- TSEG
Tamkang Universty Software Engineering Group

# I MBI E R B ZE

http://www.tkse.tku.edu.tw/

P Yy 7 Pt
7351 ¢ Introduction to Object-

Oriented Analysis and Design
Stephen R. Schach [ffArgoUML fi% ?€ JE“EF,J RE2.

Reporter : Ying-Hong Wang

E-mail :inhon@mail.tku.edu.tw

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

IS e S TGl RS

.E‘;?j

_“ilﬂ

S
LIV

- EESFIER
e

15% (=% : 30% ﬁﬂfll#}r, 15% #4% : 40%
EhJﬁ[iJ*JdL AL A s Zak HPJFH?LW fl1&
il F 0 DT R - JHA H T RETOY >
AN LN aens BN ;p,, .
JJH\H o LMT#IAEI ﬁ" "ﬁ tﬂ]ﬂ”"#ltl TR 100%] | B J—#”’#IUH H
IR ITRTER %‘

- ﬂfﬁ* WJ”H*%%[% *'ﬁ?l‘ﬁi Ao PSR B RIS > 224 BT R K
1055 > {1057 K-

- @‘ﬁ P B LR ) 0 AR A B F RS P P S T
Ao

. _!—‘%{‘BE‘J}
- TR IR ST TR AR Bl A
- R

o FFHIL

_ %?fy%ggqmw% TEE B
- BRI

<inhon@mail.tku.edu.tw> May 25, 2010 P2




a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

2007# Cheers i%iﬂ“l}ﬁfﬁt‘ﬁfa%'

e 2007:F Cheers;*@%%ﬁﬁ?f P 10007 (-3 pOofi s & F%fﬁ
R =1 W =

R =] I REEL

- Ej%‘}fﬁ?ﬂ%‘%}iﬁ
SUE Al
- 5 BRI
— SUEERIRERS
SERR R
ClERTE
~ AL R
- PRNEER P

<inhon@mail.tku.edu.tw> May 25, 2010 P3

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

il B e
o FIFSIAIE T AL

VRS FTRE S i AL PR

o SR H AR (2

o SOl IR (RIS BB g

o S ) T R L S

o SO IR I R B~ B
o SO R U 5 8 Y S T

<inhon@mail.tku.edu.tw> May 25, 2010 P4




o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Frade i)

1. Introduction

2. Recall Software Engineering

3. System Analysis and Design

4. Object-Oriented Concepts

5. UML

6. Workflow of Requirement Analysis

7. Workflow of Object-Oriented System Analysis and Design

<inhon@mail.tku.edu.tw> May 25, 2010 P5

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Learning Objects Architecture

’ Software Engineering ‘

|

’ Requirement Analysis ‘

/\

Traditional System Object-Oriented System
Analysis and Design Analysis and Design

UML

|

0O System Analysis and
Design in UML

l

Java Codes generalize by UML

<inhon@mail.tku.edu.tw> May 25, 2010 P 6




-! :
&5 TSEG Tamkang Universty Software Engineering Group ZTIRMIEMEE http://www.tkse.thu. edu. tw/

Agenda

1. Introduction

2. Recall Software Engineering

3. System Analysis and Design

4. Object-Oriented Concepts

5. UML

6. Workflow of Requirement Analysis

7. Workflow of Object-Oriented System Analysis and Design

<inhon@mail.tku.edu.tw> May 25, 2010 P7

-! :
&5 TSEG Tamkang Universty Software Engineering Group ZTIRMIEMEE http://www.tkse.thu. edu. tw/

Introduction

e Definition of System:

— A system is a set of artifacts (components) that together achieve
some outcomes

e Definition of Information System:

— An information system is a system that achieves a business
outcome

— An information system collects, manipulates, stores, and reports
information regarding the business activities of an organization, in
order to assist the management of that organization in managing the
operations of the business

<inhon@mail.tku.edu.tw> May 25, 2010 P8




--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Introduction

e Categories of Information Systems:

— Custom Information Systems
— Commercial off-the-shelf (COTS) packages

e Three main Stakeholders of a custom information system

— The Client, who is paying for the information system to be
developed

— The Future Users, who are the users of the developing information
system

— The Developers, who are the team workers to develop the specific
information system

<inhon@mail.tku.edu.tw> May 25, 2010 P9

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Introduction
e |IT Market
Hardware Hardware Software Products | | Processing Services
products maintenance | | & Services and Internet Services
Embedded Professional Software
Software Service Products

Enterprise Packaged
Solution Mass-Market
Software

<inhon@mail.tku.edu.tw> May 25, 2010 P 10




- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Introduction

e Software Products and Services

Professional Software

Services

Anderson Consulting
IBM

EDS

CsC

Science Applications
Cap Gemini

Hp

DEC

Fujitsu

BSO Origin

Enterprise
Solutions

IBM

Oracle

Computer Associates
SAP

HP

Fujitsu

Hitachi

Parametric Technology
People Soft

Siemens

Packaged Mars-Market
Software

Microsoft

1BM

Computer Associates
Adobe

Novell

Symantec

Intuit

Autodesk

Apple

The Learning Company

<inhon@mail.tku.edu.tw>

May 25, 2010 P11

- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Agenda

1. Introduction

2. Recall Software Engineering

3. System Analysis and Design

4. Object-Oriented Concepts

5. UML

6. Workflow of Requirement Analysis

7. Workflow of Object-Oriented System Analysis and Design

<inhon@mail.tku.edu.tw>

May 25, 2010 P12




a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Recall Software Engineering

* [RRCR 7 R AR e
~ PSR R 8
SO TR ﬁ'“ Wﬂﬂyffﬁ PR PR
- A SRR YR YRR
- R EN R

-

HHE

e 1 HFE
LR TE%H;; H sty
i
T8 S i R (hardware)
<inhon@mail.tku.edu.tw> May 25, 2010 P13

‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Recall Software Engineering
I

| e |
ﬁ 15 e
R ek S
SRR e R ek
I R B
i i A ] Bk Hofein
E | L] ! Lt ] ,T

FYEE rardware)

» i

<inhon@mail.tku.edu.tw> May 25, 2010 P14




a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Recall Software Engineering

. ﬁﬁ"ﬁ%‘j Hd(Software Engineering)

— Py 0k ?Eiigmﬁgj #Hd(Software Engineering)EJ! t | CE B
Fritz Bauer

- Rz *EEIJ R (6 = e i =B £ o h = S N

— I RS “fi“ || SPH I ol =k [~ VR *ﬁ]iﬁﬂ@ﬂ'
SRS TR T AR S IRV - Ty

- R ARLT AR ﬁ‘}f b3 R AR Fi Fl%[hﬁﬁ@ﬁﬁ”@
%‘W‘%hﬁfk’ﬁ“ﬁ IR HE 'rl%’?‘/ﬁﬁ ISR AR

- E Sl i oSN St LR R TR ) S
r ,3: D

<inhon@mail.tku.edu.tw> May 25, 2010 P 15

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Recall Software Engineering

o PR M pYREME T AT LY S
- PBT R Sag ) -
HISE = (R E | 2180 @&d;ﬁ% S
YRR éﬁiﬁﬂl%@ﬁ@ﬁ s IR g~ PSR
O )T
o [P AHpVES.
— PO FRRL PP PNk [ AP~ AR A
AP E D = Rt ’ﬁ-ﬁﬂf | AR
o VR AHRVP fLI
— TR R
_ m%ﬁfiﬁ—'

<inhon@mail.tku.edu.tw> May 25, 2010 P16




a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Recall Software Engineering

_raS

‘;..../ | éﬁ. ﬁ% I *ﬂf_.\.\l

[ (Software |

| farn T EX | . . | = =TT B
EHERLEE  Engineering)) &EAEHE
b3 /

\ iy

\‘\._‘_ _ B
<inhon@mail.tku.edu.tw> May 25, 2010 P17

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Recall Software Engineering

e What is the Problem?
— 84 % of all software projects do not finish on time and within
budget (Survey conducted by Standish Group)
* 8000 projects in US in 1995
* More than 30 % of all projects were cancelled
* 189 % over budget
— Key issues
» Software firms are always pressured to perform under
unrealisticdeadlines.
» The clients ask for new features, just before the end of the project, and
unclear requirements.
» Software itself is awfully complex.

* Uncertainties throughout the development project.

<inhon@mail.tku.edu.tw> May 25, 2010 P18




ETSEG

Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Recall Software Engineering

e Real Case
— Trust business. 1982.

Spend 18 months in deep research & analysis of the target

system.

Original budget: 20 million.

Original Schedule: 9 months, due on 1984/12/31.
Not until March-1987, and spent 60 million.

Lost 600 millions business

— Eventually, gave up the software system and 34 billion

trust accounts transferred.

<inhon@mail.tku.edu.tw> May 25, 2010 P19

ETSEG

Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Recall Software Engineering

e Software Myths

— Management Myths

— Customer Myths

— Practitioner’s Myths

<inhon@mail.tku.edu.tw> May 25, 2010 P 20

10



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Recall Software Engineering

e Management Myths

— We already have a book that’s full of standards and procedures for
building software. Won’t that provide my people with everything
they need to know?

— My people do have state-of-the-art software development tools;
after all, we buy them the newest computers

— If we get behind schedule, we can add more programmers and catch

up

<inhon@mail.tku.edu.tw> May 25, 2010 P21

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Recall Software Engineering

e Customer Myths

— A general statement of objectives is sufficient to begin
writing programs —we can fill in the details later

— Project requirements continually change, but change can

be easily accommodated because software is flexible

<inhon@mail.tku.edu.tw> May 25, 2010 P22

11



- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Recall Software Engineering

e Practitioner’s Myths

— Once we write the program and get it to work, our job is
done

— Until I get the program “running’I really have no way of
assessing its quality

— The only deliverable for a successful project is the
working program

<inhon@mail.tku.edu.tw> May 25, 2010 P 23

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Recall Software Engineering

e Traditional Software Engineering Paradigm ({EUH i~
Fid el )
— PRI AR G ALY | RSP ORI SIS
[ eI S PP R AR A ERAEAR (PR AT
(Structured Software Development)

o MOUFRT PHAV4 [
— *(People)
— A (Process)
- Ejlii'(Project)
- E‘i:Fﬁ#,(Product)
= SEUERLIR A (74P

<inhon@mail.tku.edu.tw> May 25, 2010 P24

12



a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Recall Software Engineering
o PR AEPYA [t

FE
(Product)

YA

r 3
A
(People)
W=
Proje /
A ]
(Process)
<inhon@mail.tku.edu.tw> May 25, 2010 P 25

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Recall Software Engineering
o PR R A

B P LT
- e
- i

ﬁ?ﬂpﬁji w“"ﬁl
- ﬁ:’« @E|

- f ilﬁlﬁ

- Eﬂ‘j D

BN AR YET

- g

- R

<inhon@mail.tku.edu.tw> May 25, 2010 P 26

13



a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Recall Software Engineering

o I BIHIH Eﬁ%ﬁu 1 (Project Management Institution, PMI )
4-1‘1? ‘[Iiﬁ U7J u—‘\—JF[{-@‘,

Y
C i
Pt g £33
R V4 o
V o H
T
<inhon@mail.tku.edu.tw> May 25, 2010 P 27

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Recall Software Engineering

e SEI (ﬁf{ﬁ@ %Eﬁu » Software Engineer Institute ) 5P
ﬁiﬁk?‘g" |55 A Ujﬂm
- B
- ﬁ?ﬁ‘%“r*‘
- &l
- F%?f

<inhon@mail.tku.edu.tw> May 25, 2010 P 28

14



a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Recall Software Engineering

FiL PRI 32 ‘/éf JH#Y (Software Development Life
Cycle SDLC)
— ST ARG S % (3 E(System Development Life Cycle) »
b
— R Fﬂﬁ #](System Life Cycle, SLC)

<inhon@mail.tku.edu.tw> May 25, 2010 P 29

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Recall Software Engineering

o FRLV AL S s

— HEE S ( Bu11d and-Fix ﬁ‘/Code -and Fix )

- %éﬂ 80 (Waterfall) (745 i i i)

— ﬂf@‘ﬂﬂ‘ﬁlﬂ (Rapid Prototyping )

- EZF ﬂ%ﬁ‘ RES I%ﬁ%@% (Integrated Waterfall and Rapid
Prototyping )

— ¥R (Incremental )

- @ﬁﬁ%ﬁ(Extreme programming) ﬂ?ﬁjﬂi i(Agile Method)

— Synchronize-and-Stabilize

— A (Spiral)

<inhon@mail.tku.edu.tw> May 25, 2010 P 30

15



a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Recall Software Engineering
o PRI A PRI R R R

(Framework)

o JUJRHIE » RSNSOI R T - (LELISIN S
L=E F g[ﬂ ﬂjﬂ Sl

o [P ALY 'Uii i(Methodology) » %L~ -ﬂﬁj I~ R R

(ﬂE* (LA B lel{g;;rﬁ*é 175 £ Imf[ﬂtﬁp[ THER WA

I lElﬁF‘fﬁ, Fok [/ﬁf’\ﬁﬁ‘ ﬁifé*ﬂSg ik

- ﬁlf;.’J(Model)

— 7 2!(Tool)

— 5 (Technique)

<inhon@mail.tku.edu.tw> May 25, 2010 P31

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Recall Software Engineering

e Traditional Software Engineering

Software Systems

Function Data Behavior

I

Data Flow
Diagram

State Transition
Diagram

Entity-Relation
Diagram

<inhon@mail.tku.edu.tw> May 25, 2010 P 32

16



- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Recall Software Engineering

e Object-Oriented Software Engineering

Software Systems

Object Function Behavior

Class Data Flow
) ) State Chart
Diagram Diagram
<inhon@mail.tku.edu.tw> May 25, 2010 P 33

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Recall Software Engineering

e Generic View
— Definition: What
— Development: How

— Maintenance: Change

<inhon@mail.tku.edu.tw> May 25, 2010 P 34

17



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Recall Software Engineering

e Traditional Software Development Life Cycle

Requirement acquisition (problem statements)

* To describe the problem to be solved and providing a conceptual

overview of the proposed system
— Requirement analysis
— Requirement specification
— System analysis
— System design, Detail design
— Coding
— Testing

— Maintenance

<inhon@mail.tku.edu.tw> May 25, 2010 P 35

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Recall Software Engineering

¢ Traditional Software Development Life Cycle
— Requirement Analysis Phase

* Requirement acquisition (problem statements)
* Requirement analysis
* Requirement specification
* System analysis
— Design Phase
» System Design
* Detail design
— Implement Phase
* Coding
» Testing

— Maintenance Phase

<inhon@mail.tku.edu.tw> May 25, 2010 P 36

18



--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Recall Software Engineering

e Traditional Software Development Life Cycle

RELHE
F 1

F s gy
— b
FrifiaEEt
F
HAEE
HIE
. M
<inhon@mail.tku.edu.tw> May 25, 2010 P 37

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

Recall Software Engineering

e Object-Oriented Software Development Life
Cycle

OOA ) 0O0OD [ ) OOP

Develop model Add detail and )
of requirements design decisions Develop code
\ J \_ J
Y Y

User’s Perspective  Developer’s Perspective

<inhon@mail.tku.edu.tw> May 25, 2010 P 38




-.-!
TSEG Tamkang Universty software Engineering Group ZTHMIEREE http://www.tkse.tku.edu.tw/

Recall Software Engineering

e CMMI: Capability Maturity Model Integration

— Fundamental Concepts
* Software process capability describes the range of expected
results that can be achieved by following a software process.
— Predicting outcomes for the next project.
* Software process performance represents the actual results
achieved by following a software process.
— Focusing on the result achieved.
* Software process maturity is the degree to which a specific

process is explicitly defined, managed, controlled and effective.

