ET75EG

Tamkang Universty Software Engineering Group

I MBI E R B ZE

http://www.tkse.tku.edu.tw/

Software Engineering

1

1. Roger S. Pressman. Software Engineering: a practitioner’s
approach, 6th edition. McCGRAW-HILL

2. P P Pt

T;fMlgr[ﬁ[»,gﬁ??ifwa&l;ﬁ@ Eﬁr‘ﬁﬂ?; TR e A - P2k (P ST F”V’rt’]
2HER|

Presented by : Ying-Hong Wang
E-mail : inhon@mail.tku.edu.tw
Date : 2012/3/18

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

- Y SRR

LL'V'F 15% ~ jﬁﬁrﬁﬁﬁf 0% ~ H#if I[ﬁ‘/fl 5% -~ JE{F:*%F[0%

- USSR TS E R - 2 DM g 2
BRSSPI 35)

- i 3‘“”15?1' Mlﬁ'%ﬂyf{(m%) R R PR PRI T
=S

- - 51’%@%524'J‘Eﬁﬂ‘1053 ~ R~ HH ﬁﬂﬁg?ﬁéfﬂ\ﬁ’ﬁﬁi

— SIS A R ¢ 4113 1200 ~ B4 97 BLRI - 6/8 12007

o PRI
~ 2 A)
° _F%{?'{FJ?L:

- TR - TR B

<inhon@mail.tku.edu.tw> March 18, 2012

TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

=) I
T

o PR R R I AR
o FHEHEA BT e L

R 2 ArgoUML
- r E&%ﬁjﬁfﬁhttp://tw.opensourceinstalI.org

<inhon@mail.tku.edu.tw> March 18, 2012 P3

TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

i e Sl (G e G S

o JIFISRE H:@*@Wﬁﬁl

liilE e N e N R IEE S 2

o TP I RERAVR R (=)

o SR IFRIBALL AR F ~ RIS

o SHTEFOP() IR R N 5

o SHTEP(E)EFRIERF I e B - B
o TP FOG (T E RUBYIE A 5L R R Y

<inhon@mail.tku.edu.tw> March 18, 2012 P4

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

SIS FIAVE R
© ERF S I (Hard Skills)
- s LR
- %’?&?f‘,ygﬁﬁﬁm?wﬁ

o T * fﬁ%’?‘}f (Soft Skills)

- AR
- L i A

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Contents

e Preface

e An Overview of Software Engineering

e Software Processes

e Requirements Engineering

e Software Design

e Object-oriented Software Development

e Software Project Management and Planning
e Testing and Quality Assurance

e Overview of CMMI

<inhon@mail.tku.edu.tw> March 18, 2012

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Learning Objects Architecture

’ Overview ‘

|

’ Software Processes ‘

/\

Software Project Requirement
Management and Planning Engineering
CMMI ‘ ’ System Analysis ‘

l

’ System Design ‘

|

’ Testing and Quality Assurance ‘

<inhon@mail.tku.edu.tw> March 18, 2012 P7

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Contents

e Preface

e An Overview of Software Engineering

e Software Processes

e Requirements Engineering

e Software Design

e Object-oriented Software Development

e Software Project Management and Planning
e Testing and Quality Assurance

e Overview of CMMI

<inhon@mail.tku.edu.tw> March 18, 2012

TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Preface

e The objective of this course is to explain the Introduction of
software engineering , and provide an easy and practical
introduction to the important characteristics of software
engineering. After taking this course, students will
understand:

— what is software engineering;
— why software engineering is important;

— how to develop software and manage a software project by using
the software engineering in detail.

<inhon@mail.tku.edu.tw> March 18, 2012

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

LR R 1

o VEITPER ST T BRI, N
- ?}?[’%{Fl
BT 9O RN T 5 ALY I SO -
@*@Hl[ﬁ&' [T IFN E RIS fh?%' ﬁ”ﬁ*ﬁfﬁ“‘”ﬁ@@ﬁﬁf‘ﬂ;
ﬁlrﬁ#\?g,;;ﬁ Hﬁ@iguﬁ Tﬁ‘&?mﬂ » RLI bﬁitlr%guﬂ EN F’, R Fft,
BRI TR R R T
- SRR R IR 550 B IS AR
o SRR B SR FHRIEIFT > M= D))
TR 2 S T S R SR
- R{SERHFIE
o 2355
- Y-
e http://wwwz2.tku.edu.tw/~teix/CSIE/index.php?option=com_content&task=vie
w&id=54&Itemid=111#cc

<inhon@mail.tku.edu.tw> March 18, 2012

UV T R EE R T AR EE S EERE | (ZEZERIEER

B ARAE L - 1 23 o

8 &
IR — e
s
— =
=xE
A5FR
= ;
= OCEY T S BT AR
% AR B AE 5 i C
== RS CHED A (&
= e i

FEEARTFFERRS T =

=t g e
= ET i

[E A Ty

S]

AP T R

=R HREURE
B S TR C

s FEETEAT AP A ~ SYETUET S AT AR 2 2255 ~ EORIEDRE
AR 4 5255 -
Sk FmFIGER(SERIZEEE

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Contents

e Preface

e An Overview of Software Engineering

e Software Processes

e Requirements Engineering

e Software Design

e Object-oriented Software Development

e Software Project Management and Planning
e Testing and Quality Assurance

e Overview of CMMI

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

An Overview of Software Engineering

Software Crisis fi i) 5
Software Myths gﬁ?ﬁ'i&l

What is Software Engineering? [’ﬁp@ﬁf«‘ﬁgj F?

The Evolution of Software Industry i ¥)i

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Software Crisis

e \What is the Problem ?

e 84 % of all software projects do not finish on time and within budget (Survey
conducted by Standish Group)
— 8000 projects in US in 1995

More than 30 % of all projects were cancelled
189 % over budget

o Key issues:

Software firms are always pressured to perform under unrealisticdeadlines.

The clients ask for new features, just before the end of the project, and unclear
requirements.

Software itself is awfully complex.

Uncertainties throughout the development project.

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

The Cost of Change

A 60-100x

\AA

1.5-6x
1x
Definition Development After release
[T (53 Ao 4 8
<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Real Cases

e Bank of America Master Net System
— Trust business. 1982.
— Spend 18 months in deep research & analysis of the target system.
Original budget: 20 million.
Original Schedule: 9 months, due on 1984/12/31.
Not until March-1987, and spent 60 million.
Lost 600 millions business

— Eventually, gave up the software system and 34 billion trust accounts
transferred.

e Other cases:
— Explosion of Ariane-5 prototype in 1996 (E@'Jﬁ%%k‘%]\)
— Explosion of Boeing’s Delta I11 rocket. ('}'Fﬁ?%i@i)

<inhon@mail.tku.edu.tw> March 18, 2012

How the customer explained it Haow ihe Analyst designed it How the Progeamener wrote it

Haw the project was
documented

How the customaer was billed How it was supperted What the custemor really

needed

Copyright from: United States Department of Agriculture March 18, 2012

a=
TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Problems of Software

o General issues — &
~ HW vs. SW R i v =ik

— Productivity: build new programs from scratch
— Maintenance: maintain existing programs

<inhon@mail.tku.edu.tw> March 18, 2012

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Characteristics of Software

Software Hardware
logical system element physical system element
developed/engineered Manufactured

Not ware out but deteriorate ware out

-no spare parts -yes, with spare parts
Usually custom-built assembled from existing Component
<inhon@mail.tku.edu.tw> March 18, 2012

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Failure Curve for Hardware (Ware out)

R
|\#n A Sts

B Il

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Failure Curve for Software (Deterioration Not Ware Out)

CEAE o3 8]
M| tdsm ot
s B \
=
P dh &%
248 oh 51
B Fi]
<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Software Myths

e Management Myths

— We already have a book that’s full of standards and
procedures for building software. Won’t that provide my
people with everything they need to know?

