
E-mail : inhon@mail.tku.edu.tw http://mail.tku.edu.tw/inhon

Presented by : Ying-Hong Wang

Date : 2011/5/22

Operating Systems (2)

授課教師：王英宏

教材： Operating System Concepts Abraham Silberschatz 8th Edition
開發圖書代理

May 22, 2011<inhon@mail.tku.edu.tw>

上課用書、參考用書暨相關規定

• 成績評定
– 出席: 15% 實習課: 20% 作業+程式: 30% 期中考: 15% 期末考: 20%
– 點名成績係用以區隔同學每週出席與否的成績，故不接受各種形式未出席的原因，但每人可以有三次的

緩衝機會，以因應不可抗拒的情況。缺席超過三次者，才開始扣分，反之，缺席少於三次者，可以獲得

加分。

– 每週點名一次，點名超過一次者，即為加分點名，不在前述100%內累計。正規點名可以接受補點，加分

點名則不接受補點

– 期末考比校訂時間提前一週

– 指派聆聽演講之出席，每場加一分(採外加計分)
– 除隨堂作業與上機驗收作業外，其餘作業可接受補交，自繳交截止時間點起，每24小時內補交者扣10

分，扣至0分為止

– 請助教作業每次發還後隨即公佈登錄資料以供核對，有疑義者須於一週內完成補正，逾期不再受理

• 上課方式
– 板書為主、投影片相輔

– 隨堂作業與小考，隨堂作業為主

– 隨時自備A4紙

• 上課規定
– 手機請改設震動或關機、不要私下講話

– 鼓勵提問

May 22, 2011<inhon@mail.tku.edu.tw>

Contents
• Recall Process, Memory, Virtual Memory Management

• Storage Management
– File Systems

– Implementing File Systems

– Secondary Storage Structure

– I/O Systems

• Distributed Systems
– Distributed System Structures

• Parallel System

• Real-Time System

實習課部份

•Protection and Security

•Linux System
•Android

May 22, 2011<inhon@mail.tku.edu.tw>

Recall Process Management

• Process States and Transformation

May 22, 2011<inhon@mail.tku.edu.tw>

Recall Process Management

• Process Scheduling
– Long Term Scheduling (From Disk to Memory)
– Medial Term Scheduling (From Memory to Disk)
– Short Term Scheduling (CPU Scheduling)

• Preemptive vs. Non-Preemptive
• Scheduling Algorithms

– First Come First Service (FCFS)
– Shortest Job First (SJF)
– Priority
– Round Robin (RR)
– Multilevel Queue

– Multilevel Feedback Queue

May 22, 2011<inhon@mail.tku.edu.tw>

Recall Process Management

• Process Synchronization
– Critical Section Problem

• Peterson’s Solution (Pure Software solution)

• Hardware Solution

• Semaphores (System Call)

• Monitors (Central Control)

May 22, 2011<inhon@mail.tku.edu.tw>

Recall Process Management

• Deadlock Problem
– Necessary Conditions

• Mutual exclusion

• Hold and Wait

• No Preemptive

• Circular Wait

– Methods and Handling
• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection

• Recovery from Deadlock

May 22, 2011<inhon@mail.tku.edu.tw>

Recall Memory Management

• Memory Allocation
– First-Fit

– Best-Fit

– Worst Fit

• Concept of Fragmentation
– Internal Fragmentation

– External Fragmentation

May 22, 2011<inhon@mail.tku.edu.tw>

Recall Memory Management

• Paging

• Segmentation

• Hybrid of Paging and Segmentation
– One Segmentation has some Pages

May 22, 2011<inhon@mail.tku.edu.tw>

Recall Virtual Memory Management

• Focus on Paging Technique

• Page Replacement

• Methods and Handling
– FIFO
– Optimal
– LRU (Least Recently Used)
– LRU Approximation

• Additional-Reference-Bit
• Second-Chance
• Enhanced Second-Chance

– Counting
• LFU (Least-Frequently-Used)
• MFU (Most Frequently-Used)