<inhon@mail.tku.edu.tw> May 25, 2010 P 39

-.-!
TSEG Tamkang Universty software Engineering Group ZTHMIEREE http://www.tkse.tku.edu.tw/

Recall Software Engineering

e CMMI: Capability Maturity Model Integration

— Fundamental Concepts
* Infrastructure is the underlying framework of an organization.
* Culture is the way doing thing.
« Institutionalization is the building of infrastructure and culture
to support the methods, practices and procedures.
* Therefore, a mature software organization needs an
infrastructure and culture to support its methods, practices and

procedures so that they endure forever.

<inhon@mail.tku.edu.tw> May 25, 2010 P 40




a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Recall Software Engineering

e CMMI: Capability Maturity Model Integration

Staged

Organization

<inhon@mail.tku.edu.tw>

May 25, 2010 P a1

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Recall Software Engineering

e CMMI: Capability Maturity Model Integration

Level

5 Optimizing

4 Quantitatively
Managed

3 Defined

2 Managed

1 Initial

Focus
Conrinuons Process
TImprovement
Ounaniitative
Management

Process
Standardization

Basic Project
Management

Staged Organization of PAs

Organizational Innovation and Deployment (OID)
Causal Analysis and Resolution (CAR)
Organizational Process Performance (OPP)
Quantitative Project Management (QPN)

Reguirements Development (RD)
Techmnical Solution (TS)
Product Integration (PI)
Verification (VER)
Validation (VAL)
Organizational Process Facus (OPF)
Organizational Process Definition (OPD)
Organizational Training (OT)
Integrated Project Management (IPM)
Risk Management (RSKNM)
Integrated Teaming (IT)
Integrated Supplier Management (ISM)
Decision Analysis and Resolution (DAR
Organizational Environment for Integration (OEI)
Reguirements Management (REQNM)
Project Planning (PP)
Project Monitoring and Control (PMC)
Supplier Agreement Management (SAM)
Measurement and Analysis (MA)
Process and Product Quality Assurance (PPQA)
Configuration Management (CM)

PAProcess Area

21



EEG Tamkang Universty software Engineering Group ZIHMMIEREE http://www.tkse.tku.edu.tw/

Agenda

1. Introduction

2. Recall Software Engineering

3. System Analysis and Design

4. Object-Oriented Concepts

5. UML

6. Workflow of Requirement Analysis

7. Workflow of Object-Oriented System Analysis and Design

<inhon@mail.tku.edu.tw> May 25, 2010 P 43

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

System Analysis and Design
EA R A

- r’ﬁﬁ ™R AR I R R Y
£k 'ngf—* 2 F' oo
- EFRAFTR AR RN LR A G
A AFFRRA 5 B Tk A Prend Fl2 - o
G R EATR A R AR 2 - Y R E
o0 g - llx’réi7 PREL o T b oo PR Az A B 10T
et ¢ i B%#E2 R (Principles) ~ #4F
(Techniques) ~ 3% 2 (Languages) ¥ 1 £ (Tools) » ™ §
B ATERR AR AR A e B AT h A T A o

<inhon@mail.tku.edu.tw> May 25, 2010 P 44

22



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

o FRAIIHELE 4z BED !
- F R SR o MR L en f2 F febn
l}io
SR EAAT CRIEREA T G DF KT TR A 03
SRR RIS FERAL
-G REE IR S ey R
B FRFE L AR RIS T RE  EFIF R

FERRep e

<inhon@mail.tku.edu.tw> May 25, 2010 P 45

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

o FRAIIET A LA LB
- F B AR M AP RPN L L BT R N
TG ohe TR R S BT E B 0 TR S g
E] o
- F R O R R P 0k RN
LA E R o

<inhon@mail.tku.edu.tw> May 25, 2010 P 46

23



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

o T RATIFE S & 'H';,ﬁ?ﬁfr % B -

Ll

LRIPFRE— > HEEHED ———— > AEHD

<inhon@mail.tku.edu.tw> May 25, 2010 P 47

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

o &% %’ FF G
- E-EEL%’.T» FHRT I L TRE ~ (TEARA B
@~ﬁﬂ?ﬁ%w$i?ﬁﬁ%ﬁa}&ﬁ%~w
FIVLEBH LR L RRET R NAET KA
ey R8T e
- F R AT L MR T e e R
FAR LR R B R &ﬂﬁ%;;ﬁmmu
ZETEE R BB F RE YT IIRIFEARE
ARJE o Btz WipawmIng £ B AR EIE o

<inhon@mail.tku.edu.tw> May 25, 2010 P 48

24



- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

System Analysis and Design

o T RASPREZER I TSR
- BRI FAL
SR RAT kAP R
- B FRAT % S v
“BfR Y FERL R KR -

<inhon@mail.tku.edu.tw> May 25, 2010 P 49

- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

System Analysis and Design

7 Rae S
S RHEER Y KR RLH 0 L RfE AR L

RN G e

SH PR AR NG AR E SRR N
SRR EETETEE E RS AR

B AR EBH o

<inhon@mail.tku.edu.tw> May 25, 2010 P 50

25



- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o F g
SER

cFE L Eep IR IFRP S~ § ¥ 4 H (Business Forms)

BAp g p ¥ EiTBiEZ 4~ 1 0% o
sk B Y REh Bimd fy itk sz
oo v b ROAT G G S R ehide > 2 AR R
£ i%?y @]thl;’z", ;\ﬁ:%iﬁ\;mj},—‘ﬁ E@Pﬁ;‘i}ﬁ o

L

<inhon@mail.tku.edu.tw> May 25, 2010 P 51

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o T RFH- A

- ¥R
Co ARG R R (7 ST RS R ¢
BT mREATRNE TR [ﬂ‘.“z‘ﬂ’ P

L&HEM)"’ uggﬁi‘}’;_ i;TjF L o

LR
etn

W LR A R hE P —”-F\‘ E R FREZ R B

T
IR 7T i

ERD K2R RS R TR TREL S

<inhon@mail.tku.edu.tw> May 25, 2010 P 52

26



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o T RFH A
NS

CRERRY F LS ALFT AR TR L2 N
B P ‘I °
7 V‘FU N~

S HREORFEDAFEN AL ES 2 RF RN L AIK

=
PRV AHA T EPRSHE AR RS R

;
FE- AR I BB SRR FF ARG
T oo

ISR S s A Ik g g% FARE o
RAEE e 3L > EF L F e BHER R GF
¥ fiEm o

<inhon@mail.tku.edu.tw> May 25, 2010 P 53

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o F g
— FB% :
R EXPEL VU LA R R AR - BRAE
BB LT G S

CRNARENAT GG AERER

cEd AEPFLRFIETGETE-HBEHERE 0 2 S HFR
FEFTR2Z P HHRA P L 220 g it 2 et o

<inhon@mail.tku.edu.tw> May 25, 2010 P 54

27



ETSEG

Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
System Analysis and Design
° »% «j\j#,‘g,\ =
— FFE _-5 :
. \‘F» '/7‘1?, ) J./F{LL}V[)JJL*iIn"{.ér77f@\ f\?\
Sf B gh A B A A
- 1% 5 4 $ (Probability Sampling)
2448 % 34 $% (Nonprobability Sampling)

<inhon@mail.tku.edu.tw>

May 25, 2010

P 55

ETSEG

=

"
Ry
e

Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o 7 ‘f\#;"lﬁ’*” 7

¢ ;‘%’ vi j'\/;

=3

u/\ﬂ}rﬁgJ s ¥ ﬁxﬁ <ﬁvf77y FLw g
AR CR T CIN I R R S L o »F;

il ‘F—T-‘ﬂ’“(
A

) 2k
RARRE ITE AR B o
CHREAfrERG RE o
SKEPR % VAR S8 %E‘T'J‘ﬂ? At kjg: FoNEHNE
Bl XE E\.’*J ¢
AL LR & o

A ]]35 e ELle %ﬁ/f—* N lIL_:’:ﬂ‘fL’]b IF“ 1”\1&,

<inhon@mail.tku.edu.tw>

May 25, 2010

P 56

28



o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o T RFH A

-3

T ALAES N

RN
- B %5533 (Open Interview)
» AATEFE LD T AR S F LA AR EREA > PRER
gt e E T e
» ST HEAAAE D RE L RBFH 2 FR
- B33 (Structured Interview)
b B PHA D RE A B P AT
*+39 I (Interrogation)® 22 3% (Conversation) » #7& 3
WAVER ~ B PR TEUR -

<inhon@mail.tku.edu.tw> May 25, 2010 P 57

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

H £ b -7‘5 =
® 7 ‘f\;}%?ﬁ" ;o
-3
. .%",;’}#T" 2+ 2% (Structured Interview)
SEpfE N R R M ARRE S R R Hw BN E
Boo Shp R E A B IR - A R AT 4 R AT
- EHHm- BAKERE > Ad At ARG B R B
i mat o
SR A RRITIRAR AT R A ATE G il TR R
dprad gk oo

CHE B A T LR - A

<inhon@mail.tku.edu.tw> May 25, 2010 P 58




-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o 7 Fggp U
- R g R
CREHBE- ARG RFOTRAR SN e F AL
GRBE AR RE-E o et d R AR 0 R
FREE AR AT RL LA
ch 3 E BB RS R L RAOT
A > gd RAFE Y A e

4 gk o

CRBRE T PR SRR R PE

P WG A ehE R

sl
B gtk AT T

<inhon@mail.tku.edu.tw> May 25, 2010 P 59

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o T RiFE-
- ERE
- 7 & B% (Joint Application Development, JAD)i & z_
A REE- B 17 Ak g  BREFEHERA
Peig Forxo @ B R R R REBE R

CWERFOL MR LA RFOF R 2

<inhon@mail.tku.edu.tw> May 25, 2010 P 60




a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o G RgE-
LR

c JADiZT 7 7 %_H;’ﬂi]g‘ kg

b
- MR R -
SER(FH) EG -
- R .

S A .

<inhon@mail.tku.edu.tw> May 25, 2010 P 61

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o FR&E1E
-fERAEEEAIEG BRRL HERFT AR
FREEHN O BlArFH AL FRE .
-BHE pRA BRI AR AT RS
TR
<inhon@mail.tku.edu.tw=> May 25, 2010 P 62

31



a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

ik

€ B ExW
750 W (AR R)
¥

i\

¥
X

B

<inhon@mail.tku.edu.tw> May 25, 2010 P 63

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o T kAl L

- AR R TR HL B 6 4
« iz W (Flow Chart)
- ArE A & A ERW(Entity)E (FEARR 2 T F T LB
% o
* FaJZ 3 it (Process Description)
- BIR g i P AT AR B Y 2 (TR ASE S AR5 B2P 2 H 4B
ZFAE s B E

<inhon@mail.tku.edu.tw> May 25, 2010 P 64

32



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

e ZTHAELE

AL RCE TR L B # 4
- W (Drawing)
SEMLIE AT TRLZEARNEPN FE Mok B2 e
HWHIEP o
- F#23@ 4% (Data Glossary)
- FHPRLREEERN FRLEmp §HRRE

<inhon@mail.tku.edu.tw> May 25, 2010 P 65

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

o T kAl L

SRE A | EE R A =

Eaid EE
FTEEER
TR R
FETEACRETHERET

|0

FTEEEHERETET A

<inhon@mail.tku.edu.tw> May 25, 2010 P 66

33



a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

e ZTHAELE
- AL i

c LAy iR - o ehd E R BRJR 2 A EH I E R )

FoOrEM AT NP FRTHEZFHE
c BB RIEA 2 ARG RARR Y 2 R Lo ATy i
2.3 4T

<inhon@mail.tku.edu.tw>

May 25, 2010 P 67

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design
e 24t E

- AL i

L LA

TS AR 2.

<inhon@mail.tku.edu.tw> May 25, 2010 P 68

34



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

e ZTHAELE

c FRI(Drawing) 1 & * 5 2E AR 2L A2 E -~ g %
LHEFAZ KL LA B R R RAgRP X

FEFTANEZ AGERY ZMHLE > F R Y TR

- H ek oo

<inhon@mail.tku.edu.tw> May 25, 2010 P 69

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o T kAl L

Sk
* T3 q (Data Glossary)it— P FR“TmE £ E 2P
FACF AL LR ~AIGE RS 250 R FRE
o T AEBEBIRP L o
FHFRZPMFAEDETERY 2 e L Fi
TRz EREVE  FRATEE- > THAL R
RFER 2N E TG M ks TR Fptis

TN FRPRY BT LT T 4

<inhon@mail.tku.edu.tw> May 25, 2010 P 70




a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

e ZTHAELE

TR

ol A S ST S P RIS 2 1 T S I 3

w | g

<inhon@mail.tku.edu.tw> May 25, 2010 P71

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

° ,%af;l]
- AR C

t - ¥ gx 30

(B
X
il

=

o

\i

P e

Y
Y

AL

<inhon@mail.tku.edu.tw> May 25, 2010 P72

36



--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

System Analysis and Design

° %,’érf}l]
- 3T H B gy it

R T T8 L
1 E S e 7l £ 7 v B 2 (3 0 @t & %
, , LR ,
HEREAEE R [EBDRKRETEZFEEG SR
] B R R RE L E &
BE g 2 & o plid w2 A2 NEFA A
s 2R3 -
— - - >
g L ﬁ%] ~ T T g s
V
?Pﬂ:iﬁi%]ﬂ: PlEpian i EaRSLEFRLAET
£
RIS
<inhon@mail.tku.edu.tw> May 25, 2010 P73
--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/
52,
° #F’ I;l]
= = .
_ ;{"E T B :
B RO I
= il
& [A
pi-: [ B a‘ﬂ%’i D
i € [ |E
| emir s RO | EE P -
A R T Bl B BT et
F G I K[L| M N
10000006 |~ FefiE] [ | 25kg[s |3 [ | 417.60] 1,252.80
10000005 | 85" 25kg [L |1 [¥ | 200.00] 200.00
10000006 | ] 25kg | S |1 |{l# | 200.00[ 200.00
10000002 | I* sokg [ s |1 [# [6,000.00 | 6,000.00
10000003 | % sokg [M |2 [fi# | 600.00] 1,200.00
10000004 | & 5 100kg [M [ 1 [# | 200.00] 200.00
HeaTh sy [0052 O]
B RIS PR IR
<inhon@mail.tku.edu.tw> May 25, 2010 P74

37



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

° %,’érf}l]

—?E?%?ﬁl
%’g

1 = Al HIE =
Hweon P o] Wy [ wow
Al &%/ | 20C BRG]
B i 40C ] T 8 ThYA P 700
Cl & 10C 07-5252000
D | wF 8N j;ﬂ&;;gz% 98090101
E[EGH | 6D [13#] GECEI
F| jfFasE | 8C 99999999 10000003
Gl £ 10€ [l
AET 5C [
KR 14C 50Kg
T 4C M
[REE 10N 2
L[ Fi 4C i
M| i 10N 99,999,999.99 | 600.00
- PED x B S
N| &4 10N %999,95;‘5:)9 1,200
O [ AF 10N 999,999,999 9,052
it CRAL NRGy DA -
<inhon@mail.tku.edu.tw> May 25, 2010 P75

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

° %,’érf}l]

o B R LR

BoARAT B

W ol

<inhon@mail.tku.edu.tw> May 25, 2010 P76

38



a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o AR ik
- B AR R AT1960E R R > A R BP IR
LS LR W w0 RN VI S S WA LRy
b RS R 2 T ki ¥
- BRI g e
« B it~ 47 (Structured Analysis) -
« 51 %3 (Structured Design) °
* S iv 4258 K3+ (Structured Programming) e

«d + @ 7% E (Top-down Development) e

'H

<inhon@mail.tku.edu.tw> May 25, 2010 P77

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

B A TR

- BT R AR AT1960 - %ﬂ.ﬂ (Yourdon, 1988'
Lewis and Oman, 1990) > # i & p chf -7 % 5
@@iﬁT%%’i%ﬁﬁﬁaﬁ@“*“ﬁwo

<inhon@mail.tku.edu.tw> May 25, 2010 P 78

39



a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

PN A phy 2 2L
o B I A ATEK S
- A2t et (Module) & - @ ¢ 4p 4 el £ > - Bk
ool FET BItA
cHE LA tAE- T Rt RE B AE RSP -
S R A e e SR R R
CEE D e FRTAL SR > v B B
- A
CRSLBIE . SRS ES N HEp R PR FAREFER
S g .