— My people do have state-of-the-art software
development tools; after all, we buy them the newest
computers

— If we get behind schedule, we can add more
programmers and catch up

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Software Myths

e Customer Myths

— A general statement of objectives is sufficient to begin
writing programs — we can fill in the details later

— Project requirements continually change, but change
can be easily accommodated because software is
flexible

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Software Myths

e Practitioner’s Myths

— Once we write the program and get it to work, our job is
done

— Until I get the program “running” I really have no way
of assessing its quality

— The only deliverable for a successful project is the
working program

<inhon@mail.tku.edu.tw> March 18, 2012

- 73.£G Tamkang Universty Software Engineering Group

HTHMIEREE http:/fwww.tkse.tku.edu. tw/

What is Software?

e Software includes

— computer programs

— documents

— data & data structures

<inhon@mail.tku.edu.tw>

March 18, 2012

- 73.£G Tamkang Universty Software Engineering Group

HTHMIEREE http:/fwww.tkse.tku.edu. tw/

The Definition of Software?

ERE

EAGRER

HB R

S 1

S

7 B BE S (hardware)

<inhon@mail.tku.edu.tw>

March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

The Different Architectures of

Software
‘ e ‘
T
AAJ EERlEE
BRI SRR
SRR 4
R RS R
i e I EER e
m e e m
R (hardware)

P f:fid]

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

What is Software Engineering?

Software Engineering

rﬁhk““-h-h
I g

Lo

Real World Software World

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

What is Software Engineering?

e Definition

- £ Stephen R. Schach (2002) S5t~ A E35 Bb”
= AFE A > S5 SR |2 ﬁ%i“i?:ﬁjz ﬁ%"ﬁﬁ
B PR e

= RO RO H4G ¢ R AL PPk
YRR T) A ™ ~ E™ ~ ARV T RR A
Pt SR B AL A R0 |

T S

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

What is Software Engineering?

— . o —

~ A |

[(Software |
EPHREEE Engineering)

wow
T HEt 1

<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

What is Software Engineering?

e Software engineering is a discipline that integrates
methods, tools, and procedures for the
development of computer software.

— Method: introduce a way to build software
— Tool: automatic, semi-auto support for methods

— Procedure: define the sequence in which methods will
be applied, the controls that help ensure quality and
coordinate changes.

<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Generic View of Software Engineering

e Definition: What

e Development: How

e Maintenance: Changes

<inhon@mail.tku.edu.tw> March 18, 2012

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Generic View of Software Engineering

J ﬁﬁ’%‘%}j Ifgpfjpulﬂja%%@ (4Ps): People, Process,

Project, and Product

EE&L
(Product)

F 3

A
(People)

HE

B 7

Proje /

A

iyl

(Process)

<inhon@mail.tku.edu.tw>

March 18, 2012

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Traditional Software Engineering

Software Design

Process

Data

Behavior

I

Data Flow
Diagram

I

I

Entity-Relation
Diagram

State Transition
Diagram

<inhon@mail.tku.edu.tw>

March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Software Engineering

Software Design

Object Function Behavior

I I

I I

Class
Diagram

Data Flow

: State Chart
Diagram

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

The Evolution of Software Industry

Independent Programming Service (Era 1)

Software Product (Era 2)

Enterprise Solution (Era 3)

Packaged Software for the Mass (Era 4)

Internet Software and Services (Era 5)

<inhon@mail.tku.edu.tw> March 18, 2012

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Independent Programming Services (Era 1)

e Feb 1955, EImer Kubie and John Sheldon founded
CuC
— the First Software Company that devoted to the

construction of software especially for hardware
company.

e Promoting Software Industry: two Major Projects,
— SABRE, airline reservation system, $30 million.

— SAGE, air defense system (1949~1962)
« 700/1000 programmers in the US. $8 billion.

<inhon@mail.tku.edu.tw> March 18, 2012

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Software Product (Era 2)

e 1964 Martin Goetz developed Flowchart Software
-- Autoflow for RCA, but rejected.
— Sale to the customer of RCA & IBM.

— Develop and market software products not specifically
designed for a particular hardware platform.

e MARK 1V, a pre-runner for the database
management system.

e |IBM unbundled software from hardware.

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Enterprise Solutions (Era 3)

e Dietmar Hopp. IBM Germany
— Systems, Applications and Products (SAP) $3.3billion (1997)
— Setting up shop in Walldorf, Germany.
— Marked by the emergence of enterprise solutions providers.
e.g. Baan 1978. Netherlands. $680 million (1997)
Oracle 1977. U.S.
Larry Ellison.
— ERP, $45 billion (1997)

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Packaged Software for the Masses (Era 4)

e Software products for the masses. 1979.
— VisiCalc, Spreadsheet program.

e August 1981: The deal of the century.

— Bill Gates bought the first version of the OS from a small firm called
Seattle Computer Products for $50,000 without telling them it was for
IBM.

— The development of the IBM PC, 1981, initiated a 4™ software era.

» PC-based mass-market software. Few additional services are required
for installation.

— Microsoft reached revenues of $11.6 billion. Packaged Software Products,
$57 billion (1997)

<inhon@mail.tku.edu.tw> March 18, 2012

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Internet Software and Services (Erab)

e Internet and value-added services period, 1994,

— started with Netscape’s browser software for the

internet.

<inhon@mail.tku.edu.tw>

March 18, 2012

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

IT Market

Hardware
products

Hardware
maintenance

Software Products
& Services

Processing Services
and Internet Services

Embedded Professional Software
Software Service Products
[I I
Enterprise Packaged
Solution Mass-Market
Software

<inhon@mail.tku.edu.tw>

March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Software Products and Services

Professional Software
Services

Anderson Consulting
IBM

EDS

CsC

Science Applications
Cap Gemini

Hp

DEC

Fujitsu

BSO Origin

Enterprise
Solutions

IBM

Oracle

Computer Associates
SAP

HP

Fujitsu

Hitachi

Parametric Technology
People Soft

Siemens

Packaged Mass-Market
Software

Microsoft

IBM

Computer Associates
Adobe

Novell

Symantec

Intuit

Autodesk

Apple

The Learning Company

<inhon@mail.tku.edu.tw>

March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Contents

e Preface

e An Overview of Software Engineering

e Software Processes

e Requirements Engineering

e Software Design

e Object-oriented Software Development

e Software Project Management and Planning

e Testing and Quality Assurance

e Overview of CMMI

<inhon@mail.tku.edu.tw>

March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Software Processes

¢ Introduction to Software Process
e Software Life Cycle
e Software Process Models

e Comparison of Different Models

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

What is a Process

e A sequence of steps performed for a given purpose.
¢ Integrating people, tools and procedures together.

e A set of activities, methods, practices and transformations
that people employ to develop and maintain software and
the associated products, including project plans, design
documents, code, test case and user manuals.

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Software Life Cycle

e Requirement acquisition (problem statements)

— To describe the problem to be solved and providing a conceptual overview of the
proposed system

e Requirement analysis

e Requirement specification

e System analysis

e System design, Detail design
e Coding

e Testing

e Maintenance

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Draft of Software Life Cycle

e Requirement analysis

Design

Implementation

Testing

Maintenance

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Generic View of Software Life Cycle

e Definition: What
e Development: How

e Maintenance: Change

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Requirement Analysis

e A process of discovering, refinement, modeling and
specification.

— Principles: represent information domain of a problem
« Information flow: data & control changes
« Information content: composite term.
« Information structure: organization
— Modeling: (graphical & textual description)
* Modeling methods: SA, OOA, JSD, DSSD, SADT
* Model component: information, function, behavior
— Atrtifact
* Requirement specification.

