD, SADT

• Model component: information, function, behavior

– Artifact
• Requirement specification.

– Capturing: functionality, behavior, and structure

March 18, 2012<inhon@mail.tku.edu.tw>

Requirement Analysis

• SA: Structure Analysis

• OOA: Object-Oriented Analysis

• JSD: Jackson System Development

• DSSD: Data Structured Systems Development

• SADT: Structured Analysis & Design Technique

March 18, 2012<inhon@mail.tku.edu.tw>

Design

• The problem is decomposed into modules

• The interface between modules must be specified

• Define architecture

• Artifact: design model
– Data design

• Data abstraction, data structure, data modeling

• Procedural design: iteration , conditional, sequence

• Architectural design: program structure, software architecture)

March 18, 2012<inhon@mail.tku.edu.tw>

Implementation

• Individual module programming
– Pseudo-code

• The goals
– The development of a well-documented

– The reliable, easy to read, flexible, correct program

• Integration of modules

• Artifact: executable program

March 18, 2012<inhon@mail.tku.edu.tw>

Testing

• Test the system from requirement engineering to
implementation
– Verification and validation

• Artifact: testing report

March 18, 2012<inhon@mail.tku.edu.tw>

Maintenance

• Maintain the user satisfaction
– Repair errors, requirements changed or extended

• Changes in both the system’s environment and
user requirements are inevitable
– Maintenance = Evolution

March 18, 2012<inhon@mail.tku.edu.tw>

Maintenance (cont’d)

• Kinds of maintenance activities
– Corrective

– Adaptive

– Perfective

– Preventive

March 18, 2012<inhon@mail.tku.edu.tw>

Software Process Models

• Waterfall Model

• Prototyping

• Spiral Model

• Fourth-generation Techniques

• Automatic synthesis Model

• Object-Oriented Approach

• Agile Method

March 18, 2012<inhon@mail.tku.edu.tw>

Waterfall Model

• Frequently implemented based on a view of the
world interpreted in terms of a functional
decomposition.
– What does the system do?

• Based on functional decomposition.
– Top-down analysis and design methodology

– SA/SD
• Based on data flows : DFD, DD, structure charts.

– Easily to map to conventional procedural language

March 18, 2012<inhon@mail.tku.edu.tw>

Waterfall Model

March 18, 2012<inhon@mail.tku.edu.tw>

Waterfall Model

March 18, 2012<inhon@mail.tku.edu.tw>

Prototyping Model

• Throwaway : implement only aspects poorly
understood.

• Evolutionary : more likely to implement best
understood benefits :
– Improve communication

– Reduce risk

– Most feasible way to validate specification

– For maintenance as well.

March 18, 2012<inhon@mail.tku.edu.tw>

Prototyping Model

• Throwaway : implement only aspects poorly
understood.

• Evolutionary : more likely to implement best
understood benefits :
– Improve communication

– Reduce risk

– Most feasible way to validate specification

– For maintenance as well.

March 18, 2012<inhon@mail.tku.edu.tw>

Prototyping Model

• The roles of prototyping
– As a means to acquire validate users requirements.

– As scaled-down version of the final operational system.

– As a means to validate solution specifications.

– As a solution specification for design and
implementation

March 18, 2012<inhon@mail.tku.edu.tw>

Prototyping Model

March 18, 2012<inhon@mail.tku.edu.tw>

Spiral Model

• Risk driven

• Throwaway prototyping

March 18, 2012<inhon@mail.tku.edu.tw>

Spiral Model

March 18, 2012<inhon@mail.tku.edu.tw>

Fourth Generation Technology

March 18, 2012<inhon@mail.tku.edu.tw>

Automatic Synthesis Model

March 18, 2012<inhon@mail.tku.edu.tw>

Object-Oriented Approach

• OOA emphasizes on finding and describing the
objects -or concepts -problem domain.

• OOD emphasizes on defining logical software
object that will ultimately be implemented in an
object-oriented programming language.

• OOP (Programming), implements the designed
components in C++, Java.

March 18, 2012<inhon@mail.tku.edu.tw>

Object-Oriented Approach

March 18, 2012<inhon@mail.tku.edu.tw>

Agile Method

• Agile Method (also called Agile software
development) is a group of software development
methodologies based on iterative and incremental
development

• Requirements and Solutions evolve through
collaboration between self-organizing, cross-
functional teams.