CRERFOR b Fe 6 A R G R T

<inhon@mail.tku.edu.tw> May 25, 2010 P79

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o B ITEE
SRR HET B KPR ERRRT
P L E R T Py
* %1 ® (Structure Chart)
« HIPO®) (Hierarchical Input Process Qutput)
« Bl Rty it
o

<inhon@mail.tku.edu.tw> May 25, 2010 P 80

40



a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o B TR
- B w32 F ey - 2§ H g% B (Rules of

CIREE G 0 R R AT
7 ehip %357 7 o Yourdon(1988) 3% 5 3 i i3k 3+
EERERF MR

« #ir2 ~ | (Module Size) -

« 4 B e(Span of Control) -

« ¥ %4 B (Scope of Effect ) -

* ##14° B (Scope of Control) -

<inhon@mail.tku.edu.tw>

May 25, 2010 P81

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o BRI AT EE

A AR TES  EVATE N R

« ¥ 2 7](Event List) -
« %3 B (Context Diagram) °

o RJRALHE d it (Process Specification, PS) °

- % % B (Entity Relationship Diagram, ERD) e

<inhon@mail.tku.edu.tw> May 25, 2010 P 82

41



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

o« B AfTER
- Dijkstra(1969)#& & g4 v 4238 K- ep & - iy
LA FIGOTOR i@ = o dig 5 3¢ ehil Uik i
- AR e IR i AR BE G -
Boggo rawd 2 T Y A E
BOEEA

<inhon@mail.tku.edu.tw> May 25, 2010 P 83

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

o Bt A fTERE
2 BT DU

-

/

SN e

/

l_l_l

SEQUENCE IF-THEN-ELSE DO-WHILE

<inhon@mail.tku.edu.tw> May 25, 2010 P 84




EEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

BRI A st

-d + @ T2 E (Top-Down Development Model)

sl A TR 2 HASRAT1960E A o ptHEe 7
ZRpMEI R 3anTd b a T

-d @ T %3 (Top-Down Design) -
-d + @ T %5 (Top-Down Coding) °

-d +a ™4 % (Top-Down Implementation) e

<inhon@mail.tku.edu.tw> May 25, 2010 P 85

EEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

:‘:{;‘I’f?:fb A Eld 2% 2t
-d + @ T % & (Top-Down Development Model)

.LJ I_R,'r —‘_LW %é"J%J—
I

K WeE o U P L@ AF R I A 2
PR A ReenR R 0 BRI R ORENRR 4R WO - b R
fRerv ] BPAR 8 RN & o Bilde
- AW AR A ZASBC2 B AR .
SR RIS FANAGAIEA2 ) FNCECIEC2 0 e Rl

<inhon@mail.tku.edu.tw> May 25, 2010 P 86

43



a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

System Analysis and Design

o BiEi ATER
-d + @ 7T E (Top-Down Development Model)

cd A TR

Main

Al A2 C1 C2

<inhon@mail.tku.edu.tw> May 25, 2010 P 87

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

System Analysis and Design

o BT AR
-d + @ T2 E (Top-Down Development Model)
ed FAa T RIS
- - R i TRt
> A BAN LB NN E kAL B T BREAY .
YR L0
y AYBBATZHN LY RET AN o
-afRNE T AR
y BFD P A TR N VEY G- EET REDR A G
LR F o
-
» TAEGE AR S AR AN DL RSN LT RS RG>
S TR L AR S ke h PR

34

<inhon@mail.tku.edu.tw> May 25, 2010 P 88

44



EEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

B AR
-d + @ T2 E (Top-Down Development Model)
el b T
- fN GRS NS s THEY I a7 %A (Top-down

Coding) » * 7 4 ¢ & @ 1 % (Button-up Coding)= 5 » &
A FRE SN
—d Lm—r‘m%ﬂc AN GIERE o F B R ER RS
0 FEAH R P Sl
'””mﬁ*@”‘*iﬁd‘%TafﬁdJaTﬁﬁ%
B § hAfApE s IR E'é%’\}f,f‘%]{téiﬁ_‘%qu_ﬂ& B

<inhon@mail.tku.edu.tw> May 25, 2010 P 89

EEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

:‘:{;‘I’f?:fb A Eld 2% 2t
-d + @ T % & (Top-Down Development Model)

ed b @ T
.dla'\?ﬁ%’;xﬁ_d_}ﬁ,
Test) o d Fm ™ plaEE Af
?l%%%‘»}l{#w C PR

/Hpé,f “*bmrﬁf %3—-5';
BRI E B A o B A PR

- 4Rl

En

£ 82 (Top-Down Integration
fﬁ‘ff_r“s AR FAENERD T
G E R AP 2w
A Jpéad A2 B RS

e VB = ﬁ#

H i:t
4F

<inhon@mail.tku.edu.tw> May 25, 2010 P 90

45



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

o BART AT
S

cd bA TR

4 ta

I
pinaaaing

<inhon@mail.tku.edu.tw> May 25, 2010 P91

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

o B AR
-d + @ 73 & (Top-Down Development Model)

ed b TE

R om T LR ’;T xd .f‘%’fﬁﬁ%_]i B TR il e B
4o (TRER 0 @ AR (Stub Module) &t & # #5252 (Dummy
Module)#ps (v 2 ™ — & = 2 efitie o 10T B A b Rl
B A PFo C®r DE_B#HCE > FiReh BIEBRE  ERFE
P =g

En

<inhon@mail.tku.edu.tw> May 25, 2010 P92

46



a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

System Analysis and Design

o BiEi ATER
-d + @ 7T E (Top-Down Development Model)

,,ﬁ*rf#»,g'

)
ro—=== —_—— s \

\ \
| BEfe E| | hsire F

| =

. d

<inhon@mail.tku.edu.tw> May 25, 2010 P93

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

System Analysis and Design

o BART A fEERG
-d + @ T3 E (Top-Down Development Model)
ed Fm TR eE 2 iEEL
- AR LRI E T B .
“BBREA A B BGLARIGE P ARBRREBE RS o
- PR R RSP R B e 2 iRl iRk ds (Driver) Bk o
S R E AL E O RT R SR

<inhon@mail.tku.edu.tw> May 25, 2010 P94

47



TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

ARl
@ T 3 E (Top-Down Development Model)
I B S E S 1
- ERERANAREEE -
- MR m B e R A v R e o
- IR A L B R B R R
- RIFEB AL T E TR
- RRRS R R ELE o
SR RAARAFIERIKFERRETLEF > A F L
Bl PR v ) = 2 o
- MR S FRAT FRE . B AP E e
A F e oo

<inhon@mail.tku.edu.tw> May 25, 2010 P 95

TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

Bt A ITER
-d + @ T3 E (Top-Down Development Model)

o % KLipER e JMLFJ% Mt RO K ALPIEALR
PIFED ¥ RIIER S I GRS o A SR TRFEL &
d |%q‘*'ﬁﬂ1[‘r :" VL,I’HL\/F]F?‘\< %]4 6) °
‘/PJ ér'77 R ] r‘ﬂq\,fq\k 'ﬂ{‘ 7 4R \;}'57 {'ﬁ%:ﬁ_j\ o — JF P
o0 0P| /;wmfé %y 1 B TR B oA B BLH PR ?‘f PR S
,:: ..vtul}“ ;?L\—,!—i.«é\?’i( /P" Féj— °

<inhon@mail.tku.edu.tw> May 25, 2010 P 96

48



73.£G Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o H T Rl EEER TR

CiplR & ) BlFE B R

g 2t

ElkJE%ﬁ»?ﬁi%i
ﬁs‘l &%

A ES

[]ﬁﬁmf

CiEz ) (Dd =@ Fopl
(2)d + @ Tl

o fHRRE Cieit ) ()l n 4 Aum e
Q)ipliE e Hiw
B)rlz# o) ¢ iR

& BLipER

B TP

<inhon@mail.tku.edu.tw> May 25, 2010 P97

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design
© FRHLAIERTL
S AR B AR R LR R s B Y
B AET A L TN C o T s
Ao PHE. B8 TR & LERTR
=+ ERE S S M

<inhon@mail.tku.edu.tw> May 25, 2010 P 98




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

St APTEET S THI L

7R
il .S
FAM R > ML > DR
> AR R
»
FALIARR — .é%#ﬁﬁ] — fice Rt
i E NG PR
Ao AR Ao ERE AR
Ao e AL B 22 3 2
Q"*‘*ﬁ'ﬁ‘i%‘i? AR TR
<inhon@mail.tku.edu.tw>

May 25, 2010 P 99

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o Bl AfTERT D
B SR R

CEH
g 2

TR AZR] o

FHFL -

SR EHIPOR -

LR S TR

« FRUM R o

et

<inhon@mail.tku.edu.tw> May 25, 2010 P 100




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o« B ARERP L
- FARARR
c FTALRAERE B A A s BRI e N R aE ks
e 950 i ST A R
CFRIARER G e BAASE
- #h3%f 4 (Entity)
- FA4tin(Data Flows) e
- &2 (Process) °
- TRk (Data Stores) » E A &2 47 1 &}

» DeMarco & Yourdon %

» Gane & Sarson® f# 7 3¢

<inhon@mail.tku.edu.tw> May 25, 2010 P 101

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

EAE SR
DeMarco &Your don Gane & Sarson
~ &
heng Ay
OB _— S——
e i)
TR E

<inhon@mail.tku.edu.tw> May 25, 2010 P 102




a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
B AR R L2
- AL #HIPOR :
-}éiﬁﬁﬂ(Structure Charts) £ HIPO Wl (Hierarchical
Input Process Qutput) % < i 1 & chp e g % k43 b iL

s e 4 (Structure) 2 ik ¥ i (Architecture) » @ 2
4447 B B 98 (Procedural Logic) e

. i B ﬁt’f_'/ "'E:]/ % T ”Tq/]’\ "ﬁ F it Hx i 2 - 7&3— ’ Z A
Fll e MR R PR BB R A o
cWEz RS ezt R Fd 234 0 2

d oA TR e ikl o Sl A ‘W g
& (Data Couples)# 4 (Flags # Control Flags) e
CFAMART T AS B AR BE Py e )

FIBld e 2 HEg 47 o

<inhon@mail.tku.edu.tw> May 25, 2010 P 103

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
Bt ATEX R
- B F2HIPOR

i e i E
- BHCE E M AR R T @B 4t o A
@ pDFDM T AL j o BldeF SR f £ COBOL
ot s pLpAEA ~ B EF T PN 2
E T R SR
- BMELLRS BREDP R d LR R
(e et oo ) Bl B (e e fl e ) A8
S £ L R I Bl S ol R S S )
ez b amPFn P ERRFE T o R
Bk PEE G E BB B P B R E
HEfEE -
- BimEE- Bd E- e ¥ - fes
o o »
et A FALIE o 4T N F LH- BigE
?ﬂﬁpﬁﬁ WA e o- BHET G KB S E - Bl
SR RAE TR EFL (D) - WD
AR L i B R A
X - BHEEL- BRI BROFR Hop o g R
IF:)FE?‘(?E. R ER T L o BOF M e
#® .
<inhon@mail.tku.edu.tw> May 25, 2010 P 104

52



--
73. E G Tamkang Universty software Engineering Group ZTHRMIEREZE http://www.tkse.tku.edu.tw/

System Analysis and Design
° ‘F]."ﬁ’)’_ll’ AMdrdazgta B

- AR

<inhon@mail.tku.edu.tw> May 25, 2010 P 105

--
73. E G Tamkang Universty software Engineering Group ZTHRMIEREZE http://www.tkse.tku.edu.tw/

System Analysis and Design
° ‘F]."ﬁ’)’_ll’ AMdrdazgta B

- HIPOR # b :

<inhon@mail.tku.edu.tw> May 25, 2010 P 106

53



a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
B AHTERT S

- TR Fy i
- B S i (Process Specification) ie2 A 5 (7 &%
AR B R 2 B A R H A R ey R
(Gjde (% SRR + 37 5 74 b oo 3 7P AR

2
TERF o (] de

o
Rl

- RAER
YIE
- %1 # 2 (Structured English)
- #2583 3% 7 (Program Design Language, PDL)% o

C PR E Y ERNRFE T RO RS
o

<inhon@mail.tku.edu.tw> May 25, 2010 P 107

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

e * fi(Modeling)

- B 2 A AT B RTG SRR SRS TR e
BT > A WHL G TR AR B TR A .

—ﬁﬁfﬁ’i{ﬂ*ﬁﬁﬁﬁ@Mﬂ%wm%mm
DFD)i 5 452 1 5 » b 02 f2 4 5 & sl
f#_% vfg_q;v o

- TR R £ 7 18 B % B (Entity-Relationship
Diagram. E-R Diagram % ERD)f 5 ¥ 2. 1 & » %
e 4 hR M (Entities) - B B
(Associations) % F# <% (Data Eements)# %
APBER L T

- TSI R o ERDE A FTALRE P B iE o

<inhon@mail.tku.edu.tw> May 25, 2010 P 108

54



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o AR HiC
- VPRI RF G 2 Bk
S o e B S i s VA 4|
i B ES
o et g o
SEREPAFO AR ERA K EDET  F
& -
s HLE g s 4 Ej;} — B g BN IR A 2 B ep B AR
5; o
cHCEep B4 Edn- BHECEP I RE L AP M ARA -

cHU T RTFIER o e A E

ol

<inhon@mail.tku.edu.tw> May 25, 2010 P 109

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o AR
- ) H 4 (Cohesion)
PR A - BT REPN IR 1 TEARRARR 2 P 2 o S
R edp B4 A e - BH- 0 ¥ T RGF
H2 1 iFefE R o N B4 AN T A L S
- # it B 4 (Functional Cohesion) e A 5
- g B F 4 (Sequential Cohesion) e
- A& p E 4 (Communication Cohesion) °
- #rpE o B 4 (Temporal Cohesion) °
- 425 p B 4 (Procedural Cohesion) °
- #@EpN B 4 (Logical Cohesion) e
- i p B 4 (Coincidental Cohesion) °

kN
Qi

<inhon@mail.tku.edu.tw> May 25, 2010 P 110




--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

System Analysis and Design

N CERL S SR
7o A
[ | B
-3 Es i AR - g B A
7 - FER | FREET
e " WE B 4
i fi- -ty
R
i B A e g1
Ap ki %: b e}
A g R 2
g B 7 pE A
- % &
523 ;'
s @ 2
? 8427
# M LT i

(2024 @ 48)

AR b T 7

% 5 A

<inhon@mail.tku.edu.tw>

% May 25, 2010 P 111

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

System Analysis and Design

o WM R4 2T F AL

N A Y et | Bl |
o e | | B | e | e
i s ¥ e W 5
el 47 3 s W "
A ¢x F i o %
A2l i ¢ % i g b
e ES LaES L v %
Lgliﬁ-ill TS e Ee g i
S| A i i wi | i

