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課前說明
 上課用書

– Data Structures and Algorithms in Java 4/e Goodrich著 John Wiley出版
新月圖書代理

– 請尊重智慧財產權，勿非法影印使用教科書與參考書籍及使用盜版軟
體

 上課方式

– 將採多元授課方式，包含板書、 投影片講授、團隊討論或個人問答、
團體或個人報告等翻轉或PBL教學，須牢記本課程的成績卡座號

 上課規定

– 進入手機改設震動或關機、不要私下講話 (私下講話者扣學期成績)

– 上課時間僅可喝水、不可吃東西，用餐請利用課間(課前、課後)完成

 考試方式

– Closed book
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課前說明
 成績評定

– 出席:15%  實習課:15%  作業+小考:40%  期中考:15%  期末
考:15%

– 出席成績：每週必點名一次，預計點名15次，每人每學期有3
次免責權，缺席三次以上者才開始扣出席成績。相對地，全勤
者學期成績另加3分。點名係用以區別出席上課與否，故無論
任何原因缺席者，均不需要請假，亦不補點。

– 遲到、早退者，列入紀錄，每累計達二次者，視同缺席一次

– 一般作業可以遲交，逾時每24小時內扣10分，扣至0分為止

– 隨堂作業、小考、課堂問答、指定報告等不受理補交或補考，
敬請隨時攜帶課本、講義、筆記等。隨堂作業與小考僅收A4格
式紙，敬請隨身準備，非指定格式，視同未交。

– 期末考比校訂時間提前一週，含實習課內容。

http://mail.tku.edu.tw/inhon

課前說明
 課前測驗

– 本週五(3/06)辦理課前測驗

– 0830起，測驗時間60分鐘

– 本測驗不計分、無補測

– 但是，未參加者需退選本課程或不可加選本課程

– 測驗結果將作為分組依據、無分組無分數

– 分組團體由授課教師分配，不可自行選換組

– 課程進行中，個人表現與團隊表現都會左右每一位同學的全學
期成績

– 每個人的成績都是依賴全學期一點一滴的累加

– 請跟大一的自己比較，知識要有增長、技能要有精進
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課程綱要

 Introduction

 Graphs

 Preview of the Algorithm 
Designs and Analysis 

 Divide and Conquer

 Dynamic Programming

 Greedy Methods

 NP Completeness

 實習課部分

– Recurrences

– Advanced Data Structure: 
Red-Black Tree, AVL-Tree, 
B-Tree, B+ Tree

– NP Complete Problems and 
Approaching Solutions
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Learning Objects Architecture
Growth Functions and Recurrence

Algorithm Designs and Analysis

Divide and Conquer

Graph Algorithms

Minimum Spanning Trees

Dynamic Programming
Single-Source Shortest Paths

Greedy Methods
All-Pairs Shortest Paths

NP Completeness

Algorithm Design Methods
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Agenda
1. Introduction

2. Graphs

3. Preview of Algorithm Designs and Analysis

4. Divide and Conquer

5. Dynamic Programming

6. Greedy Methods

7. NP Completeness
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Introduction
 Recall The Definition of Algorithm

 The Role of the Algorithms in Computer

 What kind of problem can be solved by algorithm?

 Example

 Analyzing Algorithms

 Designing Algorithms

 NP Problem
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Recall the Definition of Algorithm

 An algorithm is a finite sequence of unambiguous

instructions for solving a well-specified computational 

problem.

 Important Features:

– Finiteness.

– Definiteness.

– Input.

– Output.

– Effectiveness.

May 31, 2015<inhon@mail.tku.edu.tw>

Why to Study Algorithm
Develop thinking ability.

– problem solving skills. 

(algorithm design and application)

– formal thinking. 

(proof techniques & analysis)



6

May 31, 2015<inhon@mail.tku.edu.tw>

The Role of the Algorithms in 
Computer
 An instance of a problem consists of all inputs needed to 

compute a solution to the problem. 

 An algorithm is said to be correct if for every input 

instance, it halts with the correct output. 

 A correct algorithm solves the given computational 

problem.  An incorrect algorithm might not halt at all on 

some input instance, or it might halt with other than the 

desired answer. 

May 31, 2015<inhon@mail.tku.edu.tw>

What kind of problem can be 
solved by algorithm?
 The Human Genome Project

 The Internet Applications

 Electronic Commerce with Public-key 

cryptography and digital signatures

 Manufacturing and other commercial settings
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Insertion sort
 Example: Sorting problem

– Input: A sequence of n numbers

– Output: A permutation of the input sequence 

such that                   . 

 The number that we wish to sort are known as the 

keys.

May 31, 2015<inhon@mail.tku.edu.tw>

Insertion sort
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Pseudocode
Insertion sort

Insertion-sort(A)

1 for j 2 to length[A]

2 do keyA[j]

3 Insert A[j] into the sorted sequence A[1..j-1]

4 i  j - 1

5 while i>0 and A[i]>key

6 do A[i+1] A[i]

7 i  i - 1

8 A[i +1] key

May 31, 2015<inhon@mail.tku.edu.tw>

The operation of Insertion-Sort
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延伸閱讀

 何謂Algorithm？
– http://www.csie.ntnu.edu.tw/~u91029/Algorithm.html

– http://en.wikipedia.org/wiki/Algorithm

– https://www.khanacademy.org/computing/computer-

science/algorithms

– http://whatis.techtarget.com/definition/algorithm

 Video materials
– https://www.youtube.com/watch?v=S-ws2W6UbPU

– https://www.youtube.com/watch?v=JPyuH4qXLZ0&list=PL14288

029B0AEEA6E

– https://www.youtube.com/watch?v=HtSuA80QTyo&list=PLUl4u3

cNGP61Oq3tWYp6V_F-5jb5L2iHb

May 31, 2015<inhon@mail.tku.edu.tw>

Analyzing Algorithms

 Time Complexity

 Space Complexity

 Worst-case and Average-Case Analysis

 Order of Growth
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Worst, Average, and Best-case 
Complexity
 Worst-case Complexity

– Maximum steps the algorithm takes for any possible input.