March 18, 2012<inhon@mail.tku.edu.tw>

Agile Method

March 18, 2012<inhon@mail.tku.edu.tw>

Agile Method

• 敏捷式的精神

–原則上敏捷式開發主要的精神在於較短的開發循環

（建立在反覆式開發方式上）以及漸進式開發與交

付。換句話來說，專案的成果，包含計畫、各類的

需求細節、設計等都會隨著專案的進行而漸漸完整

，而非在一開始將所有的計畫與需求擬定完成。

–在敏捷式開發中有個很重要的觀點是塑模（

Modeling）的目的在於增加開發者了解軟體的程度

，進而使得軟體更接近於使用者的需求，而非使用

塑模之後產生的文件。

March 18, 2012<inhon@mail.tku.edu.tw>

Agile Method

• 草稿與藍圖

–開發者使用塑模的時機，是當使用這個技術有助於

開發者更了解被開發的軟體時才使用，例如某些具

關鍵性的議題或者高風險性的項目，而非將軟體所

有範圍的設計都加以塑模留下文件。

–塑模在敏捷式開發的精神下是一種類似草圖或者草

稿的作用。也就是說，用以在團隊開發時討論以及

研究議題的一種工具，在過程中利用塑模的技術來

讓問題得到解決，一開始的動機並非謂了留下設計

圖讓程式設計師去實作。

March 18, 2012<inhon@mail.tku.edu.tw>

Agile Method

• Agile Alliance
–2001年支持敏捷式開發的社群組成了Agile

Alliance(http://www.agilealliance.com/)，並且發表了Agile宣言

與原則。

• The Agile Manifesto (敏捷宣言)
–獨立的工作成員與人員互動 勝於 流程與工具的管理

–工作產生的軟體 勝於 廣泛而全面的文件

–客戶的合作 勝於 契約的談判

–回應變動 勝於 遵循計畫

March 18, 2012<inhon@mail.tku.edu.tw>

Agile Method

• The Agile Principles (敏捷原則)
–最為優先的事情是透過早期與持續交付有價值的軟

體來使客戶滿意。

–歡迎需求的變動，即使是在開發的晚期。敏捷式流

程駕馭變動來作為客戶的競爭優勢。

–頻繁的交付工作產生的軟體，自數週至數月，週期

越短越好。

–領域專家與開發成員必須一同作業，並貫穿整個專

案開發時期。

March 18, 2012<inhon@mail.tku.edu.tw>

Agile Method

• The Agile Principles (敏捷原則)
–使用積極的工作成員來建構專案，給予他們環境以

及支援所需的一切，然後信任他們能夠完成工作。

–在開發團隊中最快也最有效的傳遞資訊方法就是面

對面的溝通。

–工作產生的軟體是衡量進度最主要的依據。

–敏捷式流程倡導水平一致的軟體開發

–專案發起者，開發人員以及使用者都必須持續的維

持專案進度。

March 18, 2012<inhon@mail.tku.edu.tw>

Agile Method

• The Agile Principles (敏捷原則)
–持續重視技術的優勢以及設計品質

–最好的架構、需求以及設計會出現在能夠自我管理

的團隊裡

–在規律的反覆之間，團隊會反省與思考如何更有效

率，然後相對的來調整與修正團隊的開發方式。

• 參考網址─苗圃-台灣敏捷方法Agile Method

– http://140.115.155.41/

March 18, 2012<inhon@mail.tku.edu.tw>

Top-Down vs. Bottom-Up

March 18, 2012<inhon@mail.tku.edu.tw>

Comparing Various Models

• Waterfall model problems

• Prototyping

• Language Comparison

March 18, 2012<inhon@mail.tku.edu.tw>

Waterfall model problems

• Traceability/languages in different phases

• Process is too linear
– Requirement acquisition and validation

• Maintainability : due to the use of functional
decomposition

March 18, 2012<inhon@mail.tku.edu.tw>

Waterfall model problems

• Assume fully elaborated documentation at the
early stage of the life cycle.
– Reusability : top-down design

– Communication

• Based on functional decomposition
– Strongly dependent on detailed functional breakdown

– Not consider evolutionary changes.

– Not encourage reusability

March 18, 2012<inhon@mail.tku.edu.tw>

Prototyping

• Benefits
– Improve communication

– Reduce risk
• Communication between developments

• Determine a proposed design’s unknown properties

• Address requirement acquisition and validation limitation

• Provide a basis for assessing the feasibility and performance of
alternative designs

• Most feasible way to validate specification.

• For maintenance as well

March 18, 2012<inhon@mail.tku.edu.tw>

Prototyping

• Limitation
– Quick and direct approach without considering issues

such as quality and maintainability.

– partial implementation

March 18, 2012<inhon@mail.tku.edu.tw>

Language Comparison

March 18, 2012<inhon@mail.tku.edu.tw>

Language Comparison

• Main Features of Languages
– Specification language: abstract of system functionality

– Design language: abstract of system structure

– Prototype language: both specification and design

– Programming language: optimization

March 18, 2012<inhon@mail.tku.edu.tw>

Requirements Engineering

• Requirements engineering

• Requirements analysis

• Object-oriented (OO) software engineering

• Data modeling and OOA

March 18, 2012<inhon@mail.tku.edu.tw>

Requirements Engineering

• Software requirements

• Characteristics of requirements

• Requirements engineering

• Requirements elicitation

March 18, 2012<inhon@mail.tku.edu.tw>

Requirements Engineering

• Requirement
– Functional requirement describes system services or functions

– Non-functional requirement is a constraint or a goal on the system
or on the development process

• User (Customer) requirement
– A statement in natural language plus diagrams of the services the

system provides and its operational constraints

• Requirements specification
– A structured document for detail description of the system services

– Written as a contract between client and developer

March 18, 2012<inhon@mail.tku.edu.tw>

Characteristics of Requirements

• Incomplete Requirements
– Most software systems are complex, that developer can

never fully captured during the system development,
therefore, requirements are always incomplete.