<inhon@mail.tku.edu.tw>

May 25, 2010 P 112

56



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o AR i

- 48 & 4 (Coupling)

e - TR e AT MR R 2

c g fEAT - e g kR oA R H W i E 514

Frengg o oIk f 5 34 F B(Ripple Effect) ©
c R R R2F T2

T8 - Bicer 2H v e

= T
HEA-d> TREBHEZE D o

<inhon@mail.tku.edu.tw>

May 25, 2010 P 113

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o JLARE i

- {8 & 4 (Coupling)¥ 4~ 5 T #f :

- FA44m & 4 (Data Coupling) °

33
« Tt t4m & 4 (Stamp Coupling) °
« y=4148 £ 4 (Control Coupling) -
« £ 48 & 4 (Common Coupling) °
« %48 & 4 (Content Coupling) e i

<inhon@mail.tku.edu.tw>

May 25, 2010 P 114




--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

System Analysis and Design

o Wfige 2 mtF RS

B¢ 4 BEEE | B s
s R | g | s |7

g | R 25

S = F @

TR | e ¢ % ¢ % I

rAal | 4 i i

£ e ¢ % oy i

MEE RS RES (RES RS
<inhon@mail.tku.edu.tw> May 25, 2010 P 115

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

System Analysis and Design

o AL i
—Ed g g PR R g -
- WL 4 G T A N LE M- A
T s A At g g 4o pRie A e B e
Gripsh s 4 S blded BREE G TR
e fei b ims 4 B o PINP R L P48
SR
oA FUERLON RS ¢ FHR P RS T
FhREA SR pNRS > A ndg g 4 e Rl
EERE ] L

<inhon@mail.tku.edu.tw> May 25, 2010 P 116




TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o FHAZEE S E SRR
—?ﬂﬁﬁ@ﬁ%ﬁ@iﬁ%iw
X = %3 (President) 2 & 5.3 (Vice Presidents) o
:2i¢@ﬁ%%ﬁ$o
R RS e o

iR

<inhon@mail.tku.edu.tw> May 25, 2010 P 117

TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

= il oA PN N
° 'E?;f—'/mﬁi]%]ﬁ‘sg’f?@? ’}’3__!5_"‘;}: e
_ﬁ}%’_ ‘::/L:f 1@%\‘1,}:3 J,Ri\‘
'&ﬁﬁ@é’&i~ﬁ§’ﬁigwmzﬁﬁnﬁoﬁ
* \%II e f\‘ ’ Eﬂff//l Rl F 2. F V ‘}',T%‘f\ fg_ ‘e D*,\_,A;rﬂlﬁﬁ

%‘1‘° Jer J2 B P@"Lﬁ crpé’:i “K"Tﬁﬁ%p-}"‘\sﬁ“*]‘uﬁb‘ P’f'
EZ j‘l_ ?\ ‘}/' Y
<inhon@mail.tku.edu.tw> May 25, 2010 P 118

59



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o TORLIE AL SR Y ek
- H B WK e

RN LR S T W SRS E

HE L PBIRAR AT > blhoR B RIFL FAGRART T L

MPF 2 FORIARR  RIRR B - PR ARSIH B H 5 R

W2 T o e %A RIT R AE TR Y - PR

==

7 F o

~

<inhon@mail.tku.edu.tw> May 25, 2010 P 119

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o TR ATMIEE S W Bt
- HIE FERFEBERG

CRFE - R GHEE  BAHSERY 25 - e
By P-H B g EmreL {24 o pla1iEe
I

- F e FTHURARR Y AT b R R AT o d A P2

[ NS SR e %

- RS i ehe 3 A fRY 4o E AT

"

o

o

|3

<inhon@mail.tku.edu.tw> May 25, 2010 P 120




a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

‘ﬁ%w T
A HCER P E SRR i o BT R R LR
Ty g o 4 ﬁ ) ;z.gif#l%l@ut I FE ek i A SRehiF L o
2 & ALE ) SR b2 § RS P .
BEFIFEHZ P g %vhw#ﬁ BT ZE RS D > @
BRI E R L R L e -

<inhon@mail.tku.edu.tw> May 25, 2010 P 121

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o % |

_gﬁpﬁ

CMF P2 FRFM AR (T EHEF L) L6
FABY TR RAZIE j REF o 2 T8 1R
CE T OMARIE ) P BT AL B RER
ol B i AR [ b
¥%?“{—?F%ﬁ#ﬁ-ﬁ%%‘%¥2?’ﬁéﬁ
ﬂﬁiﬁlf{,gﬁﬂlgaaé‘,\.iﬁo & S 4 2 ]
RN 3 LR E 9 X S LA
Exﬁ??x%ﬁjﬁ’%ﬁ@xr$;<ié
A BMESGREITE A e 55
T% o

=) i ‘i%

<inhon@mail.tku.edu.tw> May 25, 2010 P 122

61



a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o T RAAT

SRR S R P ey

@%Iﬂ_ﬁ"}%'&f’"
ST 0 BRE ST R

#g&’v@¢r&g%#’¥ﬁ

4'—}:@“7 FA ARG R P
é%"‘ MR FASZL AVE -

\ *fﬂM e
Dy
Qo
Ti\4
=
T

CEDRNT ) FE R TAAIL P A9
G\:r‘;ﬂi’i‘émﬁ%‘,ﬁwap'ﬁém°

<inhon@mail.tku.edu.tw> May 25, 2010 P 123

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o T RAAT
SRR F L R P e
8y I ITE hoT

i;}zﬁ'ﬁ‘{z JE2 2 pldre iz AR (W3H), F

FECL MR ML S SR U EPE AT Y
CEBRE

-G o AR A F T 25p o

SRR AR G AW IE A 0 A e A o

S BV B AET R AP RCE R R 0 R S
s ERICI R 2 2 MARHE, FEE SRR HERTH

<inhon@mail.tku.edu.tw> May 25, 2010 P 124

62



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design
o ‘Jﬁ?ﬂi@]%’f}ﬂ
R R A -
o RAEATH O FG UALG o RT AL
H o= iﬁlf‘#‘ii;’ A :

o
Boae B I8 0T I L

- = LS S
2R 4 7 rsowﬂ"“.'xﬁxéff%;%:**ﬁ;f%“gg%“
ABRATEAE - BREGRPIEHZ AN K
Ztkﬂx%ﬁ O SECR W -4

H3 3

:—%—i‘;ulﬁi}%‘]? %\» 7‘]1 .gr-‘r —FT: E%‘]

<inhon@mail.tku.edu.tw> May 25, 2010 P 125

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design
o ‘Jﬁ?ﬂi@]%’f}ﬂ

<inhon@mail.tku.edu.tw> May 25, 2010 P 126




a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design
'&ﬂﬁﬁ%ﬂ
- e PR AR ) 23 H R S b
(&t TH) »EFRLKRIES237H7 & )
EN- LD S5 ST
T H AL AR LA 6 L i
AL 2 AR SRR Y i f A2
HER AT T 4

e

-

FTI
Tl
4
=
€
1\%‘
=¥

<inhon@mail.tku.edu.tw> May 25, 2010 P 127

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design
o Ly it g5 b

e T H A
HTARS &P LEBNEFE S E L TRE TR
LR
D EBTKAET I LASEG > FAEET
T PEFE N R FASLE

LRy Sy T
%R TH %P
e |Epp L EniSdAg R LA

<inhon@mail.tku.edu.tw> May 25, 2010 P 128




--
73. E 6 Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

System Analysis and Design

.

o« ER O

P F e P H AL b (AR AE
) BmH2Z FRIV M2 P
Hoopie- HHTE 2 E - i
FA T RS BlAcE P B S A B oak
VA IRAEIL0E AT 4

o

UU‘E-P)E

<inhon@mail.tku.edu.tw> May 25, 2010 P 129

--
73. E 6 Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

System Analysis and Design
o TRl

LSRG EIRAE
= —
FEEI A
Hight - | B Rz D
BEE | © HEF:| E
B E‘}ﬁ]h?’}%’ e BEM | R4 | R~ | 88 | By FEiE S5
Pf G H I T K L M N
10000006 |A-zsfafanil # | 25ke s 3 1@ | 417.60] 1,252.80
10000005  |#ReT T | 25kg T 1 % | zo000 20000
10000006 |Fozefifand £ | 25ke E 1 1@ | zoo0.00 200.00
10000002  |ZEh ## | S0kg 2 1 5 | £00000[  &.00000
10000003 |AEas H | Sokg | M z 1@ | eoo0.00f 1,200.00
10000004 |#i= #T | 100kg| ™M 1 #% | 20000 20000
EEEE FE4eSE 1 9,052 o)
& ! IR ET I EE R EE S Y
<inhon@mail.tku.edu.tw> May 25, 2010 P 130

65



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

o« FAPE PO
~ e st - EEBRET - FTFHEPER T EBH
P2 A - AT RY BT - bRkt 0 5
B F a2 v HERLN (Weh | AEE
B) > 2HFmabz FHwREE (57 42
EHA) o Rgd kR B H PRI TR
¥ I

<inhon@mail.tku.edu.tw> May 25, 2010 P 131

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design
o TR b

o oy | B RS ENT S .
w| FE e |y (s P # ol
Al% " 24 | 20C il
B ¥ u 40C B LRI K705
[oll I 10C 07-5252000
Eop TP ook B

E v
D k 8N YYMMDD99 98090101
ElEfprd 8D YYYY#MM® DDFP [1999#9" IF
NEEETE R 99999999 10000003
G|&® 10C G &
H|#4 sC 2
1| ® 14C 50K g
[l 4C M
K|#%E 10N 2
L% 4C i
M[¥E§ 10N 99,999,999.99 600.00

wE ox H o

& 1,200

N =¥ 10N 9,999,999,999
TN

i st

o 10N 999,999,999 9,052

<inhon@mail.tku.edu.tw>

May 25, 2010

P 132

66



a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

System Analysis and Design

o & EinARA B
—RAT FRAFTZE BT R ES TS
EEEETELE O UAITERE R Sk

A

{

= ?#”/iﬁi@élf‘ P TR PR
T NP L f AR R BT

<inhon@mail.tku.edu.tw> May 25, 2010 P 133

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

System Analysis and Design

o [ EinATE
- A A TR R A
CEA G AL B E
- P Ak A
- e
- B A FE
-HAE

[ B
Fg 1

-
"

‘r
,r

<inhon@mail.tku.edu.tw> May 25, 2010 P 134




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o f ENARE
_"'55}?: w b RS rE 2 TN AR
CARBEL RS I 2 R T 2 LA &

THEHGGFE.0) ~2AFR (2.0) ~ HHEFRE

(3.0) - AP Fme (4.0) FL4F2(5.0)

SR R M R FRE AT E LS - R
N

e

i

FE= ¥ il
Bolzdggad L game s > Biiye™ T 4

g =2

<inhon@mail.tku.edu.tw> May 25, 2010 P 135

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o [ E AR AL

- BT A H b

2.0

3.0

4.0

5.0

<inhon@mail.tku.edu.tw> May 25, 2010 P 136




--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

System Analysis and Design

N

o EFIALHE
B L T

¥ |G E |49 [s4x58 |axE |z Al &5 G o
el P e e e e P R L
THEAE | g v ! y %
R ! i1 ! 1 ! 1 i1
ERL)-% ] i i1 | s ! i1
Ak e ! I I 4 ! 1 i1
R RIT ! X ! | i1
LA FHEMA (M) IR Ad A TR ()
VA& r s T (R 4) e 2.
<inhon@mail.tku.edu.tw> May 25, 2010 P 137

--
73. E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/

D8 [ itk ]

System Analysis and Desi
e % - F¢DFD# il S A

o D2 [ 117k

D7 [ (T

<inhon@mail.tku.edu.tw> May 25, 2010 P 138




73.£G Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
° }i Jo g8 = A L 2. frbﬁrvmj

s e [ e | e ore e | o [ 8 [220
TR T I
IR NN

e R N V[
A IR ] R
FiE A Vo [ V[

Ee
PRI Uy [RRTTT) [Fuey prpwey pawpy R gl
bl ?;f e | o 1;1» m% T ;1 [
R

<inhon@mail.tku.edu.tw> May 25, 2010 P 139

73.£G Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
° F# DFD 4 b

<inhon@mail.tku.edu.tw> May 25, 2010 P 140




73.£G Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o % Z I#DFD# &

}‘; =
DIl |% = & & F# \ D5 g 3o
- —> 1.0 < e
D2+ T —] »| D6 32 74
. g 5 s i) - e L
D3spugpp T HEFE | D7 | i 58 7o
— A \ o=
D4 |49 8 F 42 D8 | 5.5 L
/
W oz >
= 1% 30
<inhon@mail.tku.edu.tw> May 25, 2010 P 141
TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
e % % F4DFD ‘.;.J}_-m
[DiT& a5 v _
.)7 o]
,me»ﬂ 1.0
m,ww »H 'r‘m T
/ R
Exa — /
ID15| ] e vE]
P .\H\ : \_I_N_
ID1I|F 7 iErE]
v /
|W PRI D17|igk f YRl
D8 [ v [D18| 45 Rt VRl
[[eron : R
\ D14 i 2 vl
D15 f] FTERR]
D16|i=Lfs 1]
<inhon@mail.tku.edu.tw> May 25, 2010 P 142

71



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o & EinARA N
SHFZ T A fRE 2R AR
c T AMEZ R T RPN RS AAENEL 5 E (Gl B AT
#2007 ) K|z o
PHHEFREE B AL b AL -

22 Bdm o KERSER KF 0 B P RITE - B3 H Ap
VA ,ﬁ;- » T {: ""%é}i i PB4 TR &g A }u s je
Fiahdle B oe JERTH - et s Bl TRl 212

BOE 0 PaEiRME AL R R Te T AT B R o

<inhon@mail.tku.edu.tw> May 25, 2010 P 143

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o f EINARY H
SHFZ T A RS 2R AR

s MERHERILL B B 5 ZfF DFD A 4id4eT

&

=k
=
T

=y m )
=

Sk
=
3

<inhon@mail.tku.edu.tw> May 25, 2010 P 144




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o % - F#DFD# 6|(i% b A&J2)

\
N
N

o
J
E Sl \v;

Sl 6

£

<inhon@mail.tku.edu.tw>

May 25, 2010 P 145

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

CLIAS SRS E RN LW BN SPIE Al
c FEBAFIZ B FFAJEA T 0 BAANBERE T LiE L
> Seon T4 S B R R R AT R - < T T g ik
2L RS w2 & FeJB o

o JLRTHIE @Tﬁf EST BN

VAN F RN N 5 R - S
DFD ~ 47407

- A2

- FHREE

-

- FORR

<inhon@mail.tku.edu.tw>

May 25, 2010 P 146




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

o § = FFDFD# GI(F73 % [ ¥)

%55

<inhon@mail.tku.edu.tw> May 25, 2010 P 147

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o oIy i B
- UE A AL b

Procedure 1.2.1.4 3% { & 37 A2

Begin

Begin

A E L H A P e
End;
End;

<inhon@mail.tku.edu.tw> May 25, 2010 P 148

74



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o o ST A Fy i AR S HE O

- M Delphiz 3 5 b

- PDL# 5 423\ c9:1f2

Procedure 1.2.1.4i% f & 37 A2
Begin
(135 w3 2 97
ComputeSummary;
{738 o &9
ComputeTotal;
O& L&,
SetTaxMoney;
(8.3 B fis £37)
ComputeMoney;
End;

