

TSEG Tamkan	g Universty Software Engineering	Group 淡沉	L軟體	工程置	【驗室	http:	//www	v.tkse.t	tku.edu.tw/
Adjacen	cy matrice	<u>es</u>							
		0	1	2	3	4	5	6	7
		0[0	1	1	0	0	0	0	0]
	1 1	0	0	1	0	0	0	0	
		2 1	0	0	1	0	0	0	0
	0 1 2	3 0	1	1	0	0	0	0	0
$0 \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}$		4 0	0	0	0	0	1	0	0
1 1 0 1 1		5 0	0	0	0	1	0	1	0
2 1 1 0 1		6 0	0	0	0	0	1	0	1
$3 \begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}$		7[0	0	0	0	0	0	1	0
(a) G ₁	(b) <i>G</i> ₃	(c) G ₃							
<inhon@mail.tku.edu.tw></inhon@mail.tku.edu.tw>		May 31, 2015							

ですいた Tamkang Universty Software Engineering Group 淡江軟體工程實驗室	http://www.tkse.tku.edu.tw/
Steps of Sollin's Algorithm	<u> </u>
for each $i \in N$ do	
$S_i = \{i\}.$	
end for	
$T = \emptyset$ {These are the tree edges}	
while $ T < (n-1)$ do	
for each tree S_k do	
$nearest-neighbor(S_k, i_k, j_k).$	
end for	
for each tree S_k do	
if nodes i_k and j_k belong to different trees	then
$merge(i_k, j_k)$	
$T \leftarrow T \cup \{(i_k, j_k)\}$	
end if	
end for	
end while	
<inhon@mail.tku.edu.tw></inhon@mail.tku.edu.tw>	ay 31, 2015

Vertex 4 to all destinations(2-2)										
iteration	S	Vertex selected	Distance							
			LA	SF	DEN	CHI	BOST	NY	MIA	NO
			[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
Initial			+∞	+∞	+∞	1500	0	250	+∞	+∞
1	{4}	5	+∞			1250	0	250	1150	165
2	{4,5}	6	+∞		+∞	1250	0	250	1150	165
3	{4,5,6}	3	+∞		2450	1250	0	250	1150	165
4	{4,5,6,3}	7	3350	+∞	2450	1250	0	250	1150	165
5	{4,5,6,3,7}	2	3350	3250	2450	1250	0	250	1150	165
6	{4,5,6,3,7,2}	1	3350	3250	2450	1250	0	250	1150	165
	{4563721}									

IJLU -	Turnikung University software Engineering Group	の 次江軟體工作員概至 和ttp://www.tase.tau.com.
<u>Exam</u>	ple of AOV	
Course number	Course name	Prerequisites
C1	Programming I	None
C2	Discrete Mathematics	None
C3	Data Structures	C1, C2
C4	Calculus I	None
C5	Calculus II	C4
C6	Linear Algebra	C5
C7	Analysis of Algorithms	C3, C6
C8	Assembly Language	C3
С9	Operating Systems	C7, C8
C10	Programming Languages	C7
C11	Compiler Design	C10
C12	Artificial Intelligence	C7
C13	Computational Theory	C7
C14	Parallel Algorithms	C13
C15	Numerical Analysis	C5

ごていたち Tamkang Universty Software Engineering Group 淡江	軟體工程實驗室 http://www.tkse.tku.edu.tw/
Algorithm for Closest Pa	ir Problem
<pre>function closest_pair (P: point set; n: integer)</pre>	
float DELTA-LEFT, DELTA-RIGHT : float; DELTA :	
begin	
if $n = 2$ then return distance from $p(1)$ to $p(2)$;	
else P -LEFT := ($p(1), p(2),, p(n/2)$);	
P- $RIGHT := (p(n/2+1), p(n/2+2),, p(n));$	
$DELTA-LEFT := closest_pair(P-LEFT, n/2);$	
<pre>DELTA-RIGHT := closest_pair(P-RIGHT, n/2);</pre>	
DELTA := minimum (DELTA-LEFT, DELTA-RIGHT);	