– Most tractable measure.

 Average-case Complexity

– Average of the running times of all possible inputs.

– Demands a definition of probability of each input, which is usually difficult 
to provide and to analyze.

 Best-case Complexity

– Minimum number of steps for any possible input.

– Not a useful measure. Why?

 Stable and Unstable

May 31, 2015<inhon@mail.tku.edu.tw>

Worst-case and average-case 
analysis
 Usually, we concentrate on finding only on the

worst-case running time

 Reason:

– It is an upper bound on the running time

– The worst case occurs fair often

– The average case is often as bad as the worst

case. For example, the insertion sort. Again,

quadratic function.
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Order of growth
 In some particular cases, we shall be interested in

average-case, or expect running time of an

algorithm.

 It is the rate of growth, or order of growth, of the

running time that really interests us.
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Order of growth
 Principal interest is to determine

– how running time grows with input size – Order of growth.

– the running time for large inputs – Asymptotic complexity.

 In determining the above,

– Lower-order terms and coefficient of the highest-order term are insignificant.

– Ex: In 7n5+6n3+n+10, which term dominates the running time for very large n?

 Complexity of an algorithm is denoted by the highest-order term in the 
expression for running time.

– Ex: Ο(n), (1), Ω(n2), etc.

– Constant complexity when running time is independent of the input size – denoted 
Ο(1).

– Linear Search: Best case (1), Worst and Average cases: (n).

 More on Ο, , and Ω in next class. Use  for the present.
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Comparison of Algorithms
 Complexity function can be used to compare the 

performance of algorithms.

 Algorithm A is more efficient than Algorithm B for 
solving a problem, if the complexity function of A
is of lower order than that of B.

 Examples:

– Linear Search – (n) vs. Binary Search – (lg n)

– Insertion Sort – (n2) vs. Quick Sort – (n lg n)

May 31, 2015<inhon@mail.tku.edu.tw>

Comparison of Algorithms
 Multiplication

– classical technique: O(nm)

– divide-and-conquer: O(nmln1.5) ~ O(nm0.59) 

For operands of size 1000, takes 40 & 15 seconds respectively on a 

Cyber 835.

 Sorting
– insertion sort: (n2)

– merge sort: (n lg n)

For 106 numbers, it took 5.56 hrs on a supercomputer using machine 

language and 16.67 min on a PC using C/C++.
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延伸閱讀

 何謂Asymptotic Notations？
– http://en.wikibooks.org/wiki/Data_Structures/Asymptotic_Notation

– http://content.edu.tw/senior/computer/ks_ks/book/algodata/algorith

m/algo5.htm

– http://mathworld.wolfram.com/AsymptoticNotation.html

– https://www.khanacademy.org/computing/computer-

science/algorithms/asymptotic-notation/a/asymptotic-notation

 Video materials
– https://www.youtube.com/watch?v=whjt_N9uYFI

– http://mathworld.wolfram.com/AsymptoticNotation.html

– https://www.youtube.com/watch?v=aGjL7YXI31Q

– https://www.youtube.com/watch?v=6Ol2JbwoJp0
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Designing Algorithms

– Incremental Approach

– Divide and Conquer

– Randomization 
(Randomized 
Algorithm) 

– Linear Programming

– Dynamic Programming

– Greedy method

– Brute-force

– Backtracking

– Branch and Bound

Classification of Algorithm Design Methods
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Designing Algorithms-Examples

 Incremental Approach

 Divide-and-Conquer Approach

 Analyzing Divide-and-Conquer Algorithms 

May 31, 2015<inhon@mail.tku.edu.tw>

Designing algorithms-Examples
 There are many ways to design algorithms:

 Example of a Sorting Problem

– Incremental approach: insertion sort

– Divide-and-conquer: merge sort

• recursive:

– divide  

– conquer 

– combine
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Recall Insertion Sort
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Divide and Conquer
 Recursive in structure  

– Divide the problem into sub-problems that are similar to 

the original but smaller in size

– Conquer the sub-problems by solving them recursively.  

If they are small enough, just solve them in a 

straightforward manner.

– Combine the solutions to create a solution to the 

original problem
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An Example:  Merge Sort
Sorting Problem: Sort a sequence of n elements into non-

decreasing order.

 Divide: Divide the n-element sequence to be sorted into 

two subsequences of n/2 elements each

 Conquer: Sort the two subsequences recursively using 

merge sort.

 Combine: Merge the two sorted subsequences to produce 

the sorted answer.

May 31, 2015<inhon@mail.tku.edu.tw>

Merge Sort – Example

43 15 9 1 22 26 19 55 37 43 99 2 

18 26 32 6 43 15 9 1 22 26 19 55 37 43 99 2 

18 26 32 6 43 15 9 1 22 26 19 55 37 43 99 2 

18 26 32 6 43 15 9 1 22 26 19 55 37 43 99 2 

18 26 32 6 43 15 9 1 22 26 19 55 37 43 99 2 

18 26 32 6 
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Merge Sort – Example

18 26 32 6 43 15 9 1 

18 26 32 6 43 15 9 1 

18 26 32 6 43 15 9 1 

2618 6 32 1543 1 9 

18 26 32 6 43 15 9 1 

18 26 32 6 43 15 9 1 

18 26 326 15 43 1 9 

6 18 26 32 1 9 15 43

1 6 9 15 18 26 32 43

18 26

18 26

18 26

32

32

6 

6 

32 6 

18 26 32 6 

43

43

15

15

43 15

9 

9 

1 

1 

9 1 

43 15 9 1 

18 26 32 6 43 15 9 1 

18 26 6 32

6 26 3218

1543 1 9 

1 9 15 43

1 6 9 1518 26 32 43

Original Sequence Sorted Sequence
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NP Problem
 A problem is assigned to the NP (nondeterministic 

polynomial time) class if it cannot be solved in polynomial 

time.