<inhon@mail.tku.edu.tw> May 25, 2010 P 149

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design
o o ST Fy i AR H B

(PRI P s it & 3 aex PDLT R
Procedure ComputeSummary; {3 & & [/ o 4c 34 & 37y
Begin
HBEE P EDE P FRR -8
DataMdIDeli.TblDeliProdSearch.First;
W G HDE P B AR S
DataMdlDeli.TblDeliver.FieldByName('Summary').AsFloat * =0;
FEFIEAE PP o HERLEKE - L@FEgnT & ir
While Not DataMdlIDeli.TblDeliProdSearch.Eof Do
Begin
EREAE P A AT P (KB x B FREFHPE [P o AT
DataMdIDeli.TblDeliver.FieldByName('Summary').AsFloat * =
DataMdlD(:li.TleclivcrAFicldByNamc:('Summary'),AsFloat+
Round_(DataMdIDeli.TbiDeliProdSearch.FieldByName('Price').AsFloatX
DataMdIDeli.TbIDeliProdSearchNum.Value);
HBBEPEDEP o FHRIT - s
DataMdIDeli.TblDeliProdSearch.Next;
End;

End;

<inhon@mail.tku.edu.tw> May 25, 2010 P 150




a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design
o iAW

&l d
& .3
ip ip
y y
Jie Fe | | e e Jie e
LA B [z = L =
2 s || e n 2 2
8 8 G S (8 S
1.0 2.0 4.0 5.0
& 4 e &
8 i o £
# # 7 47
pL A pL A B £
<inhon@mail.tku.edu.tw> IF_‘;’_ May 2;_2010 P 151

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design
o XFY kLB HRE (M 8 EIT)

1.0
PR

-4—0
(V8]
-4—O0
i
-4—oO0
(9]

ook

Be | | pe | | e || & m] | )k Fe | | P
=z L L L L El L El L L
23 “* x * x i * i x x
7 G 7 G 7 ~F 7 v 7 G
8 * ;8 * ;8 * A * ;8 *

1.1 1.2 1.3 1.4 1.5

¥ 3 i # i

Jee Jae Jee Jae Jae

72 LB L i LB LB

<inhon@mail.tku.edu.w=> Mpy 25, 20[LO P 1b2

76



a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design

o LER j RSB OICE | AS

¥ R i
1.2

| S MR

A7 i #1 k] 7
# e 3 &
= = = ES £
= x = = =
1.2.1 1.2.2 1.2.3 1.2.4 1.2.5
A7 i #l ¥ i
H # 5 £
E # i k i
j p I L
. . ﬁ ] 7|
<inhon@mail.tku.edu.tw> 4 ay & P 153

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

System Analysis and Design
o LER \ABHBPHGHE T E)

1.2.1
— AR P E

-4+—O0
-4—O0
[\
-4—O0
w
-4+—O0
N
-4—O0
w
-4+—O0
(=2}

Al a] |l Al|]% Al Al e Al |]e
= 2z 2 z 2 2 2 2z 2 2 2 =
n e L L L L o o L o L
' N 4 \d 'd g =7 g 'd g ~E i
S L 8 L 8 * LS % L & 5
1.2.1.1 1.2.1.2 1.2.1.3] 1.2.1.4 1.2.1.5 1.2.1.6

i i } P 3

H Fro H & H H

S 2 % i 7 i

* & e i #

7 Bl bl s i

il o 4 =)

o e t e

<inhon@mail.tkuledg.twf> = May 2%, 2010 » P|154




a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

System Analysis and Design

e Summary

- 7 R AT e 5 ASADEA R~ o Bt R R4 4T
2 F i EF R 0 $SARDZ & PG MAEE R .
- HBH 2 SADA 3 AR R AR KL A
o B EPE L R AR R T R
festfe e i AR R > SR 2 B R acE
,H_"ﬁ 1% ﬁviﬁf]’gé °

<inhon@mail.tku.edu.tw> May 25, 2010 P 155

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Agenda

1. Introduction

2. Recall Software Engineering

3. System Analysis and Design

4. Object-Oriented Concepts

5. UML

6. Workflow of Requirement Analysis

7. Workflow of Object-Oriented System Analysis and Design

<inhon@mail.tku.edu.tw> May 25, 2010 P 156

78



a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e The Vocabulary of Object Technology
— Objects, Classes, and Instances
— Message Passing and Associations
— Generalization Relationship
— Object Visibilities and Interfaces

— Basic Principles of Object Orientation

<inhon@mail.tku.edu.tw> May 25, 2010 P 157

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Objects, Classes, and Instances

— An Object is an abstraction of a set of real
world things [Shlaer et al. 1992].

» “An object has state (attributes), exhibits some well-
defined behavior (operations), and has a unique
identity.” [Booch 1994], that is, an object can be
characterized as: Object = Identity + State +

Behavior.

<inhon@mail.tku.edu.tw> May 25, 2010 P 158

79



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Objects, Classes, and Instances

— An Instance is an object created from a class. It has
state, behavior, and identity like an object.
* The terms instance and object are interchangeable; they are
Synonymous.
— Instantiation is the process whereby an object (instance)
is created by a class.

<inhon@mail.tku.edu.tw> May 25, 2010 P 159

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Objects, Classes, and Instances

— The Concept of Class.
* Abstract data type

— Specifying the operational interface of its object instance
* Object generator

— Template for creating objects
» Repository

— For sharing resources, e.g., class-scope attribute and operation
(underlined)

* Object

— Instance of a metaclass

<inhon@mail.tku.edu.tw> May 25, 2010 P 160




a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object-Oriented Concepts

e Objects, Classes, and Instances
— A Metaclass is a class whose instances are themselves
classes, that is, a class that can be instantiated to other

classes. The following figure shows a meta architecture.

<inhon@mail.tku.edu.tw>

MetaClass

==instance0r-=

May 25, 2010

P 161

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object-Oriented Concepts

e Objects, Classes, and Instances

— A Class “is a set of objects that share a common

structure and a common behavior.” [Booch 1994].

— Abstract Classes cannot be instantiated directly.

» The main purpose of an abstract class is to define a common

interface for its subclasses.

— Concrete Classes are not abstract and can have

instances.

AbstractClass

aperation)

]

<inhon@mail.tku.edu.tw>

ConcreteClass

operation)

Superclass

Subclass May 25, 2010

P 162

81



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Message Passing and Associations

— Message Passing.

* A Message is a communication element objects that triggers

activity in the target objects.

/\ Message

display
Ohject 1 Ohject 2
Source object Target object
<inhon@mail.tku.edu.tw> May 25, 2010 P 163

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Message Passing and Associations

— An Association is a structural relationship that describes
a set of links between classes (their objects).

» An association between classes usually means that the objects of two classes
can send messages to another.
* An association can have a name that describes the nature (semantic) of the

relationship.

— A Composite Object is an object contain other objects.

* A message is sent to one object that acts the coordinator for several objects.

— Aggregation: whole-part relationships

<inhon@mail.tku.edu.tw> May 25, 2010 P 164




- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Object-Oriented Concepts

e Generalization Relationship

— Class Hierarchies are created so that more concrete

classes inherit attributes and operations from more

abstract class AbstractClass
-attribute-A

+operation-Af)

) - - [..] inherits from
Inheritance " o superclass
graphic notation
in LML -

-
ConcreteClass | _ ~
-affribute-8
[attribute-A]
[operation-A]
+operation-B()
<inhon@mail.tku.edu.tw> May 25, 2010 P 165

- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Object-Oriented Concepts

¢ Generalization-Specialization (Gen-Spec)

— Generalization is a relationship between a general thing,
called superclass, and a more specific kind of that thing,
called subclass.

* Generalization is sometimes called “is-a” or “is-a-kind-of”

relationship.

<inhon@mail.tku.edu.tw> May 25, 2010 P 166




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

¢ Generalization-Specialization (Gen-Spec)

Aircraft

registrationMumber
longitude

|atitude Discriminator
speed

Wriny Z> {disjoint, cump]éie}
classification

MilitaryAirerft | |

A {incumrplete}

Civil Aircraft

bl
Passengerhircraft ‘ ‘ Cargohircraft ‘ FighterPlan ‘ Helicopter
<inhon@mail.tku.edu.tw> May 25, 2010 P 167

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object Visibilities and Interfaces

— Visibility is how a name can be seen and used by others.
* Visibility = Private + Protected + Public
— Private: Only the class itself can use the features for the class.
— Protected: Any descendant of the class can use the features.
— Public: Any other class can use the features of the given class
within the system.
* An attribute of an operation can be specified their visibility as
private, protected or public according to the developer’s
decision .

<inhon@mail.tku.edu.tw> May 25, 2010 P 168

84



a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object-Oriented Concepts

e Object Visibilities and Interfaces

— An Interface is a special type of class — an abstract
class — that only provides a specification (not an
implementation) for its members (abstract members).

* A system can have many different interface classes
« Example: Suppose a company offers some many services to its

clients. How can the client get service he/she needs from the

company?

<inhon@mail.tku.edu.tw> May 25, 2010 P 169

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object-Oriented Concepts

e Object Visibilities and Interfaces

Interface notation Abstract
in UML class

. CompanyServiceHandler
}_ﬁ\ - +SUCESSOr
o

nterface handleRequest{)

Client $

ConcreteServiceHandler 1 ConcreteServiceHandler n

handleRequest() handleRequest()

<inhon@mail.tku.edu.tw> May 25, 2010 P 170




-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

¢ Basic Principles of Object Orientation

— Object Orientation

 Object orientation involves the elements of abstraction,
encapsulation, inheritance, polymorphism, classification, and
identity. If any of these elements is missing, we have something
less than an object orientation. In this section, we briefly
explain the concepts of these elements which will be explained
more in detail in the chapters of “The Unified Modeling

Language” and “Object-Oriented Development Process”.

<inhon@mail.tku.edu.tw> May 25, 2010 P 171

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

¢ Basic Principles of Object Orientation

— Abstraction

« Abstraction is “the suppression of irrelevant detail”™

— Modeling is the development of abstractions, thus, a model (say
UML model) may describe a system that has not yet been
implemented.

+ Example: The Template Method pattern forms the basis of all
patterns dealing with abstract classes.

AbstractClass
te 10d()
primitiveCperation) templateMethod defines the
concreteOperation)) |~ "~--|skeleton of an algorithm. It
A invokes other methods, some of

which are operations which can
overriden in a subclass, These
_|operations are called a hook

ConcreteClass | miethod.

<inhon@mail.tku.edu.tw= May 25, 2010 P 172




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

¢ Basic Principles of Object Orientation

— Encapsulation

» Encapsulation is a mechanism that is used to hide the data,
internal structure, and implementation details of an object. All
interactions between objects is through public interface of
operations.

— In general, encapsulation means “any kind of hiding”.
* The advantage
— Example: The separation of specification and implementation of

an object. The implementation is hidden from client.

<inhon@mail.tku.edu.tw> May 25, 2010 P 173

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

¢ Basic Principles of Object Orientation

— Encapsulation

<<usage>>
OhjectSpecification

I

<<realization=>

~
L

Client

Objectimplementation

<inhon@mail.tku.edu.tw> May 25, 2010 P 174




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

¢ Basic Principles of Object Orientation

— Inheritance

* Inheritance is a software mechanism to implement subtype
conformance to supertype definitions.
» Gen-Spec vs. Inheritance.
— Gen-Spec relationship
» is-a or is-a-kind-of relationship
— Inheritance

» is a programming language concept for the implementation of a
relation between a superclass and a subclass.

» usually implements gen-spec relationships.

<inhon@mail.tku.edu.tw> May 25, 2010 P 175

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

¢ Basic Principles of Object Orientation
— Polymorphism

* The common ways to applying polymorphism.
— “Do It Myself” [Coad 1997]

» “I (a software object) to those things that are normally done to the
actual object that I’'m an abstraction of.”

» Example: Payment

Payment
Each payment type
Class uses E
- ————— >-amount should authorize itself.
— rauthorize() This is the spiritof"Do It
7 Ntyself’
CashPayment CreditPayment CheckPayment

<inhon@mail.tkt +authorize() +authorize() +authorize() 2010 P 176




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Basic Principles of Object Orientation
— Classification

» “Classification is the act or result of applying a concept (i.e.
type) to an object” [Martin et al. 1998].

— When an object is classified, it becomes an instance of a specific
type.

» For example, when the object Peter is employed, he is then
classified as an Employee.

* Classification is a relationship between types (or class) and
objects.

— Classification can occur in hierarchies, generalizations,
aggregations.

<inhon@mail.tku.edu.tw>

May 25, 2010 P 177

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

¢ Basic Principles of Object Orientation
— Classification

Type

+classifier

+instance Object
1 ;

E

"

Classification

relationship I\j

<inhon@mail.tku.edu.tw>

May 25, 2010 P 178

89



o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

¢ Basic Principles of Object Orientation

— Identity
* “ldentity is that property of an object which distinguishes it
from all other objects.”

— An object has a unique identity.

<inhon@mail.tku.edu.tw> May 25, 2010 P 179

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Lifecycle Model

— Problems arose when large information systems were
developed using the traditional paradigm, especially
when the resulting information systems were maintained.

* By the mid-1980s, it had become clear that a better

paradigm was needed.

— The object-oriented paradigm proved to be the solution.

* Over the next 10 years, more than 50 different object-oriented

methodologies were published.

<inhon@mail.tku.edu.tw> May 25, 2010 P 180




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Lifecycle Model
— Three of the most successful methodologies were
» Booch’s Method
 Jacobson’s Objectory
* Rumbaugh’s OMT

<inhon@mail.tku.edu.tw> May 25, 2010 P 181

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Lifecycle Model

— The Software Development Process Framework —
Unified Process (UP) [Jacobson et al. 1999].
» The UP is designed to be a process framework from which
customized processes could be derived.
» The UP is an outgrowth of methodologies developed by

Jacobson’s “Objectory Methodology”, “Booch Methodology™,
and Rumbaugh et al.’s “Object Modeling Technique” (OMT).

<inhon@mail.tku.edu.tw> May 25, 2010 P 182




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Lifecycle Model

— The Software Development Process Framework —
Unified Process (UP) [Jacobson et al. 1999].

» The UP is an iterative and incremental process with the
strategy for developing a software product in small manageable
steps:

— Plan a little.
— Specify, design, and implement a little.

— Integrate, test, and run each iteration a little.

<inhon@mail.tku.edu.tw> May 25, 2010 P 183

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Lifecycle Model

— The UP is structured along two dimensions:
» Time : divides the lifecycle into four phases and iterations
 Disciplines (or process components): produce a specific set of

artifacts with well-defined activities.

<inhon@mail.tku.edu.tw> May 25, 2010 P 184




-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Lifecycle Model

— Time dimension:
* Inception Phase: specifies the project vision (the project scope);
» Elaboration Phase: finalizes what’s wanted and needed;
» Construction Phase: builds the product;

 Transition Phase: supplies the product to the user community.

<inhon@mail.tku.edu.tw> May 25, 2010 P 185

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Lifecycle Model

— Disciplines dimension:
» Business Modeling: reengineers the business process;

* Requirements: captures a narration of what the system should
do;

* Analysis and Design: describe how the system will be realized
in the implementation phase;

* Implementation: produces code that will result in an executable
system,

<inhon@mail.tku.edu.tw> May 25, 2010 P 186




a=
TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Lifecycle Model

— Disciplines dimension:
 Test: verifies the entire system,;
* Project management: provides
— a framework for managing software-intensive projects;
— practical guidelines for planning, staffing, executing, and
monitoring project;

— a framework for managing risk.

<inhon@mail.tku.edu.tw> May 25, 2010 P 187

a=
TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Lifecycle Model

— UP dimensions:

Phases (Time)

Process
Components Inception Elaboration Construction Transition
(Disciplines) Prelim. Iterations! Iter.1.....Iter.n | Iter.n+1.. Iter.am|Iterm+1.. Iterk

Business Modeling

EKequirements

Analysis

Design

Implementation

Test

Deployment
! P 188

)

Froject Mgt.




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Lifecycle Model

— The primary model set of the UP (views of the
application) [Jacobson et al. 1999].