May 22, 2011<inhon@mail.tku.edu.tw>

Recall Virtual Memory Management

• Trashing

• Working Set Model

• Buddy System

• Slab Allocation

Storage Management

May 22, 2011<inhon@mail.tku.edu.tw>

File System – Chapter 10

• File Concept

• Access Methods

• Directory Structure

• File-System Mounting

• File Sharing

• Protection

May 22, 2011<inhon@mail.tku.edu.tw>

Objectives

• To explain the function of file systems

• To describe the interfaces to file systems

• To discuss file-system design tradeoffs, including
access methods, file sharing, file locking, and
directory structures

• To explore file-system protection

May 22, 2011<inhon@mail.tku.edu.tw>

File Concept

• Contiguous logical address space

• Types:
– Data

• numeric

• character

• binary

– Program

May 22, 2011<inhon@mail.tku.edu.tw>

File Structure
• None - sequence of words, bytes

• Simple record structure
– Lines
– Fixed length
– Variable length

• Complex Structures
– Formatted document
– Re-locatable load file

• Can simulate last two with first method by inserting appropriate control
characters

• Who decides:
– Operating system
– Program

May 22, 2011<inhon@mail.tku.edu.tw>

File Attributes
• Name – only information kept in human-readable form

• Identifier – unique tag (number) identifies file within file system

• Type – needed for systems that support different types

• Location – pointer to file location on device

• Size – current file size

• Protection – controls who can do reading, writing, executing

• Time, date, and user identification – data for protection, security, and
usage monitoring

• Information about files are kept in the directory structure, which is
maintained on the disk

May 22, 2011<inhon@mail.tku.edu.tw>

File Operations
• File is an abstract data type

• Create

• Write

• Read

• Reposition within file

• Delete

• Truncate

• Open(Fi) – search the directory structure on disk for entry Fi, and move the
content of entry to memory

• Close (Fi) – move the content of entry Fi in memory to directory structure on
disk

May 22, 2011<inhon@mail.tku.edu.tw>

Open Files

• Several pieces of data are needed to manage open files:
– File pointer: pointer to last read/write location, per process that

has the file open

– File-open count: counter of number of times a file is open – to
allow removal of data from open-file table when last processes
closes it

– Disk location of the file: cache of data access information

– Access rights: per-process access mode information

May 22, 2011<inhon@mail.tku.edu.tw>

Open File Locking

• Provided by some operating systems and file systems

• Mediates access to a file

• Mandatory or advisory:
– Mandatory – access is denied depending on locks held and

requested

– Advisory – processes can find status of locks and decide what to do

May 22, 2011<inhon@mail.tku.edu.tw>

File Locking Example – Java API

May 22, 2011<inhon@mail.tku.edu.tw>

import java.io.*;

import java.nio.channels.*;

public class LockingExample {

public static final boolean EXCLUSIVE = false;

public static final boolean SHARED = true;

public static void main(String arsg[]) throws IOException {

FileLock sharedLock = null;

FileLock exclusiveLock = null;

try {

RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");

// get the channel for the file

FileChannel ch = raf.getChannel();

// this locks the first half of the file - exclusive

exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);

/** Now modify the data . . . */

// release the lock

exclusiveLock.release();

File Locking Example – Java API (cont)

May 22, 2011<inhon@mail.tku.edu.tw>

// this locks the second half of the file - shared

sharedLock = ch.lock(raf.length()/2+1, raf.length(),
SHARED);

/** Now read the data . . . */

// release the lock

sharedLock.release();

} catch (java.io.IOException ioe) {

System.err.println(ioe);

}finally {

if (exclusiveLock != null)

exclusiveLock.release();

if (sharedLock != null)

sharedLock.release();

}

}

}

File Types – Name, Extension

May 22, 2011<inhon@mail.tku.edu.tw>

Access Methods

May 22, 2011<inhon@mail.tku.edu.tw>

• Sequential Access
read next
write next
reset
no read after last write

(rewrite)

• Direct Access
read n
write n
position to n

read next
write next

rewrite n

n = relative block number

Sequential-access File

May 22, 2011<inhon@mail.tku.edu.tw>

Simulation of Sequential Access on
Direct-access File

May 22, 2011<inhon@mail.tku.edu.tw>

Example of Index and Relative Files

May 22, 2011<inhon@mail.tku.edu.tw>

Directory Structure

May 22, 2011<inhon@mail.tku.edu.tw>

• A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk
Backups of these two structures are kept on tapes