 A problem is said to be NP-hard if an algorithm for solving 

it can be translated into one for solving any other NP-

problem. It is much easier to show that a problem is NP

than to show that it is NP-hard. 

 A problem which is both NP and NP-hard is called an NP-

complete problem.  
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Agenda
1. Introduction

2. Graphs

3. Preview of Algorithm Designs and Analysis

4. Divide and Conquer

5. Dynamic Programming

6. Greedy Methods

7. NP Completeness

May 31, 2015<inhon@mail.tku.edu.tw>

Graphs
 Recall the Representation of Graphs

 Basic Algorithms of Graphs

 Biconnected Components

 Minimum Cost Spanning Trees

 Single-Source Shortest Paths

 All-Pairs Shortest Paths

 Topological Sort

 Strongly connected components
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Representation of Graphs

0

3

1 2

0

1

2

(a) G1 (b) G2 (c) G3

V(G1) = {0, 1, 2, 3}

E(G1) = {(0, 1), (0, 2), (0, 3), 
(1, 2), (1, 3), (2, 3)}

V(G2) = {0, 1, 2}

E(G2) = {<0, 1>, <1, 0>, <1, 2>}

0

3

1 2

4

7

5 6

H1
H2

V(G3) = {0, 1, 2, 3,4, 5, 6, 7}

E(G3) = {(0, 1), (0, 2), (1, 3), (2, 
3), (4, 5), (5, 6), (6, 7) }
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Adjacency Matrices
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01000000

10100000

01010000

00100000

00000110

00001001

00001001

00000110

7

6

5

4

3

2

1

0

76543210

(a) G1 (b) G3 (c) G3
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Adjacent Lists

3
2
1
0

1
3
3
1

2 0
0 0
0 0
2 0

[0]
[1]
[2]

[3]

0

1 0
2 0 0

[0]
[1]
[2]

HeadNodes

HeadNodes

(a) G1

(b) G2
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Adjacent Lists

2
3
0
1

1 0
0 0
3 0
1 0

[0]
[1]
[2]

[3]

HeadNodes

(c) G3

5 0
6
5
6 0

4 0
7 0

[4]
[5]
[6]

[7]
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Weighted Edges
 Very often the edges of a graph have weights 

associated with them.

– distance from one vertex to another

– cost of going from one vertex to an adjacent 

vertex.

– To represent weight, we need additional field, 

weight, in each entry.

– A graph with weighted edges is called a network.

May 31, 2015<inhon@mail.tku.edu.tw>

The Basic Algorithms of Graphs
 A general operation on a graph G is to visit all 

vertices in G that are reachable from a vertex v.

– Depth-first search

– Breath-first search
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Graph G and Its Adjacency Lists
0

7

1

3 4

2

5 6

1
0
0
1
1
2
2
3

02
3
5

07
07
07
07

4

04
06

5 06

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7

HeadNodes
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Depth-First Search
 Starting from vertex, an unvisited vertex w adjacent to v is 

selected and a depth-first search from w is initiated. 

 When the search operation has reached a vertex u such that 

all its adjacent vertices have been visited, we back up to the 

last vertex visited that has an unvisited vertex w adjacent to 

it and initiate a depth-first search from w again.

 The above process repeats until no unvisited vertex can be 

reached from any of the visited vertices.
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Algorithm of DFS

tree T = empty //T is the Spanning Tree

DFS(vertex v) { 
visit(v); 
for (each neighbor w of v) 

if (w is unvisited) { 
DFS(w); 
add edge (v, w) to tree T 

} 
} 

May 31, 2015<inhon@mail.tku.edu.tw>

Analysis of DFS
 If G is represented by its adjacency lists, the DFS 

time complexity is O(e).

 If G is represented by its adjacency matrix, then 

the time complexity to complete DFS is O(n2).
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Breath-First Search
 Starting from a vertex v, visit all unvisited vertices 

adjacent to vertex v.

 Unvisited vertices adjacent to these newly visited 

vertices are then visited, and so on.

 If an adjacency matrix is used, the BFS complexity 

is O(n2).

 If adjacency lists are used, the time complexity of 

BFS is O(e).

May 31, 2015<inhon@mail.tku.edu.tw>

Algorithm of BFS

list L = empty //L is a Queue
tree T = empty //T is the Spanning Tree
Unmark all vertices
BFS(vertex x) { 

choose some starting vertex x
mark  x; Add x to L; Add x to T;
while (L is nonempty) {

choose vertex v from the front of L 
visit v for each unmarked neighbor w 
mark w; 
add w to the end of L 
add edge (v, w) to T

}
} 
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Depth-First and Breath-First 
Spanning Trees

3 4

1 2

5 6

0

7

3 4

1 2

5 6

0

7

(a) DFS (0) spanning tree (b) BFS (0) spanning tree
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延伸閱讀

 http://en.wikipedia.org/wiki/Depth-first_search

 http://en.wikipedia.org/wiki/Breadth-first_search

 http://www.csie.ntnu.edu.tw/~u91029/Graph.html#4

 http://www.csie.ntnu.edu.tw/~u91029/Graph.html#5

 https://www.youtube.com/watch?v=zLZhSSXAwxI

 https://www.youtube.com/watch?v=AfSk24UTFS8

 https://www.youtube.com/watch?v=s-CYnVz-uh4
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Biconnected Components
 Definition: A vertex v of G is an articulation point iff the 

deletion of v, together with the deletion of all edges 

incident to v, leaves behind a graph that has at least two 

connected components.