— Capturing: functionality, behavior, and structure
<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Requirement Analysis

e SA: Structure Analysis

OOA: Object-Oriented Analysis

JSD: Jackson System Development

DSSD: Data Structured Systems Development

SADT: Structured Analysis & Design Technique

<inhon@mail.tku.edu.tw> March 18, 2012
-_ -
s EEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

e The problem is decomposed into modules
e The interface between modules must be specified
e Define architecture

e Artifact: design model
— Data design
 Data abstraction, data structure, data modeling
 Procedural design: iteration , conditional, sequence

 Architectural design: program structure, software architecture)

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Implementation

e Individual module programming
— Pseudo-code

e The goals
— The development of a well-documented

— The reliable, easy to read, flexible, correct program
e Integration of modules

e Artifact: executable program

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Testing

e Test the system from requirement engineering to
implementation

— Verification and validation

e Artifact: testing report

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Maintenance

e Maintain the user satisfaction

— Repair errors, requirements changed or extended

e Changes in both the system’s environment and
user requirements are inevitable

— Maintenance = Evolution

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Maintenance (cont’d)

e Kinds of maintenance activities

— Corrective
— Adaptive i 60-100x
— Perfective
— Preventive MWW
1.5-6x%
1
—
Definition Development After release

The Impact of Change

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Software Process Models

o Waterfall Model
e Prototyping
e Spiral Model

e Fourth-generation Techniques

Automatic synthesis Model

Object-Oriented Approach

e Agile Method

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Waterfall Model

e Frequently implemented based on a view of the
world interpreted in terms of a functional
decomposition.

— What does the system do?

e Based on functional decomposition.
— Top-down analysis and design methodology
— SA/SD

* Based on data flows : DFD, DD, structure charts.

— Easily to map to conventional procedural language

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty software Engineering Group ZTHRMIEREZE http://www.tkse.tku.edu.tw/

Waterfall Model

FAETIE

[3 L

EXsimagiiy j
[)

RERRET j
Ax

MRS

|

HE

—

REHERE

N M |

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty software Engineering Group ZTHRMIEREZE http://www.tkse.tku.edu.tw/

Waterfall Model

User Requirements ~

Analysis \

ANALYSIS ‘)

WHAT User Requirements
Specification \\
i Software Requirements J
Specification
DESIGN . System/Board Design

HOW Logical Design J\

Program/Detailed Design J

l Physical Design ~
implementation/Coding ‘3

Program Testing : Units J

™~

Program Testing: J
BL—ILD - N
<

/

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Prototyping Model

e Throwaway : implement only aspects poorly
understood.

e Evolutionary : more likely to implement best
understood benefits :
— Improve communication
— Reduce risk
— Most feasible way to validate specification
— For maintenance as well.

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Prototyping Model

e Throwaway : implement only aspects poorly
understood.

e Evolutionary : more likely to implement best
understood benefits :
— Improve communication
— Reduce risk
— Most feasible way to validate specification
— For maintenance as well.

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Prototyping Model

e The roles of prototyping
— As a means to acquire validate users requirements.
— As scaled-down version of the final operational system.
— As a means to validate solution specifications.

— As a solution specification for design and
implementation

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Prototyping Model

Determine Requirements Construct
Requirements Prototype
Prototype

Requirements
Adjustments

Demonstrate OK | System
Prototype Implementation

<inhon@mail.tku.edu.tw> March 18, 2012

- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Spiral Model

e Risk driven

e Throwaway prototyping

<inhon@mail.tku.edu.tw>

March 18, 2012

- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Spiral Model

Cumulative____|
cost
Determine
objectives. 1
alternative, -

constraints

=

— Progress
th h .
,:;:uf Evaluate alternatives
I _P identify, resolve risks
L Risk ™
T analysis
Risk .

__analysis

Risk! -
otype’ Tototype
pg ype,

. / hnalyProt \

Commitment| ! i sy \ 3 | Prototype |
partition | \ | Requirements plan] — Simullnlions, model.-';, benchmarks

Review h . — — /

ol \ life-cycle plan Software — |
— | i Detailea ™7
Development | Requirement design
lan

Plan next phases
Integration
nd test plan

T ——

validati

Design validation
and verification-

——T

]
I
|
| tntegrﬂtim‘.\

‘Acceptancé and test '
TImplemen- test

: i
tation Develop, verify

next-level product

<inhon@mail.tku.edu.tw>

March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Fourth Generation Technology

Requirements
gathering v

A

Design ﬁ
1 strategy

implementation
using 4GL l

Testing

<inhon@mail.

tku.edu.tw>

March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Automatic Synthesis Model

Validation e

Maintenance | ¥

decision &
rational
l formal
| development
e Specification Lt Interactive | Automatic
Acquisition Translation Compilation
specification [2“1t specification ‘ low-level p
(prototyping) specification
| Specification

source

program

[fomme]

<inhon@mail.tku.edu.tw>

March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Approach

e OOA emphasizes on finding and describing the
objects -or concepts -problem domain.

e OOD emphasizes on defining logical software
object that will ultimately be implemented in an
object-oriented programming language.

OOP (Programming), implements the designed
components in C++, Java.

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Approach

—

Public class Boat
Boat {
public void sail()
age private Date age;

OOA) O0OD [) OOP

Develop model Add detail and
of requirements design decisions

J
_Y_J_ ~

User’s Perspective Developer’s Perspective

Develop code

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Agile Method

e Agile Method (also called Agile software
development) is a group of software development
methodologies based on iterative and incremental
development

e Requirements and Solutions evolve through
collaboration between self-organizing, cross-
functional teams.

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Agile Method
AGILE DEVELOPMENT

adaptability

transparency

Agility is..

STRATEGY

et unity
RELEASE

CONTINUQUS.

B poing
— /\ Software
= 2

ACCELERATE DELIVERY

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Agile Method

oﬁﬂjﬁﬁﬁﬁ

- BB FACHSS B AR A AN RCe R i
(ZF2hF BABRF 3N) 12z if"r%’E“F?%”’"}ﬁ"A
ffjo;fﬁ'ﬁfiiégﬁ,’%%ﬁ’lﬁ%’é’/\""% B en
FRmE KPR EEF L KD f?n*vif"rif"r;%?ﬁ
v@ - By antE B T g e xS o

- AEBABEY B AER RPN (
Modeling) ehp ehfe e 3 +e B4 & 0 fR 4R A A
,ﬁﬁ%@ﬁﬁgﬁﬁ%%?ﬁﬁ%$’ﬁ£%?

vfg__% 1 4 1o 1% o

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Agile Method

. K EW
- B R RROEE > A R e B 2o
B {0 AR B it] % Blde Rt B
%%ﬁ*ﬁ&*j* e [eIE B @ Rl
#Eﬂm‘g*iimcuiﬁ:gf > %o
PRAAH B F s T 5 - ﬁéfk‘ﬁl’l!_ﬂf ?]E\' 'y
$WﬂW”°JT% @’*'flﬁmmaﬁa+%l;
Hw'ﬁ‘%\r’ﬁ— fé_l—; » B AR e ‘fIJ’H‘ 5 R e e
ERAEE DR - e T 2 0§ T R
@ﬁﬁi} WEF L 0T o

<inhon@mail.tku.edu.tw> March 18, 2012

- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Agile Method

e Agile Alliance
- 2001 & & #FagH 0 B g gvd 3 e 2 1 Agile
Alliance(http://www.agilealliance.com/) » & & % 4 1 Agilez 3

e The Agile Manifesto (5 #_ % %
- rea EA R A R T8 M Jifedra £ e
- 1A A ekl BT R 2o 2
o L R S -G =

- RS % KT E

<inhon@mail.tku.edu.tw> March 18, 2012

- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Agile Method

e The Agile Principles (52 £_& 1)
SR BAPEFLEE LD EFL AT G T
BAREZ 2R -
- G Ren®d > Wit EA R a0 ATH SR
ESRE kv L E 2 ik BA -
SRR FA L Ak p I 0 Y
ARTEARDF o
B R FEBESR LRt E 2T ERE
ABRFEY -

<inhon@mail.tku.edu.tw> March 18, 2012

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Agile Method

e The Agile Principles (2 £_& 1)

- R ER R R R K BT R PRE
B AT - s RSB ER PRI IF

- LR F BB BPs B ooueh BT 2 A
o il o

-1 FAS AR R A & iRy

- ATRSV IS AR IR R T - Rk R

e £ N0 B PR R AT R gk s
FERER -

<inhon@mail.tku.edu.tw> March 18, 2012

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Agile Method

e The Agile Principles (52 £_& 1)
- B EAPITRRE L E R
—BRBEOEE S FRME AR ANy AR
B PR AL
- RRESF R F O BEEF FE LT o {50k
oo REAEOAD FEG L BIRORF >

o Sy —y -5 arH > 2 Agile Method
— http://140.115.155.41/

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Top-Down vs. Bottom-Up

,Gnimen;l;\‘ Further -\
f Development /
%ﬁﬁ“ >D’/\
, v —
™
Swlsm
_,D/ Bottom-up: develop an
Unil \ s i '
estihe— individual class
odipg i
@;ﬁﬁ Top-down analysis
Svelom
R.equ;re";:;lm)
[Tca
=
Specification

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Comparing Various Models

e Waterfall model problems
e Prototyping

e Language Comparison

<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Waterfall model problems

e Traceability/languages in different phases

e Process is too linear

— Requirement acquisition and validation

e Maintainability : due to the use of functional
decomposition

<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Waterfall model problems

e Assume fully elaborated documentation at the
early stage of the life cycle.
— Reusability : top-down design
— Communication

e Based on functional decomposition
— Strongly dependent on detailed functional breakdown
— Not consider evolutionary changes.