• Inconsistent Requirement
– Different users have different requirements and

priorities. There is a constantly shifting compromise in
the requirements.

– Prototyping is often required to clarify requirements.

March 18, 2012<inhon@mail.tku.edu.tw>

Requirements Engineering
• Requirements elicitation

– Determine what the customer requires

• Requirements analysis
– Understand the relationships among various customer requirements

• Requirements negotiation
– Shape the relationships among various customer requirements to achieve a

successful result

– Research on requirements trade-off analysis (formulating as goals)

• Requirements specification
– Build a form of requirements

March 18, 2012<inhon@mail.tku.edu.tw>

Requirements Engineering

• Software modeling
– Build a representation of requirements that can be

assessed for correctness, completeness and consistency.

• Requirements validation
– Review the model

• Requirements management
– –Identify, control and track requirements and the

changes

March 18, 2012<inhon@mail.tku.edu.tw>

Requirements Elicitation
• Two sources of information for the requirements elicitation process

– User (customer)

– Application domain

• Asking
– Ask users what they expect from the system

– Interview, brainstorm and questionnaire

• Task analysis
– High-level tasks can be decomposed into sub-tasks

• Scenario-based analysis
– Study instances of tasks

– A scenario can be real or artificial

March 18, 2012<inhon@mail.tku.edu.tw>

Requirements Elicitation
• Form analysis

– A lot of information about the domain can be found in various forms
(examples in ERD slides)

– Forms provide us with information about the data objects of the domain,
their properties, and their interrelations

• Natural language description
– –with background information to be used in conjunction with other

elicitation techniques such as interviews

• Derivation from an existing system
– Take the peculiar circumstances of the present situation into account

(examples in ERD slides)

• Prototyping

March 18, 2012<inhon@mail.tku.edu.tw>

Requirements Analysis

• Software modeling

• The analysis process

• Entity-Relationship diagram (ERD)

• Extended entity-relationship diagram (EERD)

• Components of structured analysis

March 18, 2012<inhon@mail.tku.edu.tw>

Requirements Analysis
• Information domain analysis

– information flow: data transformation

– data content: data dictionary

– data modeling

• Functional and behavioral representation
– function: process transformation

– behavior: state transition diagram

• Interfaces definition
– function/process interface

• Problem partition and abstraction
– –at different levels of abstraction

– –classification and assembly structure

March 18, 2012<inhon@mail.tku.edu.tw>

Software Modeling
• Purpose

– focus on those qualities of an entity that are relevant to the solution of an
application problem

– abstract away those that are irrelevant

• Model: an abstraction for
– Understanding before (actually) building

– Communication

– Visualization

– Reducing complexity

• Methodology: build (analyze) a model of an application domain

March 18, 2012<inhon@mail.tku.edu.tw>

Application and Solution Domain

• Application domain (requirements analysis)

– The environment in which the system is
operating

• Solution domain (system design, object design)

– The available technologies to build the system

March 18, 2012<inhon@mail.tku.edu.tw>

The Analysis Processes

March 18, 2012<inhon@mail.tku.edu.tw>

Traditional Software Engineering

DFD ERD STD

March 18, 2012<inhon@mail.tku.edu.tw>

Traditional Software Engineering

• From Analysis to Design

March 18, 2012<inhon@mail.tku.edu.tw>

Entity-Relationship Diagram

• Entity
– Primary things an organization collects and records information

about. (noun) ()�
• E.g. persons, products, places, etc.�

• Relationship
– Linkage between entities. (verb) (─)�

• E.g. Persons perform jobs, Jobs consist-of tasks �

• Cardinality
– Identify how many instances of one entity are related to how many

instances of another entity.

March 18, 2012<inhon@mail.tku.edu.tw>

Overview

March 18, 2012<inhon@mail.tku.edu.tw>

Entity-Relationship Diagram

March 18, 2012<inhon@mail.tku.edu.tw>

Entity-Relationship Diagram

• Attributes: Properties to describe an entity
– key attribute (key, identifier) to characterize the specific entity (to

retrieve a single entity occurrence (instance))
• unique: to ensure that no other record has the same identifier.

• unchanging: to ensure that it always refers to the same thing.