 Definition: A biconnected graph is a connected graph that 

has no articulation points.

 Definition: A biconnected component of a connected graph 

G is a maximal biconnected subgraph H of G. By maximal, 

we mean that G contains no other subgraph that is both 

biconnected and properly contains H.
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A Connected Graph and Its 
Biconnected Components

0

1

4

2 3

8

7

6

5

9

1

4

2 3

7

6

5

0

1

3 5

8

7 7

9

(a) A connected graph
(b) Its biconnected components
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延伸閱讀 – Self Study Unit
 http://en.wikipedia.org/wiki/Biconnected_component

 http://web.thu.edu.tw/johnaxer/www/algorithm/ppt/chapter

6.ppt

 http://www.csie.ntu.edu.tw/~hsinmu/courses/_media/dsa_1

3spring/horowitz_306_311_biconnected.pdf

 http://www.csie.ntnu.edu.tw/~u91029/Component.html#3

 https://www.youtube.com/watch?v=Jl7icfFUCs4

 https://www.youtube.com/watch?v=Ss5WikSTtLg
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Minimum Cost Spanning Tree
 The cost of a spanning tree of a weighted, undirected graph is the 

sum of the costs (weights) of the edges in the spanning tree.

 A minimum-cost spanning tree is a spanning tree of least cost.

 Three greedy-method algorithms available to obtain a minimum-

cost spanning tree of a connected, undirected graph.

– Kruskal’s algorithm 

– Prim’s algorithm 

– Sollin’s algorithm
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Kruskal’s Algorithm
 Kruskal’s algorithm builds a minimum-cost spanning tree T 

by adding edges to T one at a time.

 The algorithm selects the edges for inclusion in T in 

nondecreasing order of their cost. 

 An edge is added to T if it does not form a cycle with the 

edges that are already in T.

 Theorem 6.1: Let G be any undirected, connected graph. 

Kruskal’s algorithm  generates a minimum-cost spanning 

tree.

May 31, 2015<inhon@mail.tku.edu.tw>

Steps of Kruskal’s Algorithm(1)
 Set i=1 and let E0={} 

 Select an edge ei of minimum value not in Ei-1 

such that Ti=<Ei-1 with {ei} >is acyclic and define 

Ei=Ei-1 with {ei}. If no such edge exists, Let 

T=<Ei>and stop. 

 Replace i by i+1. Return to Step 2. 

 The time required by Kruskal's algorithm is 

O(|E|log|V|) 
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Steps of Kruskal’s Algorithm(2)
1  T = Φ;

2  while ( ( T包含的邊少於n – 1個) && (E不是空的) ) {

3      從E中選一個花費最低的邊 (v, w);

4 從E中刪除 (v, w);

5           if ( (v, w) 不會在T中產生迴路 ) 把 (v, w) 加到T;

6           else 忽略 (v, w);

7  }

8  if ( T包含的邊不滿n – 1個 ) cout << “no spanning tree” << endl;

May 31, 2015<inhon@mail.tku.edu.tw>

Steps of Kruskal’s Algorithm(3)
1 function Kruskal(G) 
2     for each vertex v in G do 
3         Define an elementary cluster C(v) ← {v}. 
4         Initialize a priority queue Q to contain all edges in G, using the weights as keys. 
5         Define a tree T ← Ø //T will ultimately contain the edges of the MST 
6         // n is total number of vertices 
7        while T has fewer than n-1 edges do
8              // edge u,v is the minimum weighted route from/to v 
9              (u,v) ← Q.removeMin() 
10           // prevent cycles in T. add u,v only if T does not already contain an edge consisting of u and v. 

// Note that the cluster contains more than one vertex only if an edge containing a pair of 
// the vertices has been added to the tree. 

11          Let C(v) be the cluster containing v, and let C(u) be the cluster containing u. 
12          if C(v) ≠ C(u) then
13              Add edge (v,u) to T. 
14              Merge C(v) and C(u) into one cluster, that is, union C(v) and C(u). 
15 return tree T
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Stages in Kruskal’s Algorithm(1)
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(a) (b) (c)
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Stages in Kruskal’s Algorithm(2)
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Stages in Kruskal’s Algorithm(3)
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Prim’s Algorithm
 Similar to Kruskal’s algorithm, Prim’s algorithm constructs 

the minimum-cost spanning tree edge by edge. 

 The difference between Prim’s algorithm and Kruskal’s 

algorithm is that the set of selected edges forms a tree at all 

times when using Prim’s algorithm while a forest is formed 

when using Kruskal’s algorithm.

 In Prim’s algorithm, a least-cost edge (u, v) is added to T 

such that T∪ {(u, v)} is also a tree. This repeats until T 

contains n-1 edges.
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Steps of Prim’s Algorithm(1)
 Set i=0, S0= {u0=s}, L(u0)=0, and L(v)=infinity for v <> u0. If |V| 

= 1 then stop, otherwise go to step 2. 

 For each v in V\Si, replace L(v) by min{L(v), dv
ui}. If L(v) is 

replaced, put a label (L(v), ui) on v. 

 Find a vertex v which minimizes {L(v): v in V\Si}, say ui+1. 

 Let Si+1 = Si with {ui+1}. 