Stakeholder -
- “~

7 A\ 5
- | R
- / ) A\ ~ =
- g N\ ~ gy
- s ! ~ -~
- » Y ~ B
il s j' b ® ™
- ¥ ~
— S N e — — N
Use Case Model| |Analysis Model| |Design Model |Deployment Model| | Implementation Test Model|
Model
™ ~ L) T L
_ _specified by | I | | |
77777 realizedy | | | !
distributed by ; ! :
___________________ |
fosinr e s o e e HEFJ‘TEJTEEDY 77777777777 N 1
e s e SYBWIEORE I P 189

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process

— Analysis
* The purpose of analysis is to analyze the requirements in the
form of an analysis model in order to
— achieve a more precise understanding of the requirements,
— achieve a description of the requirements that is easy to maintain.
» Object-oriented analysis is an activity that emphasizes finding

and describing the objects, or concepts, in the problem domain.

<inhon@mail.tku.edu.tw> May 25, 2010 P 190

95



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process
— Commonality Analysis.

* “Commonality analysis is the search for common elements that
helps us understand how family members are the same”

— ‘Family member’ means elements related to each other by the
situation in which they appear or the function they perform.

— Example: If people play music with a piano, an a violin, you
might say they all have in common is these are “music
instruments.” The process you perform to identify the piano and
violin in a common manner is commonality analysis.

» “Commonality analysis seeks structure that is unlikely to
change over time.”

<inhon@mail.tku.edu.tw> May 25, 2010 P 191

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process
— Variability Analysis

* Variability Analysis reveals how family members vary.
— Example: piano and violin are the variation.
— “Variability analysis captures structure that likely to change.”
* The common concepts found by commonality analysis will be
represented by abstract class. The variation found by variability

analysis will be implemented by the concrete classes.

<inhon@mail.tku.edu.tw> May 25, 2010 P 192




-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process

— Commonality Analysis and Variability Analysis

Commonality
Analysis

Variability
Analysis

AbstractClass

+operations()

ConcreteClass

ConcreteClass

+operations()

+operations()

<inhon@mail.tku.edu.tw>

May 25, 2010

P 193

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process

— We may use commonality and variability analysis as a

tool in creating objects during finding objects in OO

analysis and design process.

» “Traditionally”, an OO designer begins by looking in the
problem domain by identifying nouns and verbs relating to
those nouns to be the candidates of objects. [Abbot 1983]

<inhon@mail.tku.edu.tw>

May 25, 2010

P 194

97



a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object-Oriented Concepts

e Object-Oriented Development Process

— An Analysis Model is a visual representation of
conceptual classes or real-world objects in a domain of
interest [Fowler 1997].

— In the analysis model, there are three different types of
classes describing the system: @

° Boundal’y classes BoundaryClass

+ Entity classes } ‘ o ‘-Enﬂlmc\ass

1 1

* Control classes.
ControlClass
5y -entityClass G -entityClass

@ O

EntityClass KeyAbstraction

<inhon@mail.tku.edu.tw> P 195

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object-Oriented Concepts

e Object-Oriented Development Process

— The interaction among boundary, control, and entity

classes.
F4 S : BoundaryClass : ControlClass| : EntityClass _: KeyAbstraction
: Actor

1: operation{ )

2: operation{)

3: operation()

4: aperation( )

]

where key abstraction is a class or 6bject that forms part of the Vocébulary of

the problem domain.

<inhon@mail.tku.edu.tw> May 25, 2010 P 196




-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process

— A Boundary Class represents the system interface with
the actor.

» The boundary class collects the information from the actor and
translates it into a form that can be used by the entity classes
and control classes. It represents the boundary between actor
and the system.

» Boundary classes are often represent abstractions of screens (or
windows) that are used to represent complete user interface

instances with which the actors work.

<inhon@mail.tku.edu.tw> May 25, 2010 P 197

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process

— An Entity Class is used to model the information that
the system will handle over a longer time and often
persistent.

* The entity class is identified from the use cases (scenarios), that

is, entity classes are the participants to realize the use cases.

<inhon@mail.tku.edu.tw> May 25, 2010 P 198




- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Object-Oriented Concepts

e Object-Oriented Development Process

— A Control Class is responsible for coordinating
boundary and entity classes. It collects information from
boundary classes and dispatches it to entity classes.

» Types of functionality placed in the control classes: transaction
related behavior, control sequences to use case(s), to separate
entity class from the boundary classes.

— Functionality of a use case

= U {{Boundary Classes}, {Entity Classes}, {Control Classes} }

<inhon@mail.tku.edu.tw> May 25, 2010 P 199

- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Object-Oriented Concepts

e Object-Oriented Development Process
— The decoupling of the boundary, control, and entity
classes represents the separation of three aspects of the
system (MVC pattern). This makes the system more
tolerant to change and maintain.

Software Component

<<houndary > z<control =
BoundaryObject ControlObject

Actor
“<entity == <<entity ==
EntityObject-1 | ... EntityObject-n
<inhon@mail.tku.edu.tw> May 25, 2010 P 200

100



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process
— Design

+ Design is a process that uses the products of analysis to produce
a blueprint (design model) for implementing a system. It is a
logical description of how a system will work.

» Object-oriented design is an activity that emphasizes on
defining software objects and how they collaborate to fulfill the
requirements [Larman 2002].

<inhon@mail.tku.edu.tw> May 25, 2010 P 201

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process
— Design
* Analysis and Design are summarized:
— Analysis: do the right thing
— Design: do the thing right

Use Case Model Analysis Model Design Maodel
<=fraces== = 7 7 T T~ <oracesss -~ L~
< Collaboration B 4 Collaboration 3
Use Case - — — — = —- )
"
M - P - -
<inhon@mail.tku.edu.tw> May 25, 2010 P 202

101



- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Object-Oriented Concepts

e Object-Oriented Development Process

— Design starts with the determination of the software
architecture, which defines the general structure of the

application.

— Architecture is a description of the organization,
motivation, and structure of a system
 Architectural patterns relate to the large-scale and coarse-

grained design.

<inhon@mail.tku.edu.tw> May 25, 2010 P 203

- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

Object-Oriented Concepts

e Object-Oriented Development Process

— Design starts with the determination of the software
architecture, which defines the general structure of the

application.

— Architecture is a description of the organization,
motivation, and structure of a system
 Architectural patterns relate to the large-scale and coarse-

grained design.

<inhon@mail.tku.edu.tw> May 25, 2010 P 204

102



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process
— Architectural Pattern - Layers
The Layers patterns, which structures a system into major layers.
[Buschman et at. 1995]

 Organize the large-scale logical structure of a system in to discrete
layers; each layer is at a particular level of abstraction.

* Collaboration and coupling is from higher to lower layers; lower-to-
higher layer coupling is avoided. A CRC card shows this mechanism.

Class: Layer N Collaborator
e Layer N-1

Responsibilities

e Provides services
for Layer N+1.

e Delegates subtasks to

<inhon@mail.tku.edu.tw> Layer N-1. ay 25,2010 P 205

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process
— Architectural Pattern - Layers
* Three-Tier Architecture — a common layers (logical architecture)
in information system
— Presentation (client tier): windows, report, etc.

— Application logic (Internet server tier): business objects and
operations or business rules

— Storage (database and legacy application tier)

<inhon@mail.tku.edu.tw> May 25, 2010 P 206

103



a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object-Oriented Concepts

e Object-Oriented Development Process

— Architectural Pattern - Layers

e Three-Tier Architecture

<<client tier>> <<server tier>>
User Interface |...........={ Business
Objects

1

<<db andlegacy application tier>>
Datahase

Application Server

Distributed network |—{ Database Server ‘

Legacy Application

<inhon@mail.tku.edu.tw>

May 25, 2010 P 207

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Object-Oriented Concepts

e Object-Oriented Development Process

— Implementation

» Components tracing to a design classes

Design Mode

1

==iraces= <<file=>
Customer p------------—-== Customer.java
e frare s <<filex=
Order PRt e T b s Order.java

Implementation Model

<inhon@mail.tku.edu.tw>

May 25, 2010 P 208

104



o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process

— Implementation
» Components provide the same interfaces as the classes they
implement.
Design Model Implementation Model
otrace== w<filez>
O— Customer p---------—------—- Custormnerjava |———
ICustormer ICustomer
Z=irace== z<filez>
( — Order b = o B — e Order.java 4@
[Order I0wder
<inhon@mail.tku.edu.tw> May 25, 2010 P 209

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process
— Test

* Bottom-up testing.
— Sending message to a class and asking it for what you expect it to
do.
— Example: You send message to the customer class and ask it for
the credit limit.
— If the class is a subclass, you are only testing a portion of the
hierarchy.
* Top-down testing.
— Top-down testing starts with use cases

» Incrementally test through all of the scenarios that are derived from
the use case descriptions

<inhon@mail.tku.edu.tw> May 25, 2010 P 210

105



o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process
— Deployment

* Deployment & Component Diagram for an Order Processing
System

AccountingSystem

Internet Server
Customer Notebook CustomerHandler
% Client Module (applet) Internet
Dt Corporate Metworld InventorySystem

<inhon@mail.tku.edu.tw> May 25, 2010 P 211

Corporate Networlc

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process
— Deployment

* Deployment & Component Diagram for an Order Processing
System

AccountingSystem

Internet Server
Customer Notebook CustomerHandler
% Client Module (applet) Internet
Dt Corporate Metworld InventorySystem

<inhon@mail.tku.edu.tw> May 25, 2010 P 212

Corporate Networlc

106



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Object-Oriented Development Process

— Agile Methods on Object-Oriented Software
Development

+ Agile methods aim at improving human communication and
testing in software development.

* By human communication, written documentation (a means of
indirect communication) is minimized, software quality is thus
improved and development time shortened. By testing, errors in

human thinking are caught early. This assures software quality.

<inhon@mail.tku.edu.tw> May 25, 2010 P 213

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

o Agile Methods on Object-Oriented Software
Development

— User Story, Small Release, and Acceptance Test Cases

® A user story is a system function description consisting of
Chinese sentences with English terms. (In this material,

however, only English is used)
® Be very concise - only half page per story.
® This is just a reminder of requirement to help human

communication between customer and developer. It is not a
requirement document.

<inhon@mail.tku.edu.tw> May 25, 2010 P 214

107



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Agile Methods on Object-Oriented Software
Development
— User Story, Small Release, and Acceptance Test Cases

» For each user story (system function), write acceptance test
cases (called system tests) for the function. For example:
* Two test cases for the function of “borrow books™:
— Test case 1:
» input: borrower: Jen-Yen CHEN , book name: ABC
» output: borrowed
— Test case 2:
» input: borrower: Jen-Yen CHEN , book name: XYZ

» output: not borrowed

<inhon@mail.tku.edu.tw> May 25, 2010 P 215

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Agile Methods on Object-Oriented Software
Development

— User Story, Small Release, and Acceptance Test Cases
* In practice, we need customer physically be with development team,
so that human communication can take place.
* The team can communicate with customer at any time.
* This eliminates requirement document.
* The customer should do:
— User story, acceptance test cases,
— acceptance testing, etc.

* Most importantly, he or she must decide, based on market
considerations, which user stories are to be developed in this
iteration — called a small release.

<inhon@mail.tku.edu.tw> May 25, 2010 P 216

108



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Agile Methods on Object-Oriented Software

Development
— OO Thinking with CRC Session

 After deciding on the small release, a CRC (class, responsibility,
collaborator) session is conducted in a brainstorming way to
determine classes of the system. That is, to design the system

jointly and iteratively.

+ In this session, an object is played (simulated) by a developer.
And all the developers together trace the acceptance test cases
to identify all the objects, their responsibilities (public methods),
and their collaborators (objects they called).

<inhon@mail.tku.edu.tw> May 25, 2010 P 217

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

o Agile Methods on Object-Oriented Software

Development

— OO Thinking with CRC Session
* Six people, at most, sit around table in a CRC session.
* Allocate one object for someone to play (and use one card to

take down the object).
» Simulate interaction of the objects.
* At any time take down:
— (1) messages from objects and their parameters, and

— (2) message receivers.

<inhon@mail.tku.edu.tw> May 25, 2010 P 218

109



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Agile Methods on Object-Oriented Software

Development
— OO Thinking with CRC Session

» Simulate all user stories and acceptance test cases, and adjust
records of the objects all the times.
* The final CRC cards represent architecture (design) of the

system.

<inhon@mail.tku.edu.tw> May 25, 2010 P 219

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Agile Methods on Object-Oriented Software

Development

— Pre-conditions and Post-conditions

* When developing software, programming pairs (in this method,
developers work in pairs for highest possible human
communication) communicate with each other looking for
preconditions, post-conditions, and invariants of the public
method.

* You can write pre- and post-conditions in natural language, and
verify them by human.

* You also can use formal method to write pre and post-
conditions. Here, you can use tool to verify them.

<inhon@mail.tku.edu.tw> May 25, 2010 P 220

110



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Agile Methods on Object-Oriented Software

Development
— Creating Unit Test Cases

» Based on the preconditions and post-conditions, try to figure
out unit test cases. (i.e. inputs and expected outputs for the unit)

* It is recommended to write test cases for public method only,
but not for private methods in order to simplify development

process. This saves a lot of testing efforts.

<inhon@mail.tku.edu.tw> May 25, 2010 P 221

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Agile Methods on Object-Oriented Software

Development
— Data Structuring
» Note that cognitive theory says :
Everyone finish a fixed-number line of source code in a
working day, regardless of the abstraction level of code.
* Also note that, if abstract data structure is used (for example,
Java reusable class “TreeSet”) then less code is needed to

achieve the same function.

<inhon@mail.tku.edu.tw> May 25, 2010 P 222

111



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Agile Methods on Object-Oriented Software

Development
— Data Structuring

» Otherwise, if primitive data types (e.g., integer, Boolean) or
simple data structure (e.g., array) are used, more code is needed.

* By the theory above, that prolongs development time. Quality
of code will thus be low, as developer gets tired in long

working day.

<inhon@mail.tku.edu.tw> May 25, 2010 P 223

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

o Agile Methods on Object-Oriented Software

Development
— Pseudo Coding with Design Sketching

¢ In the thinking process of software development, design
sketching and pseudo coding are often proceeded in a
interleaved way, this method thus combines the two into one
step.

* In physical arrangement of source code file, design sketch can
be placed ahead of pseudo code to help understandability.

<inhon@mail.tku.edu.tw> May 25, 2010 P 224

112



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Agile Methods on Object-Oriented Software
Development
— Coding
 Java coding is used in this methodology.

* No detailed discussion on Java will be given here, as Java
textbooks are readily available everywhere.

<inhon@mail.tku.edu.tw> May 25, 2010 P 225

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Agile Methods on Object-Oriented Software
Development

— Unit Testing (JUnit Framework)
junit.framework
<« interface »

Assert Test

assertTrue()
assertEqualsQ)

|
|

,,,,,,,,,,, B .

I

| |
TestResult }7 TestCase TestSuite
fName O
setUpQ) addTest()
runTest()
tearDown()
run()
<inhon@mail.tku.edu.tw> junit.textui.TestRunner ‘ ‘ junit.swingui.TestRunner May 25, 2010 P 226

113



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

e Agile Methods on Object-Oriented Software
Development
— Unit Testing (JUnit Framework)

* As shown above, JUnit will be used to set up test suite (test
cases) that will automatically tests source code.

» JUnit will assert if each test case has passed or not, and will
tabulate test results.

<inhon@mail.tku.edu.tw> May 25, 2010 P 227

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Object-Oriented Concepts

o Agile Methods on Object-Oriented Software
Development
— Continuous Integration
 After unit testing, you have to integrate the unit into the system
immediately, and make it pass acceptance tests.

» “Hammer the iron (unit) while it is still hot” — meaning that
while programming pair still remembers unit details clearly, it
is rather easy to change code of the unit to fix integration
problems.

— Never postpone it till tomorrow! As people forget things after a
night’s sleep.