— Not encourage reusability

<inhon@mail.tku.edu.tw> March 18, 2012

ETSEG

Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Prototyping

e Benefits

— Improve communication

— Reduce risk

Communication between developments
Determine a proposed design’s unknown properties
Address requirement acquisition and validation limitation

Provide a basis for assessing the feasibility and performance of
alternative designs

Most feasible way to validate specification.
For maintenance as well

<inhon@mail.tku.edu.tw> March 18, 2012

ETSEG

Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Prototyping

e Limitation

— Quick and direct approach without considering issues
such as quality and maintainability.

— partial implementation

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Language Comparison

i C ining | detail
Verify comrectness supperting \contalning \eorithm
S executable | formpal quantifies algorl
and completeness o and data
of design or .\ Teasomng structure
implementation “~__| protwtyping | yes low no no
lang. prionty
specification | not must ves 1o
. o
Interconnections language DeCessary
during a:u:hltectlu'e+ 4| Desien not
; g 10
and module design language N
programming |efficient
language
<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Language Comparison

e Main Features of Languages
— Specification language: abstract of system functionality
— Design language: abstract of system structure
— Prototype language: both specification and design

— Programming language: optimization

<inhon@mail.tku.edu.tw> March 18, 2012

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Requirements Engineering

e Requirements engineering
e Requirements analysis
e Object-oriented (OO) software engineering

e Data modeling and OOA

<inhon@mail.tku.edu.tw> March 18, 2012

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Requirements Engineering

e Software requirements
e Characteristics of requirements
e Requirements engineering

e Requirements elicitation

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Requirements Engineering

e Requirement

— Functional requirement describes system services or functions

— Non-functional requirement is a constraint or a goal on the system
or on the development process

e User (Customer) requirement
— A statement in natural language plus diagrams of the services the
system provides and its operational constraints

¢ Requirements specification

— A structured document for detail description of the system services
— Written as a contract between client and developer

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Characteristics of Requirements

e Incomplete Requirements

— Most software systems are complex, that developer can
never fully captured during the system development,
therefore, requirements are always incomplete.

¢ Inconsistent Requirement

— Different users have different requirements and
priorities. There is a constantly shifting compromise in
the requirements.

— Prototyping is often required to clarify requirements.

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Requirements Engineering

e Requirements elicitation
— Determine what the customer requires

e Requirements analysis
— Understand the relationships among various customer requirements

e Requirements negotiation

— Shape the relationships among various customer requirements to achieve a
successful result

— Research on requirements trade-off analysis (formulating as goals)

e Requirements specification
— Build a form of requirements

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Requirements Engineering

e Software modeling

— Build a representation of requirements that can be
assessed for correctness, completeness and consistency.

e Requirements validation

— Review the model

e Requirements management

— —ldentify, control and track requirements and the
changes

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Requirements Elicitation

e Two sources of information for the requirements elicitation process
— User (customer)

— Application domain

e Asking
— Ask users what they expect from the system

— Interview, brainstorm and questionnaire

e Task analysis

— High-level tasks can be decomposed into sub-tasks

e Scenario-based analysis
— Study instances of tasks

— A scenario can be real or artificial

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Requirements Elicitation

e Form analysis

— Aot of information about the domain can be found in various forms
(examples in ERD slides)

— Forms provide us with information about the data objects of the domain,
their properties, and their interrelations
e Natural language description
— —with background information to be used in conjunction with other
elicitation techniques such as interviews
e Derivation from an existing system
— Take the peculiar circumstances of the present situation into account

(examples in ERD slides)

e Prototyping

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Requirements Analysis

e Software modeling

e The analysis process

e Entity-Relationship diagram (ERD)

e Extended entity-relationship diagram (EERD)

e Components of structured analysis
<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Requirements Analysis

e Information domain analysis
— information flow: data transformation
— data content: data dictionary

— data modeling

e Functional and behavioral representation
— function: process transformation
— behavior: state transition diagram

Interfaces definition

— function/process interface

Problem partition and abstraction
— —at different levels of abstraction

— —classification and assembly structure

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Software Modeling

e Purpose
— focus on those qualities of an entity that are relevant to the solution of an
application problem

— abstract away those that are irrelevant

e Model: an abstraction for
Understanding before (actually) building

Communication

— Visualization

Reducing complexity

e Methodology: build (analyze) a model of an application domain

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Application and Solution Domain

e Application domain (requirements analysis)
— The environment in which the system is
operating

e Solution domain (system design, object design)

— The available technologies to build the system

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

The Analysis Processes

requirements develop
the probiem geeyRITFRTATS Specification

f

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Traditional Software Engineering

Software Systems

Function Data Behavior

[I .
Data Flow ‘ Entit}F_RelatioﬂJ State TfﬂllSiTiOllJ

Diagram | Diagram Diagram
________,--"__ —____,_,_,—'-'—'_'____ . _________—
DFD ERD STD

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Traditional Software Engineering

e From Analysis to Design

ERD DFD
e N
e N

Database Structured
Tables chart

| 1
Screen Structured

& English
Report

<inhon@mail.tku.edu.tw=> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Entity-Relationship Diagram

e Entity
— Primary things an organization collects and records information
about. (noun) (O)
« E.g. persons, products, places, etc

¢ Relationship
— Linkage between entities. (verb) (—)

e E.g. Persons perform jobs, Jobs consist-of tasks

e Cardinality

— ldentify how many instances of one entity are related to how many
instances of another entity.

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Overview

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Entity-Relationship Diagram

1:1 |Persons| 1N | Jobs | M:N | PEFSOHS'
perform consist_of serve

Jobs [Tasks] Customers
— Direction

s using an arrow poinfing to the object of the action.

Examples

Serve —
| Persc:@! Customers

Perform

J-::-t;' Consist-of — I Tasks |

<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Entity-Relationship Diagram

~Assist—
Students | — Advice | Faculty

Take — «—Teach

Courses

e Attributes: Properties to describe an entity
— key attribute (key, identifier) to characterize the specific entity (to
retrieve a single entity occurrence (instance))
 unique: to ensure that no other record has the same identifier.

e unchanging: to ensure that it always refers to the same thing.

<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Entity-Relationship Diagram

e Entity type Key attribute Attribute
)[actual data
Students
Student_id name phone
Entity 50416938 Doskes, Jane 242-7147
occurrence 71426006 Blough, JO 426-4141
—

e Student is an entity about which a university stores info such as the Student_id,
name, and phone.

e Compound keys: made up of a number of different subkeys to produce a unique
identifier

— e.g. course number + section number + term

e The difference between an entity and an attribute is that attributes are atomic.

— i.e. Attributes have no further attributes that describe them. Entities can be further

described by their attributes.
<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Advance Features

e Kernel and characteristic entities

— Entities can be described by other subsidiary entities in a
hierarchical fashion.