 Replace i by i+1. If i=|V|-1 then stop, otherwise go to step 2.

 The time required by Prim's algorithm is O(|V|2). It will be reduced to 

O(|E|log|V|) if heap is used to keep {v in V\Si : L(v) < infinity}.  
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Steps of Prim’s Algorithm(2)
1   // 假設G至少有一個頂點

2   TV = {0}; // 從頂點 0、沒有邊的狀態開始

3   for (T = Φ；T包含的邊不滿n – 1個；把 (u, v) 加入T)

4   {

5       令 (u, v) 為花費最少的邊，使u  TV且v  TV;

6        if (沒有這種邊) break;

7        將v加入TV;

8   }

9   if ( T包含的邊不滿n – 1個) cout << “no spanning tree” << endl;
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Stages in Prim’s Alogrithm(1)
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Stages in Prim’s Alogrithm(2)
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Sollin’s Algorithm
 Contrast to Kruskal’s and Prim’s algorithms, Sollin’s algorithm selects 

multiple edges at each stage.

 At the beginning, the selected edges and all the n vertices form a 

spanning forest.

 During each stage, an minimum-cost edge is selected for each tree in 

the forest. 

 It’s possible that two trees in the forest to select the same edge. Only 

one should be used.

 Also, it’s possible that the graph has multiple edges with the same cost. 

So, two trees may select two different edges that connect them together. 

Again, only one should be retained.
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Steps of Sollin’s Algorithm
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Stages in Sollin’s Algorithm
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延伸閱讀

 http://en.wikipedia.org/wiki/Shortest_path_problem

 https://www.cs.princeton.edu/~rs/AlgsDS07/15ShortestPat

hs.pdf

 https://www.cs.princeton.edu/~rs/AlgsDS07/15ShortestPat

hs.pdf

 https://www.youtube.com/watch?v=WN3Rb9wVYDY

 https://www.youtube.com/watch?v=dS1Di2ZHl4k

 https://www.youtube.com/watch?v=8Ls1RqHCOPw
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Shortest Paths
 Usually, the highway structure can be represented by 

graphs with vertices representing cities and edges 

representing sections of highways.

 Edges may be assigned weights to represent the distance or 

the average driving time between two cities connected by a 

highway.

 Often, for most drivers, it is desirable to find the shortest 

path from the originating city to the destination city.
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Single Source/All Destinations: 
Nonnegative Edge Costs
 Let S denotes the set of vertices to which the shortest paths 

have already been found.

1) If the next shortest path is to vertex u, then the path begins at v, 

ends at u, and goes through only vertices that are in S.

2) The destination of the next path generated must be the vertex u that 

has the minimum distance among all vertices not in S.

3) The vertex u selected in 2) becomes a member of S.

 The algorithm is first given by Edsger Dijkstra. Therefore, 

it’s sometimes called Dijkstra Algorithm.
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Steps of Dijkstra Algorithm
1 function Dijkstra(G, w, s) 
2     for each vertex v in V[G]     // Initializations
3           d[v] := infinity     // Known distance function from s to v
4           previous[v] := undefined 
5      d[s] := 0     // Distance from s to s
6      S := empty set     // Set of all visited vertices
7      Q := V[G]     // Set of all unvisited vertices
8      while Q is not an empty set     // The algorithm itself
9            u := Extract_Min(Q)     // Remove best vertex from priority queue
10          S := S union {u}     // Mark it 'visited'
11          for each edge (u,v) outgoing from u 
12                if d[u] + w(u,v) < d[v]     // Relax (u,v)
13                           d[v] := d[u] + w(u,v) 
14 previous[v] := u 

The running time is O(|V|.|E|). 
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Graph and Shortest Paths From 
Vertex 0 to all destinations(1)
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Graph and Shortest Paths From 
Vertex 4 to all destinations(2-1)
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Graph and Shortest Paths From 
Vertex 4 to all destinations(2-2)
iteration S Vertex 

selected

Distance

LA SF DEN CHI BOST NY MIA NO

[0] [1] [2] [3] [4] [5] [6] [7]

Initial -- --- +∞ +∞ +∞ 1500 0 250 +∞ +∞

1 {4} 5 +∞ +∞ +∞ 1250 0 250 1150 1650

2 {4,5} 6 +∞ +∞ +∞ 1250 0 250 1150 1650

3 {4,5,6} 3 +∞ +∞ 2450 1250 0 250 1150 1650

4 {4,5,6,3} 7 3350 +∞ 2450 1250 0 250 1150 1650

5 {4,5,6,3,7} 2 3350 3250 2450 1250 0 250 1150 1650

6 {4,5,6,3,7,2} 1 3350 3250 2450 1250 0 250 1150 1650

{4,5,6,3,7,2,1}
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All-Pairs Shortest Paths
 In all-pairs shortest-path problem, we are to find 

the shortest paths between all pairs of vertices u 
and v, u ≠ v.

– Use n independent single-source/all-destination 
problems using each of the n vertices of G as a source 
vertex. Its complexity is O(n3) (or O(n2 logn + ne) if 
Fibonacci heaps are used).

– On graphs with negative edges the run time will be 
O(n4). if adjacency matrices are used and O(n2e) if 
adjacency lists are used.
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延伸閱讀

 http://en.wikipedia.org/wiki/Minimum_spanning_tree

 http://www.csie.ntnu.edu.tw/~u91029/SpanningTree.html#2

 http://www.csie.ntnu.edu.tw/~u91029/SpanningTree.html#3

 https://www.youtube.com/watch?v=8fJgkVpxbQg

 https://www.youtube.com/watch?v=G28gJ-uQREc

 https://www.youtube.com/watch?v=YyLaRffCdk4

 https://www.youtube.com/watch?v=k9jemw3SZe0
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Strongly Connected Components
 In the directed graphs, a graph is said to 

be strongly connected if every vertex 
is reachable from every other vertex. 