Disk Structure

May 22, 2011<inhon@mail.tku.edu.tw>

• Disk can be subdivided into partitions

• Disks or partitions can be RAID protected against failure

• Disk or partition can be used raw – without a file system, or formatted with a
file system

• Partitions also known as minidisks (IBM world)), slices

• Entity containing file system known as a volume

• Each volume containing file system also tracks that file system’s info in device
directory (simply as directory) or volume table of contents

• As well as general-purpose file systems there are many special-purpose file
systems, frequently all within the same operating system or computer

A Typical File-system Organization

May 22, 2011<inhon@mail.tku.edu.tw>

Storage Structure

May 22, 2011<inhon@mail.tku.edu.tw>

• In the Solaris example
– tmpfs: Temporary file system

– objfs: Virtual file system

– ctfs: virtual file system maintains “Contract” info.

– lofs: Loop back file system

– procfs: Processes file system

– ufs, zfs: General-purpose file system

– Others.

Operations Performed on Directory

May 22, 2011<inhon@mail.tku.edu.tw>

• Search for a file

• Create a file

• Delete a file

• List a directory

• Rename a file

• Traverse the file system

Organize the Directory (Logically) to Obtain

May 22, 2011<inhon@mail.tku.edu.tw>

• Efficiency – locating a file quickly

• Naming – convenient to users
– Two users can have same name for different files

– The same file can have several different names

• Grouping – logical grouping of files by properties,
(e.g., all Java programs, all games, …)

Single-Level Directory

May 22, 2011<inhon@mail.tku.edu.tw>

• A single directory for all users

Naming problem

Grouping problem

Two-Level Directory

May 22, 2011<inhon@mail.tku.edu.tw>

• Separate directory for each user

Path name
Can have the same file name for different user
Efficient searching
No grouping capability

Tree-Structured Directories

May 22, 2011<inhon@mail.tku.edu.tw>

Tree-Structured Directories (Cont)

May 22, 2011<inhon@mail.tku.edu.tw>

• Efficient searching

• Grouping Capability

• Current directory (working directory)
– cd /spell/mail/prog

– type list

Tree-Structured Directories (Cont)

May 22, 2011<inhon@mail.tku.edu.tw>

• Absolute or relative path name

• Creating a new file is done in current directory

• Delete a file

rm <file-name>

• Creating a new subdirectory is done in current directory
mkdir <dir-name>

Example: if in current directory /mail

mkdir count

mail

prog copy prt exp count

Deleting “mail” ⇒ deleting the entire subtree rooted by “mail”

Acyclic-Graph Directories

May 22, 2011<inhon@mail.tku.edu.tw>

• Have shared subdirectories and files

Acyclic-Graph Directories (Cont.)

May 22, 2011<inhon@mail.tku.edu.tw>

• Two different names (aliasing)

• If dict deletes list ⇒ dangling pointer

Solutions:
– Backpointers, so we can delete all pointers

Variable size records a problem

– Backpointers using a daisy chain organization

– Entry-hold-count solution

• New directory entry type
– Link – another name (pointer) to an existing file

– Resolve the link – follow pointer to locate the file

General Graph Directory

May 22, 2011<inhon@mail.tku.edu.tw>

General Graph Directory (Cont.)

May 22, 2011<inhon@mail.tku.edu.tw>

• How do we guarantee no cycles?
– Allow only links to file not subdirectories

– Garbage collection

– Every time a new link is added use a cycle detection
algorithm to determine whether it is OK

File System Mounting

May 22, 2011<inhon@mail.tku.edu.tw>

• A file system must be mounted before it can be
accessed

• A unmounted file system is mounted at a mount
point

File System Mounting

May 22, 2011<inhon@mail.tku.edu.tw>

• Mount Procedure:
– Give OS the Name of the device and the Mount Point

• Mount point: the location within the file structure

– OS verifies that the device contains a valid file system

– OS notes in its directory structure that a file system is
mounted at the specified mount point.