« to store related values of one of the attributes of an entity

Entities Keys Attributes
- credits

- Course_id Facul
[Sections] Section_id o
[Meetings_| Course_id Meeting_day

Section id Meeting_time
Meeting_id Room
<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Advance Features

e The highest entity type in the hierarchy is called a kernel
entity, which has a unique identity that does not depend on
the existence of any other entity type.

e Characteristic entities: to record the repeated characteristics
of the kernel entity.
— e.g. Course is a kernel entity, Sections and Meetings are
characteristic entities describing the characteristics of Courses.
— The unique identifier for the characteristic entities is a multiple key.

— e.g. Course_id + Section_id are needed to uniquely identify a
section.

<inhon@mail.tku.edu.tw> March 18, 2012

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Advance Features

e The highest entity type in the hierarchy is called a kernel
entity, which has a unique identity that does not depend on
the existence of any other entity type.

e Characteristic entities: to record the repeated characteristics
of the kernel entity.

— e.g. Course is a kernel entity, Sections and Meetings are
characteristic entities describing the characteristics of Courses.

— The unique identifier for the characteristic entities is a multiple key.

— e.g. Course_id + Section_id are needed to uniquely identify a
section.

<inhon@mail.tku.edu.tw> March 18, 2012

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Advance Features

e Recursive relationships: an entity is related to itself
- E.g.

Is Parent_of

Is Married_To

Person

Is_Child_of

— for retrieving all family relationships

<inhon@mail.tku.edu.tw> March 18, 2012

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Advance Features

e N-ary Relationships

- E.g.
— For Example
Teach Take
Faculty Course Students
Occupy Contain
| Rooms | | Sections |
Have
|Meetings|
<inhon@mail.tku.edu.tw> March 18, 2012

-=_

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Example

BckE

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Where to look for Information

e EXxisting forms
— forms organize the data and remind what to collect.

— Itis common in manual systems to provide large amounts of redundant
data.

— e.g. Scholarship Application Form

Student number
name

Year of program __
GPA _

names of Scholarship
applied for

Receive Apply for

Students |

request|

Reference Letters

Requested form: | Referees |
(names and addresses)

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Where to look for Information

e Existing file structures

— Frequently organizations have a collection of application programs that do
not link to each other. They may require complex programs to transform
data used by one application into a form used by another one.

— e.g. existing student record system

Accounts: Account id, Label

Buildings: Building id, Name, Address.

Courses: Course id, Course_Name, Credits.

Course_Program: Course id, Program_id

Departments: Department _id, Department_Name.

Enrolled: Student id, Course id, Section id, Year, Term, Grade.

Faculty: Faculty id, Name, Address, Birthday.

Fee_Payments: Student id, Account id.

Prerequisites: Course id, Pre1, Pre2, Pred.

Programs: Program id, Program_MName.

Rooms: Building id, Room id, Size, Type.

Sections: Course _id, Section_id, Year, Term, Faculty_id (Meeting_id,
Building_id, Room_id, Day, Time} ...

Students: Student id, Name, Address, Birthday.

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Where to look for Information

o Kernel entities: single keys, such as: Accounts, Buildings, Courses,
Departments, Faculty, Prerequisites, Programs, and Students

e Characteristic entity vs. Relationship (rules)
» kernel entity (or characteristic entity)’s key + not part of the key of any
entity
=> characteristic entity
» multiple keys are combinations of keys for other entities => M:N
relationships
— e.g. Course_program: course_id, program_id...
Enrolled: students_id, course_id,...
— e.g. Rooms: building_id <----from building’s
room_id <---not identified precisely

characteristic entity

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

ERD from existing Forms and Files

Buildings Accounts Referees
fele—pavment
Rooms Students applied for Scholarships
receive
Meetings Sections Courses
| | course-program
Faculty Departments Programs

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Testing ERD

No identification key for entity

Many relationships to a single entity

entities

N-ary relationship

e An entity has no relationship

Two or more entities have the same key

Two or more relationships between the same

<inhon@mail.tku.edu.tw>

March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Components of Structured Analysis (SA)

— () process — PSPEC = processing narrative

data & — O external entity PDL
process |— / dataitem J:E—R diagram(data modeling)
— DFD ——— = data store Data Dictionary (content)
— /quasicontinuous data flow
— 7 control process
SA _,—" control item
— ... control store
—— Q multiple instances of the same process
I _,.-'" control item
—CFD__;-._‘I-u,‘ (CSPEC bar) a reference to CSPEC
control — CSPEC STD
|

PAT

<inhon@mail.tku.edu.tw>

March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Components of Structured Analysis

e Modeling Technique

— model: describe information (data & control), flow,
content.

— control-oriented applications 7 Deficiency
— data-intensive applications

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Data Flow Diagram (DFD)

¢ A data flow diagram (DFD) is a graphical representation
of the "flow" of data through an information system. DFDs
can also be used for the visualization of data processing
(structured design)

e On a DFD, data items flow from an external data source or
an internal data store to an internal data store or an external
data sink, via an internal process.

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Data Flow Diagram (DFD)

e A DFD provides no information about the timing of
processes, or about whether processes will operate in
sequence or in parallel. It is therefore quite different from a
flowchart, which shows the flow of control through an
algorithm, allowing a reader to determine what operations
will be performed,

e but not what kinds of data will be input to and output from
the system, nor where the data will come from and go to,
nor where the data will be stored (all of which are shown
on a DFD).

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Data Flow Diagram (DFD)

Omm

FilsyDacadbase

/'—_"\.Fhﬂ'

Basic Notations of DFD

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Data Flow Diagram (DFD)

e DFD can be used to represent a system at any level
of abstraction. (refine)
— —level 0: context model (a single bubble)

— —information flow continuity: /O to each refinement
must remain the same. (balancing)

e No explicit indication of the sequence of
processing is supplied by the DFD.

— —Explicit procedural representation delayed until design.

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Data Flow Diagram (DFD)

e Content of data (implied by the arrow or described
by the store)

— —a collection of items: using data dictionary. (DD) (only
content)

— —a need to represent the relationship between complex
collections of data. (E-R diagram for data modeling)

<inhon@mail.tku.edu.tw> March 18, 2012

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Data Flow Diagram (DFD)

e Processing narrative: describe (usually natural
language) a process bubble.

— To specify the processing details in the bubble.
* inputs to the bubble
« algorithm applied to the input
e Output
« Restrictions & limitations imposed on the process.
« Performance characteristics related to the process.
* Design constraints

<inhon@mail.tku.edu.tw> March 18, 2012

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Data Flow Diagram (DFD)

Database

Input Ouiput——»f Customer

Examples- Level 0

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Data Flow Diagram (DFD)

Data Flow Diagram Example

Valid Cmds TL Cmds
Com Command

Capture Command Timeline
Executive

Command
CCT™ Executive Cmd Status

Telemetry
Qutput
=R

Other TM
i

Examples-Detail level

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Object-oriented (OQO) Software Engineering

e Steps of analysis: an example using OO approach

Concepts and phenomena

Class

Class identification

Pieces of an object model

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-oriented (OQO) Software Engineering

Software Systems

Object Function Behavior

[
|

Data Flow
Diagram

Class State Chart

Diagram

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Steps of analysis

e Define use cases

o Extract candidate classes

e Establish basic class relationships

o Define a class hierarchy

o Identify attributes for each class

o Specify methods that service the attributes
e Indicate how classes/objects are related

e Build a behavioral model

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Steps of analysis

e Application and Solution Domain

Application Domain Solusion Domain

Application Domam Model System Model
UML Package :
/ TrafficControl g SummaryDisplay MapDisplay
o
| TrafficController | s | FlightPlanDatabase |
J TrafficControl |
<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Concepts and Phenomena

e Phenomenon (object): An object instance in the world of a domain,
- E.g. My black watch

e Concept (object class): Describes the properties of phenomena that are
common,

— E.g. Black watches

e A conceptis a 3-tuple:
— Its Name distinguishes it from other concepts.

— Its Purpose are the properties that determine if a phenomenon is a member
of a concept.

— Its Members are the phenomena which are part of the concept.

<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Concepts and Phenomena

Name Purpose Members

Clock A device that

measures time.

e Modeling: Development of abstractions to answer
specific questions about a set of phenomena while
ignoring irrelevant details.