March 18, 2012<inhon@mail.tku.edu.tw>

Entity-Relationship Diagram

• Student is an entity about which a university stores info such as the Student_id,
name, and phone. �

• Compound keys: made up of a number of different subkeys to produce a unique
identifier

– e.g. course number + section number + term�

• The difference between an entity and an attribute is that attributes are atomic.
– i.e. Attributes have no further attributes that describe them. Entities can be further

described by their attributes.

March 18, 2012<inhon@mail.tku.edu.tw>

Advance Features

• Kernel and characteristic entities
– Entities can be described by other subsidiary entities in a

hierarchical fashion.
• to store related values of one of the attributes of an entity

March 18, 2012<inhon@mail.tku.edu.tw>

Advance Features

• The highest entity type in the hierarchy is called a kernel
entity, which has a unique identity that does not depend on
the existence of any other entity type.

• Characteristic entities: to record the repeated characteristics
of the kernel entity.
– e.g. Course is a kernel entity, Sections and Meetings are

characteristic entities describing the characteristics of Courses.

– The unique identifier for the characteristic entities is a multiple key.

– e.g. Course_id + Section_id are needed to uniquely identify a
section.

March 18, 2012<inhon@mail.tku.edu.tw>

Advance Features

• The highest entity type in the hierarchy is called a kernel
entity, which has a unique identity that does not depend on
the existence of any other entity type.

• Characteristic entities: to record the repeated characteristics
of the kernel entity.
– e.g. Course is a kernel entity, Sections and Meetings are

characteristic entities describing the characteristics of Courses.

– The unique identifier for the characteristic entities is a multiple key.

– e.g. Course_id + Section_id are needed to uniquely identify a
section.

March 18, 2012<inhon@mail.tku.edu.tw>

Advance Features

• Recursive relationships: an entity is related to itself
– E.g.

March 18, 2012<inhon@mail.tku.edu.tw>

Advance Features

• N-ary Relationships
– E.g.

– For Example

March 18, 2012<inhon@mail.tku.edu.tw>

Example

客戶 購買 商品

商品編號

商品名稱

尺寸

顏色

價格

客戶編號

客戶姓名

電話

時間 訂購量

March 18, 2012<inhon@mail.tku.edu.tw>

Where to look for Information
• Existing forms

– forms organize the data and remind what to collect.

– It is common in manual systems to provide large amounts of redundant
data.

– e.g. Scholarship Application Form

March 18, 2012<inhon@mail.tku.edu.tw>

Where to look for Information
• Existing file structures

– Frequently organizations have a collection of application programs that do
not link to each other. They may require complex programs to transform
data used by one application into a form used by another one.

– e.g. existing student record system

March 18, 2012<inhon@mail.tku.edu.tw>

Where to look for Information
• Kernel entities: single keys, such as: Accounts, Buildings, Courses,

Departments, Faculty, Prerequisites, Programs, and Students

• Characteristic entity vs. Relationship (rules)
kernel entity (or characteristic entity)’s key + not part of the key of any
entity

=> characteristic entity

multiple keys are combinations of keys for other entities => M:N
relationships

– e.g. Course_program: course_id, program_id...
Enrolled: students_id, course_id,...

– e.g. Rooms: building_id <----from building’s
room_id <---not identified precisely

characteristic entity

March 18, 2012<inhon@mail.tku.edu.tw>

ERD from existing Forms and Files

March 18, 2012<inhon@mail.tku.edu.tw>

Testing ERD

• No identification key for entity

• Two or more entities have the same key

• Many relationships to a single entity

• Two or more relationships between the same
entities

• N-ary relationship

• An entity has no relationship

March 18, 2012<inhon@mail.tku.edu.tw>

Components of Structured Analysis (SA)

March 18, 2012<inhon@mail.tku.edu.tw>

Components of Structured Analysis

• Modeling Technique
– model: describe information (data & control), flow,

content.

– control-oriented applications

– data-intensive applications
Deficiency

March 18, 2012<inhon@mail.tku.edu.tw>

Data Flow Diagram (DFD)

• A data flow diagram (DFD) is a graphical representation
of the "flow" of data through an information system. DFDs
can also be used for the visualization of data processing
(structured design)

• On a DFD, data items flow from an external data source or
an internal data store to an internal data store or an external
data sink, via an internal process.

March 18, 2012<inhon@mail.tku.edu.tw>

Data Flow Diagram (DFD)
• A DFD provides no information about the timing of

processes, or about whether processes will operate in
sequence or in parallel. It is therefore quite different from a
flowchart, which shows the flow of control through an
algorithm, allowing a reader to determine what operations
will be performed,

• but not what kinds of data will be input to and output from
the system, nor where the data will come from and go to,
nor where the data will be stored (all of which are shown
on a DFD).

March 18, 2012<inhon@mail.tku.edu.tw>

Data Flow Diagram (DFD)

Basic Notations of DFD

March 18, 2012<inhon@mail.tku.edu.tw>

Data Flow Diagram (DFD)

• DFD can be used to represent a system at any level
of abstraction. (refine)
– –level 0: context model (a single bubble)

– –information flow continuity: I/O to each refinement
must remain the same. (balancing)

• No explicit indication of the sequence of
processing is supplied by the DFD.
– –Explicit procedural representation delayed until design.