(a) Existing. (b) Unmounted Partition

May 22, 2011<inhon@mail.tku.edu.tw>

Mount Point

May 22, 2011<inhon@mail.tku.edu.tw>

File Sharing

May 22, 2011<inhon@mail.tku.edu.tw>

• Sharing of files on multi-user systems is desirable

• Sharing may be done through a protection scheme

• On distributed systems, files may be shared across a
network

• Network File System (NFS) is a common distributed file-
sharing method

File Sharing – Multiple Users

May 22, 2011<inhon@mail.tku.edu.tw>

• User IDs identify users, allowing permissions and
protections to be per-user

• Group IDs allow users to be in groups, permitting
group access rights

File Sharing – Remote File Systems

May 22, 2011<inhon@mail.tku.edu.tw>

• Uses networking to allow file system access between systems
– Manually via programs like FTP

– Automatically, seamlessly using distributed file systems

– Semi automatically via the world wide web

• Client-server model allows clients to mount remote file systems from
servers

– Server can serve multiple clients

– Client and user-on-client identification is insecure or complicated

– NFS (Network File System) is standard UNIX client-server file sharing
protocol

– CIFS (Common Internet File System) is standard Windows protocol

– Standard operating system file calls are translated into remote calls

File Sharing – Remote File Systems

May 22, 2011<inhon@mail.tku.edu.tw>

• Distributed Information Systems
– Called Also Distributed Naming Services

– Solve the problems of Client-Server Model

– DNS (Domain Name System) provides host-name-to-network-address
translation for the entire Internet

– Sun applies NIS (Network Information Service) mechanism

– Microsoft uses CIFS as the protocol

– Software Industry is moving LDAP (Lightweight Directory-Access
Protocol) as a Secure distributed naming mechanism.

– Active Directory implement unified access to information needed for
remote computing

File Sharing – Failure Modes

May 22, 2011<inhon@mail.tku.edu.tw>

• File systems can fail for a variety of reasons:
– Disk which contains the file system is failure

– Corruption of the directory structure

– Corruption of the disk-management information

– Disk-controller failure

– Cable failure

– Host-adapter failure

File Sharing – Failure Modes

May 22, 2011<inhon@mail.tku.edu.tw>

• Remote file systems add new failure modes, due to
network failure, server failure

• Recovery from failure can involve state
information about status of each remote request

• Stateless protocols such as NFS include all
information in each request, allowing easy
recovery but less security

File Sharing – Consistency Semantics

May 22, 2011<inhon@mail.tku.edu.tw>

• Consistency semantics specify how multiple users are to access a
shared file simultaneously

– Similar to process synchronization algorithms
• Tend to be less complex due to disk I/O and network latency (for remote file

systems

– Andrew File System (AFS) implemented complex remote file sharing
semantics

– Unix file system (UFS) implements:
• Writes to an open file visible immediately to other users of the same open file

• Sharing file pointer to allow multiple users to read and write concurrently

– AFS has session semantics
• Writes only visible to sessions starting after the file is closed

Protection

May 22, 2011<inhon@mail.tku.edu.tw>

• File owner/creator should be able to control:
– what can be done

– by whom

• Types of access
– Read

– Write

– Execute

– Append

– Delete

– List

Access Lists and Groups

May 22, 2011<inhon@mail.tku.edu.tw>

• Mode of access: read, write, execute

• Three classes of users
RWX

a) owner access 7 ⇒ 1 1 1
RWX

b) group access 6 ⇒ 1 1 0
RWX

c) public access 1 ⇒ 0 0 1

• Ask manager to create a group (unique name), say G, and add some users
to the group.

• For a particular file (say game) or subdirectory, define an appropriate
access.

owner group public

chmod 761 game

Attach a group to a file
chgrp G game

Windows XP Access-control List
Management

May 22, 2011<inhon@mail.tku.edu.tw>

A Sample UNIX Directory Listing

May 22, 2011<inhon@mail.tku.edu.tw>

Implementing File Systems –
Chapter 11
• File-System Structure

• File-System Implementation

• Directory Implementation

• Allocation Methods

• Free-Space Management

May 22, 2011<inhon@mail.tku.edu.tw>

File-System Structure

• File structure
– Logical storage unit
– Collection of related information

• File system resides on secondary storage (disks)

• There are two characteristics that make disk a
convenient medium for storing multiple files
– A disk can be rewritten in place
– A disk can access directly any block of information

May 22, 2011<inhon@mail.tku.edu.tw>

File-System Structure

• A file system poses two quite different design
problems:
– Define how the file system should look to the user
– Create algorithms and data structures to map the logical file

system onto the physical secondary-storage devices

• File system organized into layers
– I/O Control
– Basic File System
– File-Organization Module
– Logical File System