<inhon@mail.tku.edu.tw> May 25, 2010 P 228

114



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Agenda

1. Introduction

2. Recall Software Engineering

3. System Analysis and Design

4. Object-Oriented Concepts

5.UML

6. Workflow of Requirement Analysis

7. Workflow of Object-Oriented System Analysis and Design

<inhon@mail.tku.edu.tw> May 25, 2010

P 229

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

UML

e The UML is an OMG’s standard visual language (a

drawing notation with semantics) used to create
models of programs. It is for:

— Visualizing

— Specifying

— Constructing

— Documenting

e The artifacts of a software-intensive system
[Booch et al. 1999]. But, it is not a method.

<inhon@mail.tku.edu.tw> May 25, 2010

P 230

115



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

UML

e The Unified Modeling Language (UML) has
become the de-facto standard for building Object-
Oriented software.

e UML 2.1 builds on the already highly successful
UML 2.0 standard, which has become an industry
standard for modeling, design and construction of
software systems as well as more generalized

business and scientific processes.

<inhon@mail.tku.edu.tw> May 25, 2010 P 231

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

UML

e UML 2.1 defines thirteen basic diagram types,
divided into two general sets: structural modeling
diagrams and behavioral modeling diagrams.

e The Object Management Group (OMQG)

specification states:

— *“The Unified Modeling Language (UML) is a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system. The UML offers a standard way to write a
system’s blueprints, including conceptual things such as business
processes and system functions as well as concrete things such as
programming language statements, database schemas, and reusable
software components.”

<inhon@mail.tku.edu.tw> May 25, 2010 P 232

116



o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

UML

e The important point to note here is UML is a “language”
for specifying and not a method or procedure.

e However, UML can serves as a basis for different methods.

e The UML is used to define a software system — to detail the
artifacts in the systems, to document and construct; it is the
language the blueprint is written in.

e The UML may be used in a variety of ways to support a
software development methodology (such as the Rational
Unified Process), but in itself does not specify that
methodology or process.

<inhon@mail.tku.edu.tw> May 25, 2010 P 233

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

UML
e Domain using UML

— Enterprise information system
— Banking and financial services
— Telecommunications

— Defense/Aerospace

— Medical electronics

— Distributed web-based services
— Hardware design

— Non-software systems

— etc.

<inhon@mail.tku.edu.tw> May 25, 2010 P 234

117



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

UML

e Visual Modeling

— Visual Modeling is the
process of thinking about
the problems in the real-
world using models and

some kind of standard set )Q\ ]

of graphical notations,

ATM System

U

Make Withdrawal

|

Make Deposit

/

(

—R

such as the UML. Bank Customer, [~ Yeke Travsler ] i o
— Example: Using use case O
diagram to visualize an N
ATM system. O
Request Statement
<inhon@mail.tku.edu.tw> May 25, 2010 P 235

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

UML

e Different Perspectives of a System

/

Functional Model { Use Case Diagrams

Structure Model { Class/Object Diagrams

Activity Diagrams

A System . Sequence Diagrams
< Behavior Model | collaboration Diagrams
Statechart Diagrams
Implementation Component Diagrams
\ Model Deployment Diagrams
is viewed by is represented by

<inhon@mail.tku.edu.tw>

May 25, 2010

P 236

118



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

UML
e UML Notations

— Notation for
* Functional Model
« Structural Model
 Behavior Model
* Implementation Model

<inhon@mail.tku.edu.tw> May 25, 2010 P 237

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

UML

e This notation summary provides a simple overview
of what has been covered in this courseware.

e Readers may learn a more complete UML features
we have omitted by referring to:
http://www.omg.org/uml, [Booch et al. 1999],
[Rumbaugh et al. 1999] or a concise book [Fowler
2002].

e The semantics of the notations are based on
[Rumbaugh et al. 1999] and [Fowler 2002].

<inhon@mail.tku.edu.tw> May 25, 2010 P 238

119



- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

UML

e Notations for Functional Model

— Use Case Diagrams: address the static functionality
view of a system.

§ ? associationMame — — =<includas== — —
Use Case > e T Inclusion Use Ca_59
Actor — N e ———
|
: =<=extend==> Stereatype

A
/ =
% % Q/__l:lfie:Case Ext%@}j)

Sub-actor\ 1 Sub-actor 2

<inhon@mail.tku.edu.tw> May 25, 2010 P 239

- :
- 73‘ £ G Tamkang Universty software Engineering Group TR TIZBAE http://www.tkse. tku. edu. w)

UML

e Notations for Functional Model

— Use Case Realization: shows the relationship between
specification (use case) and its implementation

(collaboration).
S s ==realization=> O TR R
Collaboration =
< Use Case )e____._ _\’ ~
/
o SR _ = ~ .
——— - -
FPackage I
notation | <<participate==>
|
Example: W
Packages classes: Classes
Cashierlnterface, Dispenser,
Withdrawal, Account far
Withdraw Maoney use case
<inhon@mail.tku.edu.tw> May 25, 2010 P 240

120



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Structural Model

— Class Diagram: “shows a set of classes, interfaces, and
collaborations and their relationships; it addresses static
design view of a system.” For example, the Decorator
pattern class diagram. [MagicDraw UML 9.0]

Component

-component
4

[y

ConcreteComponent Decorator

+decorator( comp : Component ) ==create==+decorator( comp : Component)

|

ConcreteDecorator

=<create>>+concreteDecorator] comp : Component ) May 25, 2010 P 241

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Structural Model

— Class: is the structure and the behavior of a set of
objects.

ClassName ClassName

-aftribute : Type = initialvalue

+operation{ parameter : ParameterType ) - ReturnType

— Object: An instance of a class, describing the set of
possible objects that can exist.

ObjectName : ClassName

<inhon@mail.tku.edu.tw> May 25, 2010 P 242

121



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

UML

e Notations for Structural Model

— Constraint: A semantic condition or restriction
expressed in some textual language.
{description of constraint in OCL or natural language}
— Stereotype: A variation of an existing model element
with the same form.
<<stercotype name>>
— Tagged Value: A selector value pair that may be
attached to any element.

{description of tagged value}

<inhon@mail.tku.edu.tw> May 25, 2010 P 243

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

UML

e Notations for Structural Model

— Associations: represent relationships between instances
of classes.
e There are two roles of each association; each role is a direction
on the association. For example, the role direction Class A to
Class B is called role B; the role direction Class B to Class A is
called role A.

Class A associationMame  |Class B

-rale A -role B

<inhon@mail.tku.edu.tw> May 25, 2010 P 244

122



a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Structural Model

— Multiplicities: indicate how many objects may
participate in the given relationships.

Class A| ' * |Class B
exactly ane many (Zero or mare)
; 0.1 m..n : o
optional(zero or one) | Class A ClassB| . merically specified
<inhon@mail.tku.edu.tw> May 25, 2010 P 245

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Structural Model

— Qualified Association: A qualifier used to select an
object or objects from a set of objects related to an
object by an association. For example, a Person can be
associated with many Bank account number.

Bank "

: Person
account number I

0.1

qualifier

person has many (bank, account number)
(bank, account number) belongs to 0 or 1 person

<inhon@mail.tku.edu.tw> May 25, 2010 P 246

123



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Structural Model

— Association Class: is a class attached to an association
to provide extra information about the connection. It is a

normal class.

Class 1

Class 2

AssociationClass

-attributes

+operations()

<inhon@mail.tku.edu.tw>

May 25, 2010 P 247

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Structural Model

— Dependency: is a relationship between two elements in
which a change to independent element may affect
information that needed by the dependent element.

Class 1

Class 2

<inhon@mail.tku.edu.tw>

May 25, 2010 P 248

124



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Structural Model

— Navigability: indicates that Source has a responsibility
to tell which Target it is for, but a Target has no
corresponding ability to tell which Source it has.

Source Target

<inhon@mail.tku.edu.tw> May 25, 2010 P 249

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Structural Model

— Generalization: is a taxonomic relationship between a
more general element and a more specific element.

Superclass

‘T‘ discriminator

Subclass 1 Subclass 2

<inhon@mail.tku.edu.tw> May 25, 2010 P 250

125



a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

e Notations for Structural Model
— Abstract Class: is a class that may not be instantiated.

— Concrete Class: is a generalizable class that can be
directly instantiated.

AbstractClass

ConcreteClass

<inhon@mail.tku.edu.tw> May 25, 2010 P 251

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

e Notations for Structural Model

— Interface: is a named set of operations that characterize
the behavior of a class.

==interface== ceusage== <=usage>=
Type Eimtatan - VU A /

,% Client or InterfaceMame Qe

ImplementingClass

ImplementingClass

<inhon@mail.tku.edu.tw> May 25, 2010 P 252

126



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Structural Model
— Package: is a grouping of model elements and diagrams.

—

Package Name 2
[
Package Class
Package Name 1 s T‘
Class 2 Class 1

May 25, 2010 P 253

<inhon@mail.tku.edu.tw>

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Structural Model
— Design Pattern: is “systematically names, motivations,
and explains a general design that address a recurring
design problem in object-oriented systems.” [GoF 1995]

— Modeling a Design Pattern:
~ Design Pattern

Class 1 role 1 E
b e dltliER, sy
X /
-
-
role 2 - TR,
? L -~
- = -~
A -~ role 3
- -~
=
= Class 3

Class 2

May 25, 2010 P 254

<inhon@mail.tku.edu.tw>

127



-! :
&5 TSEG Tamkang Universty Software Engineering Group ZTIRMIEMEE http://www.tkse.thu. edu. tw/

UML

e Notations for Behavior
Model
— Activity Diagram: is a
diagram that shows the
flow from activity to
activity.

Component 1 Component 2
Activity A
{[condition 1] ActiityB )
[condition 2]

{forlc}

{join}
==obje¢t flow==

[obiect | (“acvye g
[0l
Activity F

<inhon@mail.tku.edu.tw>

May 25, 2010 P 255

-! :
&5 TSEG Tamkang Universty Software Engineering Group ZTIRMIEMEE http://www.tkse.thu. edu. tw/

UML

e Notations for Behavior
Model
— Sequence Diagram: is
an interaction diagram
that emphasizes the
time ordering of
messages.

1: create() newObject

2. message | 3 self delegation

e

& Aoreturn _

5. message

G: concurrent

S

P

7 destroy )T(

<inhon@mail.tku.edu.tw>

May 25, 2010 P 256

128



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Behavior Model

— Collaboration Diagram: “is an interaction diagram that
emphasizes the structural organization of the object that
send and receive messages.” [Booch et al. 1999]

ObjectName:Class

l 1:message- . message-2

—e
1.2: message-3
— — -
OhbjectName OhjectName
<inhon@mail.tku.edu.tw> May 25, 2010 P 257

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Behavior Model

— Statechart Diagram: addresses the dynamic view of
system.
®

Superstate Name

State Name-1 svent(arguments )[condition)/action

entry / action() >/ State Name-2
do / activity() L—}
event/action(arguments)

exit/ action()

variable: Type=initial value

O

<inhon@mail.tku.edu.tw> May 25, 2010 P 258

129



a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Behavior Model

— Concurrent States: is “an orthogonal substate that can
be held simultaneously with other substates contained in
the same composite state.” [Booch et al. 1999]

Superstate Name

@ — (= @

. [:State event 1 ‘- eyent 2 O.

<inhon@mail.tku.edu.tw>

May 25, 2010

P 259

a= :
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

UML

e Notations for Implementation Model

— Component Diagram (UML v2.0): “shows the
organization of and dependencies among a set of

components.” [Booch et al. 1999]

<-:cnmpnnent>>§ ﬁ “=2g0mponentss= E
Component ﬂ/ Component
Interface 1
/,_\\ RuntimeOhject
L
Interface 2
<inhon@mail.tku.edu.tw> May 25, 2010 P 260

130



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

UML

e Notations for Implementation Model

— Deployment Diagram: “shows the configuration of run
time processing nodes and the components that live on

them.” [Booch et al. 1999]

Node 1

<<component==c7]
Component 1

LD

Internet

|
<<c0mp0nent>>g|
Component 2

Node 2

<inhon@mail.tku.edu.tw>

May 25, 2010 P 261

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Agenda

1. Introduction

2. Recall Software Engineering
3. System Analysis and Design
4. Object-Oriented Concepts

5. UML

6. Workflow of Requirement Analysis

7. Workflow of Object-Oriented System Analysis and Design

<inhon@mail.tku.edu.tw>

May 25, 2010 P 262

131



o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Requirement Analysis

e Overview of the Requirement Analysis based on
Unified Process (UP)
— Understanding the Application Domain
— Build a Business Model, using UML diagrams
— Determine what the Client’s Requirements are
— Iterate the above steps

<inhon@mail.tku.edu.tw> May 25, 2010 P 263

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Flowchart of the Requirements Workflow

k-

| Obtain an initial understanding of the domain |

| Build an initial business model |

| Draw up an initial set of requirements |

Are the
requirements
satisfactory?

Yes "/fE;d\

No

| Obtain a deeper understanding of the domain |

| Refine the business model |

| Refine the set of requirements |

<inhon@mail.tku.edu.tw> May 25, 2010 P 264

132



a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Workflow of Requirement Analysis

e Discovering the client’s requirements
— Requirements elicitation (or requirements capture)

— Methods include interviews and surveys

e Refining and extending the initial requirements

— Requirements analysis

<inhon@mail.tku.edu.tw> May 25, 2010 P 265

-! :
&5 TSEG Tamkang Universty Software Engineering Group ZTIRMIEMEE http://www.tkse.thu. edu. tw/

Workflow of Requirement Analysis

e Understanding the Domain

— Every member of the development team must become
fully familiar application domain

* Correct terminology is essential

— We must build a glossary
e That is, a list of technical words used in the domain, and their
meaning
<inhon@mail.tku.edu.tw> May 25, 2010 P 266

133



o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Requirement Analysis

o Glossary, for example An information System for Art Dealer

Landscape
Masterpiece
Masterwork

Medium

0il

Other painting
Other subject
Portrait
Quality

Still life
Subject
Watercolor

A painting of a scene in nature.

A painting of undoubted excellence.

An inferior painting by an artist who previously or subsequently has painted
a masterpiece.

A classification criterion. The material with which an artwork is painted. See
also: oil, watercolor.

A medium. Abbreviation for “oil-based paint.”

A painting that is neither a masterpiece nor a masterwork.

A subject that is not a landscape, a portrait, or a still life.

A painting of one or more people.

A classification criterion. A painting is classified as a masterpiece,
masterwork, or other painting, depending on its quality.

A painting of inanimate objects.

A classification criterion. Subjects include landscape, portrait, and still life.
A medium. Abbreviation for “water-based paint.”

<inhon@mail.tku.edu.tw>

May 25, 2010 P 267

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Requirement Analysis

e Business Model

— A business model is a description of the business
processes of an organization

— The business model gives an understanding of the client’s
business as a whole

 This knowledge is essential for advising the client regarding

computerization
— The systems analyst needs to obtain a detailed
understanding of the various business processes

* Different techniques are used, primarily interviewing

<inhon@mail.tku.edu.tw> May 25, 2010 P 268

134



-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Requirement Analysis

e Interviewing

— The requirements team meet with the client and users to extract all
relevant information
— There are two types of questions
e Close-ended questions requires a specific answer
* Open-ended questions are asked to encourage the person being
interviewed to speak out
— There are two types of interviews

* In a structured interview, specific preplanned questions are asked,
frequently close-ended

¢ In an unstructured interview, questions are posed in response to the
answers received, frequently open-ended

<inhon@mail.tku.edu.tw> May 25, 2010 P 269

-_
s TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Requirement Analysis

e Interviewing

— Interviewing is not easy

e An interview that is too unstructured will not yield much relevant
information

e The interviewer must be fully familiar with the application
domain

* The interviewer must remain open-minded at all times
— After the interview, the interviewer must prepare a
written report

* It is strongly advisable to give a copy of the report to the person
who was interviewed

<inhon@mail.tku.edu.tw> May 25, 2010 P 270

135



o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Requirement Analysis

e Use Case Model

— An Use Case Model is a model that describes the
functional requirements of a system to be developed,
containing actors, use cases, and their relationships.