March 18, 2012<inhon@mail.tku.edu.tw>

Data Flow Diagram (DFD)

• Content of data (implied by the arrow or described
by the store)
– –a collection of items: using data dictionary. (DD) (only

content)

– –a need to represent the relationship between complex
collections of data. (E-R diagram for data modeling)

March 18, 2012<inhon@mail.tku.edu.tw>

Data Flow Diagram (DFD)

• Processing narrative: describe (usually natural
language) a process bubble.
– To specify the processing details in the bubble.�

• inputs to the bubble�

• algorithm applied to the input�

• Output�

• Restrictions & limitations imposed on the process.�

• Performance characteristics related to the process.�

• Design constraints

March 18, 2012<inhon@mail.tku.edu.tw>

Data Flow Diagram (DFD)

Examples- Level 0

March 18, 2012<inhon@mail.tku.edu.tw>

Data Flow Diagram (DFD)

Examples-Detail level

March 18, 2012<inhon@mail.tku.edu.tw>

Object-oriented (OO) Software Engineering

• Steps of analysis: an example using OO approach

• Concepts and phenomena

• Class

• Class identification

• Pieces of an object model

March 18, 2012<inhon@mail.tku.edu.tw>

Object-oriented (OO) Software Engineering

March 18, 2012<inhon@mail.tku.edu.tw>

Steps of analysis
• Define use cases

• Extract candidate classes

• Establish basic class relationships

• Define a class hierarchy

• Identify attributes for each class

• Specify methods that service the attributes

• Indicate how classes/objects are related

• Build a behavioral model

March 18, 2012<inhon@mail.tku.edu.tw>

Steps of analysis
• Application and Solution Domain

March 18, 2012<inhon@mail.tku.edu.tw>

Concepts and Phenomena
• Phenomenon (object): An object instance in the world of a domain,

– E.g. My black watch

• Concept (object class): Describes the properties of phenomena that are
common,

– E.g. Black watches

• A concept is a 3-tuple:
– Its Name distinguishes it from other concepts.

– Its Purpose are the properties that determine if a phenomenon is a member
of a concept.

– Its Members are the phenomena which are part of the concept.

March 18, 2012<inhon@mail.tku.edu.tw>

Concepts and Phenomena

• Modeling: Development of abstractions to answer
specific questions about a set of phenomena while
ignoring irrelevant details.

March 18, 2012<inhon@mail.tku.edu.tw>

Classes

• Class:
– An abstraction in the context

– encapsulates both state (variables) and behavior (methods)

– Can be defined in terms of other classes using inheritance

• Criteria of selecting classes
– Retained information

– Needed services

– Multiple attributes

– Common attributes

– Essential requirements

March 18, 2012<inhon@mail.tku.edu.tw>

Classes Identification

• Identify the boundaries of the system
– What object is inside, what object is outside?

• Identify the important entities in the system
– Learn about problem domain: Observe your client

– Take the flow of events and find participating objects in
use cases (Scenarios and use cases)

– Apply design patterns

– Nouns are good candidates for classes

March 18, 2012<inhon@mail.tku.edu.tw>

Classes Identification

• Identify the boundaries of the system
– What object is inside, what object is outside?

• Identify the important entities in the system
– Learn about problem domain: Observe your client

– Take the flow of events and find participating objects in
use cases (Scenarios and use cases)

– Apply design patterns

– Nouns are good candidates for classes

March 18, 2012<inhon@mail.tku.edu.tw>

Pieces of an Object Model

• Classes

• Associations (Relations)
– Part of-Hierarchy (Aggregation)

– Kind of-Hierarchy (Generalization)

• Attributes
– Application specific

– Attributes in one subsystem can be classes in another
subsystem, turning attributes to classes

March 18, 2012<inhon@mail.tku.edu.tw>

Pieces of an Object Model

• Service
– Domain Methods: Dynamic model, Functional model

– Operation: A function or transformation applied to objects in a
class. All objects in a class share the same operations (Analysis
Phase)

– Signature: Number & types of arguments, type of result value. All
methods of a class have the same signature (Object Design Phase)

– Method: Implementation of an operation for a class
(Implementation Phase), Polymorphic operation: The same
operation applies to many different classes.