May 22, 2011<inhon@mail.tku.edu.tw>

Layered File System

May 22, 2011<inhon@mail.tku.edu.tw>

File-System Structure
• I/O Control

– Consists of Device Drivers and Interrupt Handlers

• Basic File System
– Needs only to issue generic commands to the appropriate device

driver

• File-Organization Module
– Knows about files and their logical blocks as well as physical

blocks

• Logical File System
– Manages metadata information

May 22, 2011<inhon@mail.tku.edu.tw>

File-System Structure

• File control block – storage structure consisting of
information about a file
– Maintained by Logical File System

– An inode in most UNIX file systems

– The information including
• Ownership

• Permissions

• Location of the file contents

• Protection and Security

May 22, 2011<inhon@mail.tku.edu.tw>

A Typical File Control Block (FCB)

May 22, 2011<inhon@mail.tku.edu.tw>

File-System Implementation

• On-Disk and In-Memory structures

• Information contained by On-Disk
– A boot control block per volume

– A volume control block per volume

– A directory structure per file system

– A per-file FCB

May 22, 2011<inhon@mail.tku.edu.tw>

File-System Implementation

• Information contained by In-Memory
– An in-memory mount table

– An in-memory directory-structure cache

– The system-wide open-file table

– The per-process open-file table

– Buffers

May 22, 2011<inhon@mail.tku.edu.tw>

In-Memory File System Structures

• The following figure illustrates the necessary file
system structures provided by the operating
systems.

• Figure (a) refers to opening a file.

• Figure (b) refers to reading a file.

May 22, 2011<inhon@mail.tku.edu.tw>

In-Memory File System Structures

May 22, 2011<inhon@mail.tku.edu.tw>

Partitions and Mounting

• Partitions (or Volume) vs. Disks

• Status of Partition
– Raw

• Containing no file system

– Cooked
• Containing a file system

May 22, 2011<inhon@mail.tku.edu.tw>

Virtual File Systems

• Virtual File Systems (VFS) provide an object-
oriented way of implementing file systems.

• VFS allows the same system call interface (the
API) to be used for different types of file systems.

• The API is to the VFS interface, rather than any
specific type of file system.

May 22, 2011<inhon@mail.tku.edu.tw>

Virtual File Systems

• The file-system implementation consists of three
major layers:
– File-System Interface

• based on the open(), read(), write(), and close() call and on file
descriptor.

– Virtual File System (VFS)

– Local file system or Remote file system

May 22, 2011<inhon@mail.tku.edu.tw>

Schematic View of VFS

May 22, 2011<inhon@mail.tku.edu.tw>

Virtual File Systems

• Virtual File System (VFS) serves Two important
functions:
– Separate file-system-generic operations from their

implementation by defining a clean VFS interface

– Provides a mechanism for uniquely representing a file
throughout a network

May 22, 2011<inhon@mail.tku.edu.tw>

Directory Implementation

• Linear List of file names with pointer to the data
blocks.
– simple to program

– time-consuming to execute

• Hash Table – linear list with hash data structure.
– decreases directory search time

– collisions – situations where two file names hash to the
same location

– fixed size
May 22, 2011<inhon@mail.tku.edu.tw>

Allocation Methods

• Objectives
– Disk Space is utilized effectively
– Files can be accessed quickly

• An allocation method refers to how disk blocks are
allocated for files. There are three kinds of
Allocation method:
– Contiguous allocation
– Linked allocation
– Indexed allocation

May 22, 2011<inhon@mail.tku.edu.tw>

Contiguous Allocation

• Each file occupies a set of contiguous blocks on the disk

• Simple – only starting location (block #) and length
(number of blocks) are required

• Support to both of Sequential access and Random access

• Wasteful of space (dynamic storage-allocation problem)

• Suffer External Fragmentation

• Files cannot grow

May 22, 2011<inhon@mail.tku.edu.tw>

Contiguous Allocation of Disk Space

May 22, 2011<inhon@mail.tku.edu.tw>

Extent-based Systems

• Many newer file systems (I.e. Veritas File System)
use a modified contiguous allocation scheme

• Extent-based file systems allocate disk blocks in
extents

• An extent is a contiguous block of disks
– Extents are allocated for file allocation

– A file consists of one or more extents.