Determine whether there are points $p(l)$ in <i>P</i> -LEFT and $p(r)$ in <i>P</i> -RIGI	HT with distance($p(l), p(r)$) < DELTA.
If there are such points, set DELTA to be the smallest distance.	

return DELTA; end if;	
end closest_pair;	
<inhon@mail.tku.edu.tw></inhon@mail.tku.edu.tw>	May 31, 2015

Tamkang Universty Software Engineering	Group 淡江軟體工程實驗室 http://www.tkse.tku.edu.tw/
Statements of Cor	nbine section
for <i>i</i> in <i>1s</i> loop	
for <i>j</i> in <i>i</i> +1s loop	
exit when $(x(i) - x(j) > DELTA$ or $ y $	$y(i) - y(j) \mid > DELTA);$
if distance($q(i), q(j)$) < DELTA t	hen $DELTA := distance (q(i), q(j));$
end if;	
end loop;	
end loop;	
<inhon@mail.tku.edu.tw></inhon@mail.tku.edu.tw>	May 31, 2015

Tamkang University Software Engineering Group 淡江軟糖工程實驗室 http://www.tkse.tku Longest Common Subsequence	edu.tw/
func lcs(x,y)	
if (length(x)=0 or length(y)=0)	
return ""	
best = lcs(x[1,n-1],y[1,m])	
if (length(best) < length(lcs(x[1,n],y[1,m-1]))))	
best = lcs(x[1,n],y[1,m-1])	
if ($x[n] = y[m]$ and length(best) < length(lcs(x[1,n-1],y[1,m-1]) 1)	
best = lcs(x[1,n-1],y[1,m-1]) x[n]	
return best	
<inhon@mail.tku.edu.tw> May 31, 2015</inhon@mail.tku.edu.tw>	

Item	Weight	Benefit
A	2	60
В	3	75
С	4	90

Item	Weight	Benefit
A	4Kg	\$4500
В	5Kg	\$5700
С	2Kg	\$2250
D	1Kg	\$1100
E	6Kg	\$6700

ltem	Weight	Benefit
A	2	60
В	3	75
С	4	90

Item	Weight	Benefit	
A	4Kg	\$4500	
В	5Kg	\$5700	
С	2Kg	\$2250	
D	1Kg	\$1100	
E	6Kg	\$6700	

Huffman C	oding	
• Compare to AS	CII (Examples), fixed	l-length codes
Character	Binary Code	Hexadecimal Code
А	01000001	41
J	01001010	4A
V	01010110	56
#	00100011	23
а	01100001	61
n	01101110	6E
t	01110100	74
	01111110	7E

Example of Huffman	ing Group 淡江軟體工程實驗 n Tree and	² http://www.tkse.tku.edu.tw/
• We count the	Character	Frequency
frequency of each	А	9
character shown in the	В	3
message.	С	1
	D	1
	Е	1
	F	1
	G	1
	Н	1
<inhon@mail.tku.edu.tw></inhon@mail.tku.edu.tw>		May 31, 2015

Tamkang Universty Software Engine	eering Group 淡江 an Tre	軟體工程實驗室 http e and C	://www.tkse.tku.edu.tw/
• Thus, we encode the	Character	Frequency	Huffman Codes
character with <i>variable-lengh codes</i>	А	9	0
	В	3	100
as follow.	С	1	1010
A 0, B 100, C 1010, D 1011, E 1100,	D	1	1011
F 1101 , G 1110, H 1111	Е	1	1100
	F	1	1101
	G	1	1110
	Н	1	1111
<inhon@mail.tku.edu.tw></inhon@mail.tku.edu.tw>		May 3	31, 2015

SEG Tamka	ng Universty Software Engin	neering Group 淡江軟體工程	實驗室 http://www.tkse.tku.edu.tw/
Another	Exampl	e	
Character	Frequency	Huffman Codes	
Space	7		
а	4		
e	4		
f	3		
h	2		
i	2		
1	1		
m	2		
n	2		
0	1		
р	1		
r	1		
s	2		
t	2		
u	1		
x	1		