March 18, 2012<inhon@mail.tku.edu.tw>

Object Types
• Entity Objects: represent the persistent information (Application

domain objects, “Business objects”)

• Boundary Objects: represent the interaction between the user and the
system

• Control Objects: represent the control tasks performed by the system

March 18, 2012<inhon@mail.tku.edu.tw>

Model Behavior

• Indicate different states of the system

• Specify events that cause the system to change
state

March 18, 2012<inhon@mail.tku.edu.tw>

Modeling Example: A Banking System

• Class Identification: Name of Class, Attributes and
Methods

March 18, 2012<inhon@mail.tku.edu.tw>

Modeling Example: A Banking System

• Naming

March 18, 2012<inhon@mail.tku.edu.tw>

Modeling Example: A Banking System

• Finding New Objects
– Iterate on Names, Attributes and Methods

March 18, 2012<inhon@mail.tku.edu.tw>

Modeling Example: A Banking System

• Finding New Objects
– Iterate on Names, Attributes and Methods

– Find Associations between Objects

– Label the associations

– Determine the multiplicity of the associations

March 18, 2012<inhon@mail.tku.edu.tw>

Modeling Example: A Banking System

• Categorize
– Don’t put too many classes into the same package: 7 ± 2 (or even 5 ± 2)

March 18, 2012<inhon@mail.tku.edu.tw>

Software Design

• Design Fundamentals

• Effective Modular Design

• Architecture Design

• Data Design

• Procedural Design

March 18, 2012<inhon@mail.tku.edu.tw>

Design Fundamentals

• Design Step Procedures

• Software Design vs. Requirement Analysis
– –Software design: requirement →a representation of

software

– –requirement analysis: create a model to represent to
represent the requirements

March 18, 2012<inhon@mail.tku.edu.tw>

Design Fundamentals (Cont.)

• Common Characteristics
– A mechanism for the translation of information domain

representation into design representation

– A notation for representing functional components and
their interfaces

– Heuristics for refinement and partitioning

March 18, 2012<inhon@mail.tku.edu.tw>

Design Fundamentals (Cont.)
• Fundamental Concepts

– Abstraction

– Procedural abstraction
• a named sequence of instruction that has a specific function

– Data abstraction
• a named collection of data–that describes a data object

• can refer all the data by stating the name of the data abstraction

• original abstraction data type is used as a template or generic data structure
from which the data structure can be instructed.

March 18, 2012<inhon@mail.tku.edu.tw>

Fundamental Concepts

• Refinement
– Top-down design strategy

– A hierarchy is developed by decomposing a statement of function (
a procedural abstraction) in a stepwise fashion until programming
statements are reached

• Every refinement step implies some design decisions

– A process elaboration
• Statement of function (description of information) without the internal

working of the function (internal structure of the information)

• Providing more and more details as each successful refinement occurs

March 18, 2012<inhon@mail.tku.edu.tw>

Fundamental Concepts (Cont.)
• Modularity

– Modules: software is divided into separately named and addressable
components

– Modules vs. interfaces between modules
• Avoid over modularity & under modularity; notice that the relationship

between modules (that is, the number of interfaces increase
exponentially with the number of modules)

• Software architecture
– Hierarchy structure of procedural components

– Structure of data

– It relates elements of a software solution to parts of a real-world
problem

March 18, 2012<inhon@mail.tku.edu.tw>

Fundamental Concepts (Cont.)
• Control hierarchy (program structure)�

– The organization of program components & implies a hierarchy of control
• Does not represent procedural aspects of software (iteration, condition,

sequence)�

– Depth / width / fan-in / fan-out / superordinate/ subordinate�

– Two characteristic of software architecture
• Visibility: program components may be invoked or used as data by given

component (indirectly) (e.g. M4 is visible to M1)

• Connectivity: program components are directly invoked or used as data by
given component (e.g. M2 is connected to M1)

– A module that directly causes another module to begin execution is connected to it

March 18, 2012<inhon@mail.tku.edu.tw>

Fundamental Concepts (Cont.)
• Software procedure focuses on the processing details of

each module individually (sequence, iteration, condition)
– a procedural representation of software is layered

• Information hiding
– modules should be specified and designed so that information

(procedure & data) contained within a module are inaccessible to
other modules that have no need for such information.

– abstraction defines the procedural entities

– hiding defines access constraints to both procedural detail within a
module and local data structure used by the modules

March 18, 2012<inhon@mail.tku.edu.tw>

Effective Modular Design
• Effective modular design

– A modular design reduces complexity, facilitates changes, results in
an easier implementation.

• Classification (based on temporal aspect)

March 18, 2012<inhon@mail.tku.edu.tw>

Effective Modular Design (Cont.)
• A typical control hierarchy may not be encountered when coroutinesor

conroutines are used

• Functional independence (independent effective modules)
– Effective modularity: function compartmentalized and interfaces simplified

• Cohesion: relative functional strength of a module
– coincidental : tasks relate to each other loosely

– logical : performing tasks related logically (all output)

– temporal : all tasks executed with the same span of time

– procedural : must be executed in a specific order

– communicational : concentrate on one area of a data structure

– Sequential

– Functional

March 18, 2012<inhon@mail.tku.edu.tw>

Effective Modular Design (Cont.)
• Coupling: interconnection among modules

• depends on the interface complexity between modules, entity point or reference
to a module, what data passes across the interface

– No direct coupling : module subordinate to different modules

– Data coupling : data passed via argument list

– Stamp coupling : data structure passed via argument list

– control coupling : passes control data

– external coupling : modules are tied to an external environment

– common coupling : refer to a global data area

– content coupling :
• one module makes use of data or control information maintained within the

boundary of another module .