<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Classes

e Class:
— An abstraction in the context
— encapsulates both state (variables) and behavior (methods)
— Can be defined in terms of other classes using inheritance

o Criteria of selecting classes

Retained information

Needed services

Multiple attributes

Common attributes

Essential requirements

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Classes Identification

e |dentify the boundaries of the system
— What object is inside, what object is outside?

e l|dentify the important entities in the system
— Learn about problem domain: Observe your client

— Take the flow of events and find participating objects in
use cases (Scenarios and use cases)

— Apply design patterns
— Nouns are good candidates for classes

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Classes Identification

¢ |dentify the boundaries of the system
— What object is inside, what object is outside?

e l|dentify the important entities in the system
— Learn about problem domain: Observe your client

— Take the flow of events and find participating objects in
use cases (Scenarios and use cases)

— Apply design patterns

— Nouns are good candidates for classes

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Pieces of an Object Model

e Classes

e Associations (Relations)
— Part of-Hierarchy (Aggregation)
— Kind of-Hierarchy (Generalization)

o Attributes
— Application specific
— Attributes in one subsystem can be classes in another
subsystem, turning attributes to classes

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Pieces of an Object Model

e Service

— Domain Methods: Dynamic model, Functional model

— Operation: A function or transformation applied to objects in a
class. All objects in a class share the same operations (Analysis
Phase)

— Signature: Number & types of arguments, type of result value. All
methods of a class have the same signature (Object Design Phase)

— Method: Implementation of an operation for a class
(Implementation Phase), Polymorphic operation: The same
operation applies to many different classes.

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object Types

e Entity Objects: represent the persistent information (Application
domain objects, “Business objects”)

e Boundary Objects: represent the interaction between the user and the
system

e Control Objects: represent the control tasks performed by the system

<<entity>> <<control>> <<hounda >
%arty ChangeDateControl Bllﬁﬂ%ﬂu%}’
':':ﬁgﬁﬁ-iy}} LCDEi:P]}E}%E’urgﬂY
<<entity>>
By

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Model Behavior

e Indicate different states of the system

e Specify events that cause the system to change
state

<inhon@mail.tku.edu.tw> March 18, 2012

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Modeling Example: A Banking System

Foo

Balance

CustomerId

Deposit ()
Withdraw()
GetBalance ()

e Class Identification: Name of Class, Attributes and
Methods

<inhon@mail.tku.edu.tw> March 18, 2012

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Modeling Example: A Banking System

- Loocount
= = Balance
Balance Balance Customsrld
CustomerId CustomerIld Leposit()
- - Withdraw ()
Deposit () Deposit{) GetBalance ()
Withdraw() Withdraw()
GetBalance () GetBalance ()
e Naming

<inhon@mail.tku.edu.tw>

March 18

, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Modeling Example: A Banking System

Bank Accoun Customer
Name Balance Hame
Atcountoa CustomerId
Deposit()
Withdraw()
GetBalance ()

e Finding New Objects
— lterate on Names, Attributes and Methods

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Modeling Example: A Banking System

Account .
Banlk Balance e Customer
N Accountld Name
ame i ;
Deposit() CustomerId
Withdraw()
GetBalance()

e Finding New Objects
— Iterate on Names, Attributes and Methods
— Find Associations between Objects
— Label the associations
— Determine the multiplicity of the associations

<inhon@mail.tku.edu.tw> March 18, 2012

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Modeling Example: A Banking System

Account *
Bank J Customer

Balance Has
Name Accountld
Deposit()
Withdraw()
GetBalance()

Mortgage Checking Saving
Account Account Account

Name
CustomerId

Withdraw() Withdraw() Withdrawl)

e Categorize

— Don’t put too many classes into the same package: 7 + 2 (or even 5 + 2)

<inhon@mail.tku.edu.tw> March 18, 2012

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Software Design

Design Fundamentals

Effective Modular Design

Architecture Design

Data Design

Procedural Design

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Design Fundamentals

e Design Step Procedures

functional infnrlj'al model f_d__,a- dataldesign — data structure
raquiremeant {fbunh[:thnal ImGddEII . arl:dhltgcture —+ relationship between structure
ehavioral mode —— esign
procedure — depict structure component
nanfunctional (FrOESgn constrain design ie. a procedural description
. sperformance of softwars
reguirement ~cost

e Software Design vs. Requirement Analysis

— —Software design: requirement —a representation of
software

— —requirement analysis: create a model to represent to
represent the requirements

<inhon@mail.tku.edu.tw>

March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Design Fundamentals (Cont.)

e Common Characteristics

— A mechanism for the translation of information domain
representation into design representation

— A notation for representing functional components and
their interfaces

— Heuristics for refinement and partitioning

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Design Fundamentals (Cont.)

e Fundamental Concepts
— Abstraction

Level of abstraction Language nsed

Highest level Program-oriented terminology

Low level Procedural-oriented terminology
Lowest level . Implementation-oriented terminology

— Procedural abstraction
« anamed sequence of instruction that has a specific function
— Data abstraction
» anamed collection of data—that describes a data object
« can refer all the data by stating the name of the data abstraction

« original abstraction data type is used as a template or generic data structure
from which the data structure can be instructed.

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Fundamental Concepts

e Refinement
— Top-down design strategy

— A hierarchy is developed by decomposing a statement of function (
a procedural abstraction) in a stepwise fashion until programming
statements are reached

» Every refinement step implies some design decisions
— A process elaboration

 Statement of function (description of information) without the internal
working of the function (internal structure of the information)

 Providing more and more details as each successful refinement occurs

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Fundamental Concepts (Cont.)
e Modularity

— Modules: software is divided into separately named and addressable
components

— Modules vs. interfaces between modules

» Avoid over modularity & under modularity; notice that the relationship
between modules (that is, the number of interfaces increase
exponentially with the number of modules)

e Software architecture
— Hierarchy structure of procedural components
— Structure of data

— It relates elements of a software solution to parts of a real-world
problem

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Fundamental Concepts (Cont.)

e Control hierarchy (program structure)

— The organization of program components & implies a hierarchy of control

» Does not represent procedural aspects of software (iteration, condition,
sequence)

— Depth / width / fan-in / fan-out / superordinate/ subordinate
— Two characteristic of software architecture

» Visibility: program components may be invoked or used as data by given
component (indirectly) (e.g. M4 is visible to M1)

» Connectivity: program components are directly invoked or used as data by
given component (e.g. M2 is connected to M1)

— A module that directly causes another module to begin execution is connected to it

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Fundamental Concepts (Cont.)

e Software procedure focuses on the processing details of
each module individually (sequence, iteration, condition)

— aprocedural representation of software is layered

¢ Information hiding

— modules should be specified and designed so that information
(procedure & data) contained within a module are inaccessible to
other modules that have no need for such information.

— abstraction defines the procedural entities

— hiding defines access constraints to both procedural detail within a
module and local data structure used by the modules

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Effective Modular Design

o Effective modular design

— A modular design reduces complexity, facilitates changes, results in
an easier implementation.

monalithic module object-oriented
program program program
1 |
code-and-fix

e Classification (based on temporal aspect)

sequential [ineremental / parallel

subroutines [coroutines / conroutines

Without apparent / Can be interrupted / execute simultaneously
mterruption before completion with another module

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Effective Modular Design (Cont.)

e A typical control hierarchy may not be encountered when coroutinesor
conroutines are used

e Functional independence (independent effective modules)
— Effective modularity: function compartmentalized and interfaces simplified

e Cohesion: relative functional strength of a module

low — coincidental : tasks relate to each other loosely

— logical : performing tasks related logically (all output)

— temporal : all tasks executed with the same span of time

— procedural : must be executed in a specific order

— communicational : concentrate on one area of a data structure

— Sequential
high .
o o_ Functional
<inhon@mail.tku.edu.tw=> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Effective Modular Design (Cont.)

e Coupling: interconnection among modules

» depends on the interface complexity between modules, entity point or reference
to a module, what data passes across the interface

low - No direct coupling : module subordinate to different modules
— Data coupling : data passed via argument list
— Stamp coupling : data structure passed via argument list

middle _ control coupling : passes control data
— external coupling : modules are tied to an external environment
— common coupling : refer to a global data area

high - content coupling :

¢ one module makes use of data or control information maintained within the
boundary of another module .

 branches are made into the middle of a modular

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Design Step Procedures

e Data Design
e Architecture Design

e Procedural Design

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Data Design

e Define data abstractions data abstraction

|

data structure

Select an appropriate data structure to implement the
abstraction

e Using entity-relationship modeling depict relationship data modeling
between objects

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Architectural Design

e Program architecture, domain specific software architecture

Develop a modular program structure Program

Represent the control relationship between modules ~ Architecture

 Control hierarchy connecting modules

Define interface that enable data to flow throughout the program

System organization Domain-Specific

DSSA Software
* Pipes & filters Architecture
— |: astream of inputs

— O: astream of outputs

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Architectural Design

A Layered systems:

m — System organized hierarchically with each layer providing service to the layer
/o sbout
Core
Rule-based system Knowledge Base

Inout Working

Output ‘_cRmet\ selected.ﬁmle a da;E\\
NJMETPIELEr ™ ules/data E‘emen/

Blackboard systems: a central data structure represents the current
state of the computation, a collection of knowledge sources.