May 22, 2011<inhon@mail.tku.edu.tw>

Extent-based Systems

• When a file is created newly, it is allocated one
contiguous block, the first Extent.

• After the file is growing and the original Extent
does not enough, file system can assign Another
extent for it.

• The file location record is consisted by Address +
Number of Extent + Link to next Extent.

May 22, 2011<inhon@mail.tku.edu.tw>

Linked Allocation

• Each file is a linked list of disk blocks: blocks may
be scattered anywhere on the disk.

May 22, 2011<inhon@mail.tku.edu.tw>

pointerblock =

Linked Allocation

• Simple – need only starting address

• Free-space management system – no waste of space

• No random access

• The necessary space for pointer

• Reliability problem

• File-allocation table (FAT) – disk-space allocation used by
MS-DOS and OS/2

May 22, 2011<inhon@mail.tku.edu.tw>

Linked Allocation of Disk Space

May 22, 2011<inhon@mail.tku.edu.tw>

File Allocation Table (FAT)

May 22, 2011<inhon@mail.tku.edu.tw>

Indexed Allocation

• Brings all pointers together into the index block.

• Logical view.

May 22, 2011<inhon@mail.tku.edu.tw>

index table

Indexed Allocation of Disk Space

May 22, 2011<inhon@mail.tku.edu.tw>

Indexed Allocation

• Support Direct Access

• No External Fragmentation

• Need index table (waste space)
– Regularly, one indexed block is larger than all pointer spaces

• Dynamic access without external fragmentation, but have
overhead of index block.

• The issue of How large the Indexed block should be?
– The problem of Larger
– The problem of Smaller

May 22, 2011<inhon@mail.tku.edu.tw>

Scheme of Mechanism

• A Mechanism to deal with this issue

• Scheme of the Mechanism
– Linked scheme

– Multilevel index scheme

– Combined scheme

May 22, 2011<inhon@mail.tku.edu.tw>

Scheme of Mechanism

• Linked scheme
– An index block is one disk block
– Link several index blocks together for large files

• Multilevel Index scheme
– First-level index block points to a set of Second-level index blocks
– Which in turn point to file blocks
– It can be continued to a third or fourth levels.

• Combined scheme
– Keep first most of pointers to file blocks
– Final several pointers to create Multilevel Index scheme

May 22, 2011<inhon@mail.tku.edu.tw>

Indexed Allocation - Mapping

May 22, 2011<inhon@mail.tku.edu.tw>

Μ

First-level index

Second-level index File blocks

Combined Scheme: UNIX (4k bytes per Block)

May 22, 2011<inhon@mail.tku.edu.tw>

Free-Space Management

• Free Space List (but doesn’t be implemented by List)

• Bit vector (n blocks) or called Bit maps

May 22, 2011<inhon@mail.tku.edu.tw>

…
0 1 2 n-1

bit[i] = 67
8 0 ⇒ block[i] free

1 ⇒ block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

Free-Space Management

• Bit map requires extra space
– Example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218 bits (or 32K bytes)

• Inefficient to manage

• Easy to get contiguous files

May 22, 2011<inhon@mail.tku.edu.tw>

Free-Space Management

• Linked List
– Keeping a pointer to the first free block

– Cannot get contiguous space easily

– Inefficient for traversing on the list

– No waste of space

May 22, 2011<inhon@mail.tku.edu.tw>

Free-Space Management

• Linked List

May 22, 2011<inhon@mail.tku.edu.tw>

Free-Space Management

• Grouping
– Storing the address of n free blocks in the first free block

– The first n-1 of these blocks are actually free

– The last block contains the addresses of another n free blocks

– Advantage:
• A large number of free blocks can be found quickly

– Disadvantage:
• Some free blocks are used to record the address of other free blocks

May 22, 2011<inhon@mail.tku.edu.tw>

Free-Space Management

• Counting
– Assume the most of free blocks are contiguous

– Keep the address of the first free block and the number (n) of free
contiguous blocks