 The strongly connected components of an 
arbitrary directed graph form a partition into 
subgraphs that are themselves strongly connected. 

Self Study Unit

Strongly Connected Components

Two examples
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延伸閱讀

 http://en.wikipedia.org/wiki/Strongly_connected_compone

nt

 http://www.cs.berkeley.edu/~vazirani/s99cs170/notes/lec12.pdf

 http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgor

ithms/GraphAlgor/strongComponent.htm

 http://www.columbia.edu/~cs2035/courses/csor4231.F11/sc

c.pdf

 https://www.youtube.com/watch?v=J_Jl_r_Ua1Q

 https://www.youtube.com/watch?v=PZQ0Pdk15RA
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Topological Sort

A topological sort of a dag G = (V, E) is a linear ordering of all its 

vertices such that if G contains an edge (u, v), then u appears before 

v in the ordering. 
 

Dag: Directed Acicular Graph

定義：若在 AOV-network 中，Vi 是 Vj 的前行者，
則在線性的排列中，Vi 一定在 Vj 的前面，此種特
性稱之為拓樸排序 ( topological sort ) 。

AOV: Activity On Vertices

AOE: Activity On Edges
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AOV and AOE
 Definition: A directed graph G in which the 

vertices represent tasks or activities and the edges 

represent precedence relations between tasks is an 

Activity-On-Vertex network or AOV network.

 Definition: A directed graph G in which the edges 

represent tasks or activities and the vertices 

represent precedence relations between tasks is an 

Activity-On-Edge network or AOE network.
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Example of AOV
Course number Course name Prerequisites

C1 Programming I None

C2 Discrete Mathematics None

C3 Data Structures C1, C2

C4 Calculus I None

C5 Calculus II C4

C6 Linear Algebra C5

C7 Analysis of Algorithms C3, C6

C8 Assembly Language C3

C9 Operating Systems C7, C8

C10 Programming Languages C7

C11 Compiler Design C10

C12 Artificial Intelligence C7

C13 Computational Theory C7

C14 Parallel Algorithms C13

C15 Numerical Analysis C5
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Example of AOV(Cont.)

C1

C2

C3

C5C4 C6 C15

C7

C8

C13

C12

C10

C9

C14

C11
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Example of AOE
1

0 4

2

6

8

7

3 5

start finish

a1 = 6 a4 = 6

a2 = 4
a5 = 1

a7= 9
a10 = 2

a3 = 5

a6 = 2

a9 = 4

a11 = 4

event interpretation

0 Start of project

1 Completion of activity a1

4 Completion of activities a4 and a5

7 Completion of activities a8 and a9

8 Completion of project
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Topological Sort -Algorithms
尋找 AOV-network 拓樸排序的過程如下：

(１) 在 AOV-network 中任意挑選沒有前行者的節

點。

(２) 輸出此頂點，並將該頂點所連接的邊刪除。

重覆步驟 (１) 及步驟 (２) ，一直到全部的頂點

皆輸出為止。
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Topological Sort -Algorithms
void topsort ( hdnodes , graph[] , int n )

{
int i , j , k , top ;
node_pointer ptr ;
top = -1 ;
for ( i = 0 ; i < n ; i++ )

if ( !graph[i].count )         
{

graph[i].count = top ;
top = i ;

｝
for ( i = 0 ; i < n ; i++ )

if ( top == -1 ) 
{

fprintf ( stderr, “\n Network has a cycle. 
Sort terminated. \n” ) ;

exit (1) ;
}

else 
{

j = top ;
top = graph[top].count ;
printf ( “v%d, ” j ) ;
for ( ptr = graph[j].link ; ptr ; ptr = ptr-

>link ) 
{

k = ptr -> vertex ;
graph[k].count -- ;
if ( !graph[k].count ) 
{

graph[k].count = top ;
top =k ;

}
}

}
}

The Time Complexity is O(n+e)
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Topological Sort -Example
求下面 AOV-network 的拓樸排序
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Topological Sort -Example
Step One: 

輸出 V1 ，並刪除 < V1,V2 > 與 < V1,V6 > 兩個邊
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Topological Sort -Example
Step Two: 

輸出 V2 ，並刪除 < V2,V3 > 與 < V2,V4 > 兩個邊
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Topological Sort -Example
Step Three: 

輸出 V6 ，並刪除 < V6,V4 > 與 < V6,V5 > 兩個邊
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Topological Sort -Example
Step Four: 

輸出 V3，並刪除 < V3,V7 > 與 < V3,V5 > 兩個邊
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Topological Sort -Example
Step Five: 

輸出 V4 ，並刪除 < V4,V5 > 



48

May 31, 2015<inhon@mail.tku.edu.tw>

Topological Sort -Example
Step Six: 

輸出 V7 ，並刪除 < V7,V8 > 
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Topological Sort -Example
Step Seven: 

輸出 V5 ，並刪除 < V5,V8 >

Step Eight: 

輸出 V8

所得輸出順序為 1 , 2 , 6 , 3 , 4 , 7 , 5 , 8 

相同的AOV，可能有二個以上的Topological Sort輸出
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Topological Sort –Another Example
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延伸閱讀
 http://en.wikipedia.org/wiki/Topological_sorting

 http://www.csie.ntnu.edu.tw/~u91029/DirectedAcyclicGraph.ht

ml

 http://www.csie.ntnu.edu.tw/~u91029/DirectedAcyclicGraph.ht

ml#2

 http://120.118.165.132/LMS/Content/C010/Tbank/Read/CH7/7-

9/7-9.htm

 https://www.youtube.com/watch?v=jksMzq4LgfM

 https://www.youtube.com/watch?v=2E7tzF4ihvI

 https://www.youtube.com/watch?v=jHWGir3Jk8o
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Agenda

Growth of Functions

Self Study Unit
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Asymptotic Complexity
 Running time of an algorithm as a function of 

input size n for large n.