• branches are made into the middle of a modular

March 18, 2012<inhon@mail.tku.edu.tw>

Design Step Procedures
• Data Design

• Architecture Design

• Procedural Design

March 18, 2012<inhon@mail.tku.edu.tw>

Data Design
• Define data abstractions

• Select an appropriate data structure to implement the
abstraction

• Using entity-relationship modeling depict relationship
between objects

March 18, 2012<inhon@mail.tku.edu.tw>

Architectural Design
• Program architecture, domain specific software architecture

– Develop a modular program structure

– Represent the control relationship between modules
• Control hierarchy connecting modules

– Define interface that enable data to flow throughout the program

– System organization

– DSSA

• Pipes & filters
– I: a stream of inputs

– O: a stream of outputs

Program
Architecture

Domain-Specific
Software

Architecture

March 18, 2012<inhon@mail.tku.edu.tw>

Architectural Design

March 18, 2012<inhon@mail.tku.edu.tw>

Architectural Design

• Structure Chart
– A Structure Chart (SC) in software engineering and

organizational theory is a chart, which shows the breakdown of the
configuration system to the lowest manageable levels.

– This chart is used in structured programming to arrange the
program modules in a tree structure. Each module is represented by
a box, which contains the module's name. The tree structure
visualizes the relationships between the modules.

March 18, 2012<inhon@mail.tku.edu.tw>

Architectural Design

• Structure Chart
– A structure chart is a top-down modular design tool, constructed of

squares representing the different modules in the system, and lines
that connect them. The lines represent the connection and or
ownership between activities and subactivities as they are used in
organization charts

– A structure chart is also used to diagram associated elements that
comprise a run stream or thread. It is often developed as a , but
other representations are allowable. The representation must
describe the breakdown of the configuration system into
subsystems and the lowest manageable level.

March 18, 2012<inhon@mail.tku.edu.tw>

Architectural Design

• Structure Chart: Example

March 18, 2012<inhon@mail.tku.edu.tw>

Architectural Design

• Structure Chart: Example

March 18, 2012<inhon@mail.tku.edu.tw>

Architectural Design

• Structure Chart: Example

March 18, 2012<inhon@mail.tku.edu.tw>

Architectural Design

• Structure Chart: 符號說明

– 結構圖 (structure chart)
• 模組

– 控制模組(Control
Module)

– 程式館模組 (Library
Module)

• 資料關聯

• 控制關聯 (Control Couple)
– 旗號 (flag)

– 一個模組利用旗號來傳

送特定情況或動作的訊

號給另一個模組

March 18, 2012<inhon@mail.tku.edu.tw>

Architectural Design

• Structure Chart: 符號說明

– 條件

• 一個條件 (condition) 線段表示出按照特定的條件一個控制模組可以決定該

呼叫那一個附屬模組

– 迴圈

• 迴圈 (loop) 指出一個或多個模組的重複執行

March 18, 2012<inhon@mail.tku.edu.tw>

Architectural Design

• Structure Chart: Another Example

March 18, 2012<inhon@mail.tku.edu.tw>

Procedural Design
• Structure programming

– logical constructs: sequence, conditional, iteration

– to limit the procedural design to a small number of predictable operations
• reduce program complexity

• lead to more readable, testable code

• Flow charts
– Graphical representation for procedural design

– Limitation
• Introduce inefficiency when an escape from a set of nested loops or nested

conditions is required

• Additional complications of logical tests

March 18, 2012<inhon@mail.tku.edu.tw>

Procedural Design
• Program design language (PDL)

– Structured English (pseudocode)
• Uses the vocabulary of English

• Overall syntax of a structure programming language

– Difference between PDL and programming language
• The use of narrative text embedded directly within PDL statements

• PDL cannot be compiled but can be translated into a graphical structure

• Why design language
– can be embedded with source code

– can be a derivative of the high order language .eg. Ada PDL

– easy to review

– can be represented in great detail

March 18, 2012<inhon@mail.tku.edu.tw>

PDL

March 18, 2012<inhon@mail.tku.edu.tw>

PDL

March 18, 2012<inhon@mail.tku.edu.tw>

Object-Oriented Software Development

• Object orientation

• Object-oriented analysis

• Object-oriented Design

• Design Pattern

March 18, 2012<inhon@mail.tku.edu.tw>

Object-Oriented Software Development

• Object orientation

• Object-oriented analysis

• Object-oriented Design

• Design Pattern

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Real-world objects vs. Software objects
– communications

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Modeling the reality of the world.