Blackboard

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Architectural Design

e Structure Chart

— A Structure Chart (SC) in software engineering and
organizational theory is a chart, which shows the breakdown of the
configuration system to the lowest manageable levels.

— This chart is used in structured programming to arrange the
program modules in a tree structure. Each module is represented by
a box, which contains the module's hame. The tree structure
visualizes the relationships between the modules.

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Architectural Design

e Structure Chart

— A structure chart is a top-down modular design tool, constructed of
squares representing the different modules in the system, and lines
that connect them. The lines represent the connection and or
ownership between activities and subactivities as they are used in
organization charts

— A structure chart is also used to diagram associated elements that
comprise a run stream or thread. It is often developed as a , but
other representations are allowable. The representation must
describe the breakdown of the configuration system into
subsystems and the lowest manageable level.

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Architectural Design

e Structure Chart: Example
CROSSING LINES ON A STRUCTURE CHART

iWodule A
Madule B Module C Module D
‘\6‘-\
O-Data 3
T
Data 1 IComrol 2
‘/C;Dmra1 k;
Module E Module F Module G
<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Architectural Design

e Structure Chart: Example

Search Receipt Q

Give Money
To_Debt Collector

<inhon@mail.tku.edu.tw> March 18, 2012

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Architectural Design

e Structure Chart: Example

GENERATE
PAYROLL

= ol RS
END OF VAUDATED 3 PATROLL
PATRCLL RECTAY. CHECK DATA
GET
CALCULATE
i N
L) Noger
A‘ nlnln\‘ wecoe m:lw/ Lo ToTaL \mms
/mmu. mw/{‘"gam \Mu i
READ VALIDATE UPDATE
carcuLate | | cacuLate
PAROLL L. GROSs PaY | | oEDucTions | | EMELOYEE
e b AN
ey
CALOULATE CALCULATE
WITHHELD WITHHELD
<inhon@mail.tku.edu.tw> March 18, 2012

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Architectural Design

e Structure Chart: ﬁ*”ﬁ%%ﬁﬁﬂ
- ﬁﬁfﬁij q‘aﬂ (structure chart)

o A - Module 1 }m’;ﬁl"e'
- ;cztﬁ[] I3 (Control
Module)
— FHFVEEMEGS (Library
Module)
. Eﬁjﬂﬁﬁiﬁ (Control Couple) | modue 11 Module 1.2 Module 1.3 }k;ﬁi?é
A UEY)
- A A R Subordinate
Eﬁ%’[‘ﬁﬁdﬁ??'ﬂwg% Module
%ﬁbk [EEes

<inhon@mail.tku.edu.tw> March 18, 2012

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Architectural Design

e Structure Chart: ﬁ*”ﬁ%%ﬁﬁﬂ
- [

* — [WIEPF (condition) At = i BRI LRVIRTT— A HIBLE 'l)R ERY

P L R

_ i@[%[

o 35" (loop) Ftt = flilpy % AR I HrEh

Produce Grade Reports

Gat Student Grades

l Calculate GPA

Produce Grade Report

The curved arrow that these mad are

<inhon@mail.tku.edu.tw>

March 18, 2012

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Architectural Design

e Structure Chart: Another Example

10
Process
Customer Order
valid Order
Order Trder | Order Details
Details | Details
1 12 13
Werity Customer Process Create Order
Customer Order Histary
Order Details,
s Order History
Husailabiliey ftem tem
Details Detzils File 10
]
124 122
Chesk Order ltem Process ltem
Forail abily Fwailabilty
Discortinued
Aysilable
hem Detale Back opger 1o et
item Dt
1.2.21 1222 1223
Pracess Available Process Back Process
rder lem Discontinued fiem
Back Order
Rem Detais

Discontinued

12221
Frocess
Substitute tem

<inhon@mail.tku.edu.tw>

March 18, 2012

- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Procedural Design

e Structure programming
— logical constructs: sequence, conditional, iteration
— to limit the procedural design to a small number of predictable operations
 reduce program complexity
* lead to more readable, testable code

e Flow charts
— Graphical representation for procedural design
— Limitation

 Introduce inefficiency when an escape from a set of nested loops or nested
conditions is required

« Additional complications of logical tests

<inhon@mail.tku.edu.tw> March 18, 2012

- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Procedural Design

e Program design language (PDL)
— Structured English (pseudocode)
» Uses the vocabulary of English
» Overall syntax of a structure programming language
— Difference between PDL and programming language
* The use of narrative text embedded directly within PDL statements

* PDL cannot be compiled but can be translated into a graphical structure

e Why design language
— can be embedded with source code
— can be a derivative of the high order language .eg. Ada PDL
— easy to review

— can be represented in great detail

<inhon@mail.tku.edu.tw> March 18, 2012

-- :
73. £ G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

PDL
Data structure
—TYPE <var-name> IS <qg-1> <qg-2>
eg. TYPE table IS INSTANCE OF symboltable

Abstract data type: data abstraction
— Generic data structure (template) from which other data
structures can be instantiated
—e.g. TYPE table IS INSTANCE OF symboltable

— Block structure

BEGIN
< ... >
END
<inhon@mail.tku.edu.tw> March 18, 2012

-- :
73. £ G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

PDL

— Conditional
IF < > -CASEOF <
THEN < > WHEN < >SELECT <

ELSE <
DEFAULT: < >

ENDIF
ENDCASE

=

— Iteration
-REPEATUNTIL< >
=

<=

ENDREP
-DO WHILE < =
=

<=

ENDDO
-DOTOR <

ENDFOR
March 18, 2012

<inhon@mail.tku.edu.tw>

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Software Development

e Object orientation
e Object-oriented analysis
e Object-oriented Design

e Design Pattern

<inhon@mail.tku.edu.tw> March 18, 2012

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Software Development

e Object orientation
e Object-oriented analysis
e Object-oriented Design

e Design Pattern

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object orientation

¢ Real-world objects vs. Software objects

— communications

Problem Solution software realization
domain domain of the real-world
problem

Object necessary Object required

for describing a for implementation

solution - problem a solution - solution

space space

<inhon@mail.tku.edu.tw> March 18, 2012

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object orientation

¢ Modeling the reality of the world.

Reality m &)g@ (.:_.;

owns drinks
Model Benz |- RichPerson | Champagne

Note

Class
Class name class RichPerson |

RichPerson String name;
: name : String Address address,
Attibutes address - Address Solvency solency;
solvency : Solvency

public int checkSolvency() {

Operations checkSolencyd | .
1
}

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

e The essential differences between structured and object-
oriented methods:

— All objects to work on. The class concept is used to work with units
of data and operations

— Better possibilities of abstraction. The reality of the world is
visually modeled.

— Methodological uniformity. The results of an activity i can easily
be taken over into activity i+1, that is, iterative development and
reverse engineering are more easier to be carried out.

— Evolutionary development. A complex system is not built in one
go.