– Each entry in the free-space list consists of a disk address and a
count value

– All entries can be stored in a B-Tree, rather than a linked list

May 22, 2011<inhon@mail.tku.edu.tw>

Free-Space Management

• Space maps
– Apply by Sun’s ZFS file system

– Create metalabs

– Each metalab has an associated Space Map

– The space map is a log of all block activity (allocating and freeing)

– The associated Space map is loaded into memory in a balanced-tree
structure

– The free-space list is updated on disk

May 22, 2011<inhon@mail.tku.edu.tw>

Secondary Storage Structure –
Chapter 12
• Overview of Mass Storage Structure

• Disk Structure

• Disk Scheduling

• Swap-Space Management

• RAID Structure

May 22, 2011<inhon@mail.tku.edu.tw>

Overview of Mass Storage
Structure - Disk
• Magnetic disks provide bulk of secondary storage of

modern computers
– Drives rotate at 60 to 200 times per second

– Disk Speed = Transfer rate + Random-Access time

– Transfer rate is rate at which data flow between drive and computer

– Positioning time (random-access time) is time to move disk arm to
desired cylinder (seek time) and time for desired sector to rotate under the
disk head (rotational latency)

– Head crash results from disk head making contact with the disk surface

• That’s bad

May 22, 2011<inhon@mail.tku.edu.tw>

Overview of Mass Storage
Structure - Disk
• Disks can be removable

• Drive attached to computer via I/O bus
– Busses vary, including EIDE, ATA, SATA, USB, Fiber Channel,

SCSI

– Host controller in computer uses bus to talk to disk controller
built into drive or storage array

May 22, 2011<inhon@mail.tku.edu.tw>

Overview of Mass Storage
Structure - Disk

May 22, 2011<inhon@mail.tku.edu.tw>

Disk Structure

• Disk drives are addressed as large 1-dimensional arrays of
logical blocks, where the logical block is the smallest unit
of transfer.

• The 1-dimensional array of logical blocks is mapped into
the sectors of the disk sequentially.
– Sector 0 is the first sector of the first track on the outermost

cylinder.

– Mapping proceeds in order through that track, then the rest of the
tracks in that cylinder, and then through the rest of the cylinders
from outermost to innermost.

May 22, 2011<inhon@mail.tku.edu.tw>

Disk Structure

• Disk drives are addressed as large 1-dimensional arrays of
logical blocks, where the logical block is the smallest unit
of transfer.

• The 1-dimensional array of logical blocks is mapped into
the sectors of the disk sequentially.
– Sector 0 is the first sector of the first track on the outermost

cylinder.

– Mapping proceeds in order through that track, then the rest of the
tracks in that cylinder, and then through the rest of the cylinders
from outermost to innermost.

May 22, 2011<inhon@mail.tku.edu.tw>

Disk Structure

• Where logical block means Physical block in Chapter 10,
and Disk block in Chapter 11.

• Disk Address = Cylinder No. + Track No. + Sector No.

• Mapping between Logical Block No. and Disk Address

May 22, 2011<inhon@mail.tku.edu.tw>

Disk Structure

• CLV
– Constant Linear Velocity

– The density of bits per track is uniform.

– Thus, the farther a track is from the center of the disk, the greater
its length, so more sectors it can hold.

– Used in CD-ROM and DVD-ROM

• CAV
– Constant Angular Velocity

– The disk rotation speed can stay constant

– The density of bits decreases from inner to outer tracks

– Used in general Hard Disk
May 22, 2011<inhon@mail.tku.edu.tw>

Disk Scheduling

• The operating system is responsible for using hardware
efficiently — for the disk drives, this means having a fast
access time and disk bandwidth.

• Access time has two major components
– Seek time is the time for the disk are to move the heads to the

cylinder containing the desired sector.

– Rotational latency is the additional time waiting for the disk to
rotate the desired sector to the disk head.

• Traditional concept
– Access time = Seek time + Rotational Delay time + Transfer time

May 22, 2011<inhon@mail.tku.edu.tw>

Disk Scheduling

• Minimize seek time

• Seek time ≈ seek distance

• Disk bandwidth is the total number of bytes transferred,
divided by the total time between the first request for
service and the completion of the last transfer.

• Decreasing the totally seek time will Increase the
Performance of Disk Access.

May 22, 2011<inhon@mail.tku.edu.tw>

Disk Scheduling

• Several algorithms exist to schedule the servicing of disk
I/O requests.