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• The essential differences between structured and object-
oriented methods:
– All objects to work on. The class concept is used to work with units

of data and operations

– Better possibilities of abstraction. The reality of the world is
visually modeled.

– Methodological uniformity. The results of an activity i can easily
be taken over into activity i+1, that is, iterative development and
reverse engineering are more easier to be carried out.

– Evolutionary development. A complex system is not built in one
go.

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Class
– Object-oriented thinking begins with class

• template

• generalized description

• pattern

• “blueprint”: describing a collection of similar items

– A meta-class (also called a superclass) is a collection of
classes

• Once a class of items is defined, a specific instance of the class
can be defined

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Class

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Class diagrams

– describes classes

• Object diagrams

– describes instances

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Attributes
– a data value held by the objects.

– e.g. name, age, weight, etc.

– attributes name may be followed by type or default value.

• Operations/methods/service
– a function that may be applied to or by objects in a class (i.e.

perform or suffer)

– the same operations takes on different forms in different classes:
polymorphism.

– the implementation of an operation is called a method. (by a
different piece of code)

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• A constraint restricts the values that entities can assume,
which is defined as functional relationships between
entities of an object model.
– entity : objects, classes, attributes, links, and associations.

– e.g. No employee’s salary can exceed the salary of the employee’s
boss

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Encapsulation/Information Hiding
– Separate the external aspects of an object from the internal

implementation details of the object, which are hidden from other
objects

– The object encapsulates both data and the logical procedures
required to manipulate the data

– The advantage
• The user of the data does not

need to know how, where,

or in what form

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Encapsulation/Information Hiding

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Object Identity
– Explicit object identifiers are not required in an object

model.

– Each object is a discrete and distinguishable entity.

– Each real-world object is unique due to its existence.

– Two objects are distinct even if all their attribute values
are identical.

– Object-oriented Database are often based on system-
generated ID numbers and corresponding pointers.

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Inheritance:
– The sharing of attributes and operations among classes based on a

hierarchical relationship

– Each subclass inherits all of the properties of its super class and
adds its own unique properties (called extension)

– For reusability (black box reuse)

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Classification:
– objects with the same

attributes and operations are
grouped into a class

– each object is said to be an
instance of its class

– e.g. Bicycle object ------->
Bicycle class

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Generalization : is-a relationship
– (superclass, subclass)

• Each subclass can inherit all the features of its
ancestors and add its own specific attributes and
operations.

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Extension: add a new operation and attributes.

• Redefinition (Overriding)
– –retain the original interface

– –but recode a particular method

• Restriction :
– –inherit a subset of operations / or tighten

– –the type of attribute or operation output

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Reason for overriding:
– to specify behavior that depends on the subclasses

– to tighten the specification of a feature.

– for better performance

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Multiple Inheritance
– A class has more than one superclass and inherits features from all

parents.
• –Disjoint (default):

– Inherit all attributes of all class

• Overlapping
– To ensure that these attributes are only inherited once

– Need conflicts resolution

• if a class can be refined on several distinct and independent
dimensions, then use multiple generalizations. (inheritance)

• generalization : conceptual level
– inheritance : implementation level. (mechanism)

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Multiple Inheritance

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Abstraction

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Abstraction
– Abstraction: focus on the essential, inherent aspects of an entity and

ignoring its accidental properties.

– abstraction during analysis: deciding only with application-domain
concepts, not making design and implementation decisions.

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Abstract class : has no direct instances.

• Concrete class : can be leaf (instantiable) in the inheritance
tree

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Origin class : the topmost defining class, which
defines the protocol of the feature
– the type of an attribute

– the number and type of arguments

– result type for operations

– the semantic intent

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Abstraction

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Association/Aggregation
– Message exchange

– Association
• a structural relationship that describes a set of links, in which a

link is a connection among objects

– Aggregation
• A special form of association that specifies a whole-part (a-

part-of) relationship between the aggregation (whole) and a
component (part).

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Aggregation
– aggregation is a special form of association.

• Part-whole (Object1,Object2) --> aggregation.

• Independent (Object1,Object2) --> association.

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Aggregation or generalization
– an aggregation tree is composed of object instances that

are all parts of a composite object.
• parts explosion (distinct object).

– a generalization tree is composed of classes (structuring
and description of a single object).

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Aggregation / Association

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Polymorphism:
– the same operation may behave differently on different

classes
• method: a specific implementation of an operation

• a polymorphic operation is an operation that have more than
one method implementing it.

• Static polymorphism
– (overloading): an invocation can be operate on

arguments of more than one type.

March 18, 2012<inhon@mail.tku.edu.tw>

Object orientation

• Dynamic polymorphism: an object has more than
one type
– object reference can refer to an instance of any of

descendants of its class

– a instance of the class created, and is also an instance of
each that class’s ancestors

March 18, 2012<inhon@mail.tku.edu.tw>

Object-Oriented Analysis and Design

• OMT Methodology
– Object Model Technology

• UML
– Unified Modeling Language