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

e Class

— Object-oriented thinking begins with class
 template
« generalized description
e pattern
« “blueprint”: describing a collection of similar items
— A meta-class (also called a superclass) is a collection of
classes

» Once a class of items is defined, a specific instance of the class
can be defined

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

e Class

Roles
Things
Places
Structures
Occurrences
External entities

class name Organization units

attributes

operations

-~/
<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

e Class diagrams e Object diagrams
— describes classes — describes instances
Person . :Person
<<instance of>= -
name: string T name = John
age: integer age=19

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

o Attributes
— adata value held by the objects.
— e.g. name, age, weight, etc.
— attributes name may be followed by type or default value.

e Operations/methods/service

— a function that may be applied to or by objects in a class (i.e.
perform or suffer)

— the same operations takes on different forms in different classes:
polymorphism.

— the implementation of an operation is called a method. (by a
different piece of code)

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

e A constraint restricts the values that entities can assume,
which is defined as functional relationships between
entities of an object model.

— entity : objects, classes, attributes, links, and associations.
— e.g. No employee’s salary can exceed the salary of the employee’s

boss

Employee boss * Member-of * _
_| Person {subset} Committee

Salary “ Chair-of *

{ Boss Salary = Salary }

<inhon@mail.tku.edu.tw> March 18, 2012

a=
TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object orientation

e Encapsulation/Information Hiding

— Separate the external aspects of an object from the internal
implementation details of the object, which are hidden from other
objects

— The object encapsulates both data and the logical procedures
required to manipulate the data

— The advantage

e The user of the data does not
need to know how, where,

or in what form

<inhon@mail.tku.edu.tw> March 18, 2012

a=
TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object orientation

e Encapsulation/Information Hiding

module

Controlled interface

clients

a specific design decision

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E 6 Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Object orientation

e Object Identity

— Explicit object identifiers are not required in an object
model.

— Each object is a discrete and distinguishable entity.
— Each real-world object is unique due to its existence.

— Two objects are distinct even if all their attribute values
are identical.

— Object-oriented Database are often based on system-
generated ID numbers and corresponding pointers.

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E 6 Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Object orientation

e Inheritance:
— The sharing of attributes and operations among classes based on a
hierarchical relationship

— Each subclass inherits all of the properties of its super class and
adds its own unique properties (called extension)

— For reusability (black box reuse)

Furniture (superclass)

| Lr\ |
Table (subclass) Chair (subclass)

<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Object orientation

e Classification:
— objects with the same
attributes and operations are
grouped into a class

— each object is said to be an
instance of its class

— e.g. Bicycle object ------- >
Bicycle class m

manuf = simplex
weight = 10000kg

_ hélghl =9m J

discriminator

Equipment

name
manuf.
weight
cost

equipment type
(1S-A)

Tank

Volume
pressure

I
instantiation ? I1S-A

Floating roof tan

diameter
height

<inhon@mail.tku.edu.tw>

March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Object orientation

e Generalization : is-a relationship

— (superclass, subclass)

e Each subclass can inherit all the features of its
ancestors and add its own specific attributes and

operations.

<inhon@mail.tku.edu.tw>

March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Object orientation

- - 5 F
e Extension: add a new operation and attributes. ciur[e
e Redefinition (Overriding) setect
— —retain the original interface LE;

— —but recode a particular method

2 Dimensional

e Restriction : orientation
free type
— —inherit a subset of operations / or tighten ﬁﬁﬁ'e
— —the type of attribute or operation output extension
Circle
diameter
display
redefinition rotate
<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Object orientation

¢ Reason for overriding:
— to specify behavior that depends on the subclasses
— to tighten the specification of a feature.
— for better performance

Specialization class relationship type relationship
Extension subclass subtype
Redefinition subclass same type
Restriction subclass supertype

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Object orientation

e Multiple Inheritance

— A class has more than one superclass and inherits features from all
parents.
« —Disjoint (default):
— Inherit all attributes of all class
« Overlapping
— To ensure that these attributes are only inherited once
— Need conflicts resolution
« ifaclass can be refined on several distinct and independent
dimensions, then use multiple generalizations. (inheritance)
« generalization : conceptual level

— inheritance : implementation level. (mechanism)

<inhon@mail.tku.edu.tw> March 18, 2012

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Object orientation

e Multiple Inheritance

Vehicle
name
manufacture

WaterVehicle WindPoweredVehicle
draft minWindForce
]

SailingBoat
numOfSail

disjointSailingBoat
overlappingSailingBoat waterVehicle . name
name windPoweredVehilcle.name
manufacture waterVehicle . manufacture
draft windPowerVehicle .manufacture
draft

<inhon@mail.tku.edu.tw> March 18, 2012

.-
73. E G Tamkang Universty software Engineering Group ZTHRMIEREZE http://www.tkse.tku.edu.tw/

Object orientation

e Abstraction

Door

Manufacturer
> Model number
T Type
Swing direction
Weight
Opening mechanism

<inhon@mail.tku.edu.tw> March 18, 2012

.-
73. E G Tamkang Universty software Engineering Group ZTHRMIEREZE http://www.tkse.tku.edu.tw/

Object orientation

e Abstraction

— Abstraction: focus on the essential, inherent aspects of an entity and
ignoring its accidental properties.

— abstraction during analysis: deciding only with application-domain
concepts, not making design and implementation decisions.

(Door

Manufacturer
> Model number
T Type
Swing direction
Weight
Opening mechanism

<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Object orientation

e Abstract class : has no direct instances.

e Concrete class : can be leaf (instantiable) in the inheritance

tree

Abstract Abstract Concrete
class class class
Abstract Conerete Conerete
class class class
Conerete Qb-] .
class instance

Object

instance

<inhon@mail.tku.edu.tw> March 18, 2012

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Object orientation

e Origin class : the topmost defining class, which
defines the protocol of the feature
— the type of an attribute
— the number and type of arguments
— result type for operations

— the semantic intent

<inhon@mail.tku.edu.tw> March 18, 2012

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

e Abstraction

Employee

year-to-date earnings

compute pay {abstract}

abstract operation:

define the form of an operation for
which each conerete subelass must
provide its own implementation.

N
Hourly Salaried Exempt (taxfres)
Employee Enployee Employee
hourly rate weekly rate | month rate
Compute pay] Compute pay] Compute pay
instance
N
John
$100

<inhon@mail.tku.edu.tw>

March 18, 2012

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

e Association/Aggregation

— Message exchange

— Association

« astructural relationship that describes a set of links, in which a
link is a connection among objects

— Aggregation

« A special form of association that specifies a whole-part (a-
part-of) relationship between the aggregation (whole) and a
component (part).

<inhon@mail.tku.edu.tw>

March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

e Aggregation

— aggregation is a special form of association.
 Part-whole (Objectl,0bject2) --> aggregation.
« Independent (Objectl,0Object2) --> association.

—eg.
~ | Company & 0

Variable

aggregate Work-for (level - 1) (level -2)

(2-level tree
Person
structure)

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

e Aggregation or generalization

— an aggregation tree is composed of object instances that
are all parts of a composite object.
« parts explosion (distinct object).
— ageneralization tree is composed of classes (structuring
and description of a single object).

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

e Aggregation / Association

‘BallastH Twist HEQ

‘Base || Cover| |Switch| |Wiring|

OR AND
Lamp |<>
Fluorescent Incandescent
Lamp Lamp
&

<inhon@mail.tku.edu.tw>

March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

e Polymorphism:

— the same operation may behave differently on different

classes

» method: a specific implementation of an operation

« a polymorphic operation is an operation that have more than
one method implementing it.

e Static polymorphism

— (overloading): an invocation can be operate on
arguments of more than one type.

<inhon@mail.tku.edu.tw>

March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object orientation

e Dynamic polymorphism: an object has more than
one type

— object reference can refer to an instance of any of
descendants of its class

— a instance of the class created, and is also an instance of
each that class’s ancestors

<inhon@mail.tku.edu.tw> March 18, 2012

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object-Oriented Analysis and Design

e OMT Methodology
— Object Model Technology

e UML
— Unified Modeling Language

<inhon@mail.tku.edu.tw> March 18, 2012