 Expressed using only the highest-order term in 

the expression for the exact running time.

– Instead of exact running time, say (n2).

 Describes behavior of function in the limit.

 Written using Asymptotic Notation.
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Asymptotic Notation
 , O, , o, 

 Defined for functions over the natural numbers.

– Ex: f(n)  =  (n2).

– Describes how f(n) grows in comparison to n2.

 Define a set of functions; in practice used to compare two 

function sizes.

 The notations describe different rate-of-growth relations 

between the defining function and the defined set of 

functions.
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Relations Between , O, 
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Agenda
1. Introduction

2. Graphs

3. Preview of Algorithm Designs and Analysis

4. Divide and Conquer

5. Dynamic Programming

6. Greedy Methods

7. NP Completeness
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Preview of Algorithm Designs and 
Analysis

 Incremental Approach

 Divide and Conquer

 Randomization 

(Randomized Algorithm) 

 Linear Programming

 Dynamic Programming

 Greedy method

 Amortized analysis

 Brute-force

 Backtracking

 Branch and Bound
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Divide and Conquer
 Recall the key idea of Divide and Conquer

 Recursive in structure  

– Divide the problem into sub-problems that are similar to 
the original but smaller in size

– Conquer the sub-problems by solving them recursively.  
If they are small enough, just solve them in a 
straightforward manner.

– Combine the solutions to create a solution to the 
original problem
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Dynamic Programming
 Dynamic programming (DP) is typically applied to 

optimization problems.  In such problem there can be many

solutions.  Each solution has a value, and we wish to find a

solution with the optimal value. 

 Example problems: 0/1 knapsack problem, Matrix 

Multiplication Chains problem

 Like divide and conquer, DP solves problems by 

combining solutions to subproblems.
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Dynamic Programming
 Unlike divide and conquer, subproblems are not 

independent.

– Subproblems may share subsubproblems,

– However, solution to one subproblem may not affect the solutions 

to other subproblems of the same problem. (More on this later.)

 DP reduces computation by 

– Solving subproblems in a bottom-up fashion.

– Storing solution to a subproblem the first time it is solved.

– Looking up the solution when subproblem is encountered again.

 Key: determine structure of optimal solutions
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Dynamic Programming
 The development of a dynamic programming 

algorithm can be broken into a sequence of four 

steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom up 

fashion.

4. Construct an optimal solution from computed 

information.
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Greedy Method
 Like dynamic programming, used to solve 

optimization problems.

 Problems exhibit optimal substructure (like DP).

 Problems also exhibit the greedy-choice property.

– When we have a choice to make, make the one that 

looks best right now.

– Make a locally optimal choice in hope of getting a 

globally optimal solution.
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Greedy Method
 The choice that seems best at the moment is the 

one we go with.

– Prove that when there is a choice to make, one of the 

optimal choices is the greedy choice. Therefore, it’s 

always safe to make the greedy choice.

– Show that all but one of the subproblems resulting from 

the greedy choice are empty.

 Example Problems: Container Loading problem, 0/1 

Knapsack problem
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Brute-Force 
 Brute-force algorithms are distinguished not by their 

structure or form, but by the way in which the problem to 
be solved is approached. 

 A brute-force algorithm solves a problem in the most 
simple, direct or obvious way. As a result, such an 
algorithm can end up doing far more work to solve a given 
problem than a more clever or sophisticated algorithm 
might do. 

 On the other hand, a brute-force algorithm is often easier to 
implement than a more sophisticated one and, because of 
this simplicity, sometimes it can be more efficient. 
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Brute-Force 
 Often a problem can be viewed as a sequence of decisions

to be made. 
– For example, consider the problem of finding the best way to place 

electronic components on a circuit board. 
– To solve this problem we must decide where on the board to place 

each component. 

 Typically, a brute-force algorithm solves such a problem by 
exhaustively enumerating all the possibilities. I.e., for every 
decision we consider each possible outcome.

 Example Problems: 0/1 knapsack problem, Sequential 
Search problem, Hamilton Circuits problem, Board 
Permutation problem
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Backtracking
 Backtracking is a refinement of the brute force approach, which 

systematically searches for a solution to a problem among all available 

options. 

 A backtracking algorithm systematically considers all possible 

outcomes for each decision. 

 In this sense, backtracking algorithms are like the brute-force 

algorithms.

 However, backtracking algorithms are distinguished by the way in 

which the space of possible solutions is explored. 

 Sometimes a backtracking algorithm can detect that an exhaustive 

search is unnecessary and, therefore, it can perform much better. 
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Backtracking
 It does so by assuming that the solutions are represented by vectors 

(v1, ..., vm) of values and by traversing, in a depth first manner, the 

domains of the vectors until the solutions are found. 

 When invoked, the algorithm starts with an empty vector. At each stage 

it extends the partial vector with a new value. 

 Upon reaching a partial vector (v1, ..., vi) which can’t represent a partial 

solution, the algorithm backtracks by removing the trailing value from 

the vector, and then proceeds by trying to extend the vector with 

alternative values. 

 Example Problems: 0/1 knapsack problem, Container Loading problem, Max 
Clique problem, Traveling Salesman problem, Board Permutation problem
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Branch and Bound
 Branch-and-bound is an approach developed for solving 

discrete and combinatorial optimization problems.