• We illustrate them with a request queue (0-199).

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

May 22, 2011<inhon@mail.tku.edu.tw>

Disk Scheduling

• Several algorithms exist to schedule the servicing of disk
I/O requests.

• We illustrate them with a request queue (0-199).

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

May 22, 2011<inhon@mail.tku.edu.tw>

FCFS-First Come First Service

May 22, 2011<inhon@mail.tku.edu.tw>

Illustration shows total head movement of 640 cylinders.

SSTF-Shortest Seek Time First

• Selects the request with the minimum seek time from the
current head position.

• SSTF scheduling is a form of SJF scheduling; may cause
starvation of some requests.

• Illustration shows total head movement of 236 cylinders.

May 22, 2011<inhon@mail.tku.edu.tw>

SSTF-Shortest Seek Time First

May 22, 2011<inhon@mail.tku.edu.tw>

SCAN

• The disk arm starts at one end of the disk, and moves
toward the other end, servicing requests until it gets to the
other end of the disk, where the head movement is reversed
and servicing continues.

• Sometimes called the elevator algorithm.

• Illustration shows total head movement of 208 cylinders.

May 22, 2011<inhon@mail.tku.edu.tw>

SCAN

May 22, 2011<inhon@mail.tku.edu.tw>

C-SCAN

• Circular SCAN

• Provides a more uniform wait time than SCAN.

• The head moves from one end of the disk to the other.
servicing requests as it goes. When it reaches the other
end, however, it immediately returns to the beginning of
the disk, without servicing any requests on the return trip.

• Treats the cylinders as a circular list that wraps around
from the last cylinder to the first one.

• Illustration shows total head movement of 382 cylinders.
May 22, 2011<inhon@mail.tku.edu.tw>

C-SCAN

May 22, 2011<inhon@mail.tku.edu.tw>

Look & C-LOOK

• Variety from SCAN and C-SCAN

• Arm only goes as far as the last request in each direction,
then reverses direction immediately, without first going all
the way to the end of the disk.

• Illustration shows total head movement of 354 Cylinders in
C-LOOK

May 22, 2011<inhon@mail.tku.edu.tw>

C-LOOK

May 22, 2011<inhon@mail.tku.edu.tw>

Selecting a Disk-Scheduling
Algorithm
• SSTF is common and has a natural appeal

• SCAN and C-SCAN perform better for systems that place a heavy load
on the disk.

• Performance depends on the number and types of requests.

• Requests for disk service can be influenced by the file-allocation
method.

• The disk-scheduling algorithm should be written as a separate module
of the operating system, allowing it to be replaced with a different
algorithm if necessary.

• Either SSTF or LOOK is a reasonable choice for the default algorithm.

May 22, 2011<inhon@mail.tku.edu.tw>

Swap-Space Management
• Swap-space — Virtual memory uses disk space as an

extension of main memory.

• Swap-space can be carved out of the normal file system,or,
more commonly, it can be in a separate disk partition.

• Swap-space management
– 4.3BSD allocates swap space when process starts; holds text

segment (the program) and data segment.

– Kernel uses swap maps to track swap-space use.

– Solaris 2 allocates swap space only when a page is forced out of
physical memory, not when the virtual memory page is first
created.

May 22, 2011<inhon@mail.tku.edu.tw>

Swapping on Linux Systems

May 22, 2011<inhon@mail.tku.edu.tw>

RAID Structure
• RAID-Redundancy Array Independent Disks

• RAID – multiple disk drives provides reliability
via redundancy.

• RAID is arranged into six different levels.

May 22, 2011<inhon@mail.tku.edu.tw>

RAID Structure

• Several improvements in disk-use techniques involve the
use of multiple disks working cooperatively.

• Disk striping uses a group of disks as one storage unit.

• RAID schemes improve performance and improve the
reliability of the storage system by storing redundant data.
– Mirroring or shadowing keeps duplicate of each disk.

– Block interleaved parity uses much less redundancy.

May 22, 2011<inhon@mail.tku.edu.tw>

RAID Structure

May 22, 2011<inhon@mail.tku.edu.tw>

RAID (0 + 1) and (1 + 0)

May 22, 2011<inhon@mail.tku.edu.tw>