* Requirements describe a system and its interaction with the
surrounding environment, such as users and other systems.

* A system is described by models from various kinds of view
(see section 3.1.6), which are written by using well-defined
language, such as the UML.

» Use Case Diagrams describes Use Case Model.

<inhon@mail.tku.edu.tw> May 25, 2010 P 271

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Requirement Analysis

e Use Case Diagrams

— An Use Case Diagram shows the relationships among
actors and use cases within a system” [OMG-UML
v1.4].

— Use case diagrams commonly contain:
e Actors
» Use Cases
» Association, generalization, dependency, and realization
relationships.

Banking Information
Syst
ystem I/—)

()
p. .
P e miyN

Customer Teller

* For example,

<inhon@mail.tku.edu.tw> May 25, 2010 P 272

136



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Workflow of Requirement Analysis

e Use Case Diagrams
— Simplified use case diagram metamodel [OMG 2001 ]
’mﬂ:lassiﬁer ’m‘

1.5 =

UseCaselnstance

ModelElement

| Actor ‘ UseCase ionPoirit E ionPoint
1 - [location : locationReference
+addition| 1 1| +hase +extension| 1 1 | +hase 1 jrextensionPoint
{ordered}

2 . | *include  +extend | . .

Include Extend =
condition * Boolean

Relationship

P 273

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Workflow of Requirement Analysis

e Use Case Diagrams
— Use case diagrams are used

* to model the context of a system,;
 to model the requirements of a system

 to be used as a tool for communication between customers and
developers.

<inhon@mail.tku.edu.tw> May 25, 2010 P 274

137



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Requirement Analysis

e Use Case Diagrams

— A use case shows the interaction between

* The information system and

e The environment in which the information system operates
— Each use case models one type of interaction

* There can be just a few use cases for an information system, or
there can be hundreds

— The rectangle in the use case represents the information
system itself

<inhon@mail.tku.edu.tw> May 25, 2010 P 275

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Requirement Analysis

e Use Case Diagrams

— An actor is a member of the world outside the
information system
— It is usually easy to identify an actor
* An actor is frequently a user of the information system
— In general, an actor plays a role with regard to the
information system. This role is
* As a user; or
e As an initiator; or

* As someone who plays a critical part in the use case

e A user of the system can play more than one role

<inhon@mail.tku.edu.tw> May 25, 2010 P 276

138



a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Workflow of Requirement Analysis

e Use Case Diagrams
» Example: A Sales Report System
System I

Actor Association
relationship
boundary

% Q <<includés>> O
Customer Rep Report Order Status Check PIN
sales rep. checks
sales status \‘\.\/9(
I

%{f Accounting

\ System
Regional e
Manager O
. Use case v~ | Review Regional Sales Inventory —
System 2010 P 277

Stereotype <<incude>>
relationship

Sales Report System .-~

Review Individual's Sales

a=
73.£G Tamkang Universty software Engineering Group ZTHMTEREE http://www.tkse.tku.edu.tw/

Workflow of Requirement Analysis

e Initial Requirements
— The initial requirements are based on the initial business
model
— Then they are refined
— The requirements are dynamic—there are frequent
changes

* Maintain a list of likely requirements, together with use cases of
requirements approved by the client

<inhon@mail.tku.edu.tw> May 25, 2010 P 278

139



a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Workflow of Requirement Analysis

e Initial Requirements
— There are two categories of requirements
— A functional requirement specifies an action that the
information system must be able to perform
* Often expressed in terms of inputs and outputs
— A nonfunctional requirement specifies properties of the
information system itself, such as
* Platform constraints
* Response times
« Reliability

<inhon@mail.tku.edu.tw> May 25, 2010 P 279

a= TSEG Tamkang Universty Software Engineering Group ZTHMLIEMEE http://www.tkse.thu.edu. tw/

Workflow of Requirement Analysis

e Initial Requirements

— Functional requirements are handled as part of the
requirements and analysis workflows

— Some nonfunctional requirements have to wait until the
design workflow

* The detailed information for some nonfunctional requirements
is not available until the requirements and analysis workflows
have been completed

<inhon@mail.tku.edu.tw> May 25, 2010 P 280

140



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Requirement Analysis

¢ Initial Requirements

— For example, Buy a painting use case

Brief Description
The Buy a Painting use case enables Osbert Oglesby to buy a painting.

Step-by-Step Description

1. Osbert inputs details of the painting he is considering buying.

2. The information system responds with the maximum purchase price he
should offer.

3. If the seller accepts Osbert’s offer to buy the painting, Osbert enters
further details.

Note: Details of the algorithm for determining the maximum price will be
obtained later.

<inhon@mail.tku.edu.tw> May 25, 2010 P 281

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Agenda

1. Introduction

2. Recall Software Engineering

3. System Analysis and Design

4. Object-Oriented Concepts

5. UML

6. Workflow of Requirement Analysis

7. Workflow of Object-Oriented System Analysis and Design

<inhon@mail.tku.edu.tw> May 25, 2010 P 282

141



-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Analysis Workflow

e Design Workflow

<inhon@mail.tku.edu.tw> May 25, 2010 P 283

-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Analysis Workflow
— Extracting Entity Classes

* Initial Functional Model
* Initial Class diagram
* Initial Dynamic Model
— Extracting Boundary Classes
— Extracting Control Classes
— Refining the Use Cases
— Use-Case Realization

— Incrementing the Class Diagram

<inhon@mail.tku.edu.tw> May 25, 2010 P 284

142



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Object-Oriented
System Analysis and Design

e (Classes

— The three class types in the Unified Process are
* Entity classes
* Boundary classes

* Control classes

— UML notation

Entity Class Boundary Class Control Class

<inhon@mail.tku.edu.tw> May 25, 2010 P 285

-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Entity Classes

— An entity class models information that is long lived
— Examples:

» Account Class in a banking information system

* Painting Class in the Osbert Oglesby information system

* Mortgage Class and Investment Class in the MSG
Foundation information system

— Instances of all these classes remain in the
information system for years

<inhon@mail.tku.edu.tw> May 25, 2010 P 286

143



o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Object-Oriented
System Analysis and Design

e Boundary Classes

— A boundary class models the interaction between the
information system and its actors

— Boundary classes are generally associated with input
and output

— Examples:

e Purchases Report Class and Sales Report Class in the
Osbert Oglesby information system

e Mortgage Listing Class and Investment Listing Class in
the MSG Foundation information system

<inhon@mail.tku.edu.tw> May 25, 2010 P 287

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Object-Oriented
System Analysis and Design

e Control Classes
A control class models complex computations and
algorithms
Examples:
e Compute Masterpiece Price Class,
e Compute Masterwork Price Class, and
e Compute Other Painting Price Class

<inhon@mail.tku.edu.tw> May 25, 2010 P 288

144



-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Extracting Entity Classes

— Entity class extraction consists of three steps that are carried out
iteratively and incrementally:
* Functional modeling
— Present scenarios of all the use cases (a scenario is an instance of a
use case)
¢ Class modeling
— Determine the entity classes and their attributes
— Determine the interrelationships and interactions between the entity
classes
— Present this information in the form of a class diagram
¢ Dynamic modeling
— Determine the operations performed by or to each entity class

— Present this information in the form of a statechart

<inhon@mail.tku.edu.tw> May 25, 2010 P 289

-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Flowchart for Extracting Entity Classes

Fa ™\
| Start |
WY

|| Perform the initial functional modeling |

| Pertorm the initial class modeling |

| Perform the initial dynamic modefing |

4 Are the =
/ cl/am\“" -'/( n;;\l
“_satisfactory? N/
N i S

ooy
\
7
\\/NQ

! Refine the functional modeling |

I Refine the class modeling |

i Refine the dynamic modeling |

<inhon@mail.tku.edu.tw> May 25, 2010 P 290

145



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Object-Oriented
System Analysis and Design

e Extracting Entity Classes

— Functional modeling
* Present the scenarios

— For example,

Osbert Oglesby wishes to buy a masterpiece.

. Osbert enters the description of the painting.

2. The information system scans the auction records to find the price and year of the
sale of the most similar work by the same artist.

. The information system computes the maximum purchase price by adding
8.5 percent, compounded annually, for each year since the auction of the most
similar work.
Osbert makes an offer below the maximum purchase price—the offer is accepted
by the seller.

4. Osbert enters sales information (name and address of seller, purchase price).

wd

<inhon@mail.tku.edu.tw> May 25, 2010 P 291

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Object-Oriented
System Analysis and Design

e Extracting Entity Classes

— Class modeling
* Determine the entity classes and their attributes
* Determine the interrelationships and interactions between the
entity classes

 Present this information in the form of a class diagram

<inhon@mail.tku.edu.tw> May 25, 2010 P 292

146



-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Extracting Entity Classes

— Class modeling

* For example,

Painting Class Masterpiece Class

Masterwork Class Other Painting Class

<inhon@mail.tku.edu.tw> May 25, 2010 P 293

-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Extracting Entity

ClaSSCS Painting Class

— Class modeling

* For example

(COHIIHUOUS]y), Masterpiece Class Other Painting Class

Masterwork Class

<inhon@mail.tku.edu.tw> May 25, 2010 P 294

147



-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Extracting Entity
Painting Class
Classes

— Class modeling

° FO]‘ example | Gallery Painting Class Auctioned Painting Class

(Continuously),

Mnteq;l-ue Class ] Other Pll;ﬁng Class I

Masterwork Class

<inhon@mail.tku.edu.tw> May 25, 2010 P 295

-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

Dabert Oglesby Class 1

e Extracting Entity

Classes

— Class modeling

Gallery Palnting Elass | Auctioned Palnting Class

* For example

(Continuously),

Masterplece Class | [ other Painting Class [ Fashionabiliny Class

Maiterwork Class

<inhon@mail.tku.edu.tw> May 25, 2010 P 296

148



-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Object-Oriented

System Analysis and Design

e Extracting Entity Classes

— Dynamic modeling

* Determine the operations performed by or to each entity

class

¢ Present this information in the form of a statechart

<inhon@mail.tku.edu.tw>

May 25, 2010

P 297

-=_
a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Object-Oriented

System Analysis and Design

e Extracting Entity Classes

— Dynamic modeling

e For Example,

® ®
quit
selected
[ Osbert Oglesby Information System Loop ]
buy sell produce update
painting painting report fashionability
selected selected selected selected

Buying a Painting | [ Selling a Painting

Buy a masterpiece, Sell a masterpiece,
masterwork, or masterwork, or

other painting,

other painting,

“List sold paintings,
bought painting:

Producing a Report

Updating
Fashionability

o trends,

Update fashi

coefficient

<inhon@mail.tku.edu.tw>

May 25, 2010

P 298

149



.=

- 7- 5 E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Extracting Boundary Classes
— Boundary Classes

* For Example,

User Interface Class
Purchases Report Class
Sales Report Class

Future Trends Report Class

<inhon@mail.tku.edu.tw> May 25, 2010 P 299

.=

- 7- 5 E G Tamkang Universty Software Engineering Group T TEEEE http:/fwww.tkse.tku.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Extracting Control Classes

— Control Classes

* For Example,

Compute Masterpiece Price Class
Compute Masterwork Price Class
Compute Other Painting Price Class
Compute Future Trends Class

<inhon@mail.tku.edu.tw> May 25, 2010 P 300

150



a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Object-Oriented
System Analysis and Design

Osbert Oglesby

e Refining Use Cases ity
C Buy a Masterplece )

— For Example, ===y ‘ O

E < Buy a Masterwork :> —'—

i — — __"_-a\_ ‘ Seller

1 B._;E-_Ot_herP_aTlnq/- "

| — Nt
—
() f SeII a Painting

v | - /} SN

/\_ L~ Producea T Buyer

Oshert | urcllases Repou -

| ("_ “Produce a ==
| i Sar:‘a Rt‘pnrt -

| o I(uduu.}l—ulurL .
| . I'andsRLpol _/'

@dale a Fammnabuhl;ﬁ.
= goefficienl___,-/

<inhon@mail.tku.edu.tw> May 25, 2010 P 301

a TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Object-Oriented
System Analysis and Design

e Use Case Realization
— The process of extending and refining use cases is
called use-case realization
— In the phrase “realize a use case,” the word “realize”,
It means to accomplish (or achieve) the use case
— The realization of a specific scenario of a use case is

depicted using an interaction diagram

 Either a sequence diagram or collaboration diagram

<inhon@mail.tku.edu.tw> May 25, 2010 P 302

151



-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Use Case Realization

— A collaboration diagram

— For example,

e & Data that the seller 1
X provides for Cabert 1o enter

e

Display Pron

N s prkce

14: Display Interface 13: Se
acknowledgment  Class ax

“Auctioned
Painting

Class.

<inhon@mail.tku.edu.tw> May 25, 2010 P 303

-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Use Case Realization

— A sequence diagram

— For example,

<inhon@mail.tku.edu.tw> May 25, 2010 P 304

152



-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

¢ Final Class Diagram

— For example,

Oubert Ogheabiy

User Interface
[
Compiste Compute Compute Compute
Masterwork Masterpiece Future Other Fabnting
Price Class Frice Class Trends Class Frice Class
Masterwork  Masterphece Auctloned ¢ Other Fashionability
Class Class Paintings oot S0 Painting Class
Class e Class
Sales Purchases  Future Trands
Report Report Roport Clas

Class. Class.

<inhon@mail.tku.edu.tw> May 25, 2010 P 305

-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

¢ Final Class Diagram

— For example, = .
Application Class Oshert Ogleshy

User Interface
Class

Compute Compute Compute Compute
Masterwork Masterplece Future Other Painting

Price Class Price Class Trends Class Price Class

||||| »
Masterwork Masterplece Auctioned Painting Other Fashionabilit)
Class Class Paintings Class ey Painting Class
Painting
Class s Class

Sales. Purchases Future Trends
Report  Report Repart
Class Class Class

<inhon@mail.tku.edu.tw>

May 25, 2010 P 306

153



-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Design Workflow

— Formats of the Attributes

— Allocation of Operations to Classes
— CRC Cards
* Class-Responsibility-Collaboration (CRC)

<inhon@mail.tku.edu.tw> May 25, 2010 P 307

-=_

- TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/
Workflow of Object-Oriented
System Analysis and Design

e Design Workflow P

— Formats of the Attributes

— For example,

Masterpiece Class Diiver Painting Class

<inhon@mail.tku.edu.tw>

May 25, 2010 P 308

154



o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Object-Oriented

System Analysis and Design

e Design Workflow

— Allocation of Operations to Classes

— For example,

MSG Application Class

Asset Class

setAssetNumber ( )
getAssetNumber ()

Investment Class

Mortgage Class

<inhon@mail.tku.edu.tw>

May 25, 2010

P 309

o= _
‘? TSEG Tamkang Universty Software Engineering Group TR ITEREE http://www.tkse. thu.edu. tw/

Workflow of Object-Oriented

System Analysis and Design

e Design Workflow

— CRC cards

— For example,

CLASS

Mortgage Class

RESPONSIBILITY

COLLABORATION

Compute estimated grants and
payments for week

Estimate Funds for Week Class

Initialize, update, and delete
mortgages

Manage an Asset Class

Generate list of mortgages

User Interface Class

Print list of mortgages

Mortgages Report Class

<inhon@mail.tku.edu.tw>

May 25, 2010

P 310

155