 The discrete optimization problems are problems in which 
the decision variables assume discrete values from a 
specified set. 

 The combinatorial optimization problems, on the other 
hand, are problems of choosing the best combination out of 
all possible combinations.

 Example problems: 0/1 knapsack problem, Container 
Loading problem, Max Clique problem, Traveling 
Salesman problem, Board Permutation problem
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Branch and Bound
 The essence of the branch-and-bound approach is the following 

observation: 

– In the total enumeration tree, at any node, if I can show that the optimal solution 

cannot occur in any of its descendents, then there is no need for me to consider those 

descendent nodes. 

– Hence, I can "prune" the tree at that node. If I can prune enough branches of the tree 

in this way, I may be able to reduce it to a computationally manageable size. 

– Note that, I am not ignoring those solutions in the leaves of the branches that I have 

pruned, I have left them out of consideration after I have made sure that the optimal 

solution cannot be at any one of these nodes. 

 Thus, the branch-and-bound approach is not a heuristic, or 

approximating, procedure, but it is an exact, optimizing procedure that 

finds an optimal solution. 
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延伸閱讀

 http://en.wikipedia.org/wiki/Algorithm_design 

 http://www.csie.ntnu.edu.tw/~u91029/AlgorithmDesign.html

 http://code.tutsplus.com/tutorials/understanding-the-

principles-of-algorithm-design--net-26561

 https://www.youtube.com/watch?v=a_otxyu0mSQ

 https://www.youtube.com/watch?v=Qe6PUzVu2pk

 https://www.youtube.com/watch?v=SDgo4kVSiiw
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Agenda
1. Introduction

2. Graphs

3. Preview of Algorithm Designs and Analysis

4. Divide and Conquer

5. Dynamic Programming

6. Greedy Methods

7. NP Completeness
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Divide and Conquer
 Famous Problems and Algorithms

– Merge Sort

– Quick Sort

– Binary Search

– Binary Tree traversals

– Multiplication of Large Integers

– Matrix Multiplication

– Closest Pair of Points

– Convex-Hull
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Example Problem: Closest Pair
 Define Problem

– Input:

P = {p(1), p(2) ,..., p(n) } where p(i) = ( x(i), y(i) ). 

A set of n points in the plane. 

– Output

The distance between the two points that are closest. 

Note: The distance DELTA( i, j ) between p(i) and p(j) is 

defined by the expression: 

Square root of { (x(i)-x(j))^2 + (y(i)-y(j))^2 }
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Closest Pair Problem
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Solved in Divide and Conquer(1/3)

 We assume that: 

 n is an exact power of 2, n = 2^k. 

 For each i, x(i) < = x(i+1), i.e. the points are 

ordered by increasing x from left to right. 

 Consider drawing a vertical line (L) through the set 

of points P so that half of the points in P lie to the 

left of L and half lie to the right of L. 
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Solved in Divide and Conquer(2/3)
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Solved in Divide and Conquer(3/3)

 There are three possibilities: 

– The closest pair lie in P-LEFT. 

– The closest pair lie in P-RIGHT. 

– The closest pair contains: 

One Point from P-LEFT

and 

One Point from P-RIGHT

 So we have a (rough) Divide-and-Conquer Method as 
follows: 
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Algorithm for Closest Pair Problem
function closest_pair (P: point set; n: integer )

float DELTA-LEFT, DELTA-RIGHT : float; DELTA : 

begin

if n = 2 then return distance from p(1) to p(2); 

else P-LEFT := ( p(1), p(2) ,..., p(n/2) ); 

P-RIGHT := ( p(n/2+1), p(n/2+2) ,..., p(n) ); 

DELTA-LEFT := closest_pair( P-LEFT, n/2 ); 

DELTA-RIGHT := closest_pair( P-RIGHT, n/2 ); 

DELTA := minimum ( DELTA-LEFT, DELTA-RIGHT ); 

--********************************************* 

Determine whether there are points p(l) in P-LEFT and p(r) in P-RIGHT with distance( p(l), p(r) ) < DELTA. 

If there are such points, set DELTA to be the smallest distance. 

--********************************************** 

return DELTA; end if; 

end closest_pair; 
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Combine (1/3)
 The section between the two comment lines is the 

`combine' stage of the Divide-and-Conquer algorithm. 

 If there are points p(l) and p(r) whose distance apart is less 

than DELTA then it must be the case that 

– The x-coordinates of p(l) and p(r) differ by at most DELTA. 

– The y-coordinates of p(l) and p(r) differ by at most DELTA. 
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Combine (2/3)
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Combine (3/3)
 The combine stage can be implemented by: 

– Finding all points in P-LEFT whose x-coordinate is at least x(n/2)-

DELTA. 

– Finding all points in P-RIGHT whose x-coordinate is at most 

x(n/2)+DELTA. 

 Call the set of points found in (1) and (2) P-strip. and sort 

the s points in this in order of increasing y-coordinate. 

letting ( q(1),q(2) ,..., q(s) ) denote the sorted set of points. 

 Then the combine stage of the algorithm consists of two 

nested for loops: 
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Statements of Combine section
for i in 1..s loop

for j in i+1..s loop

exit when (| x(i) - x(j) | > DELTA or | y(i) - y(j) | > DELTA); 

if distance( q(i), q(j) ) < DELTA then DELTA := distance ( q(i), q(j) ); 

end if; 

end loop; 

end loop; 
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延伸閱讀
 http://en.wikipedia.org/wiki/Divide_and_conquer_algorithms

 http://acm.nudt.edu.cn/~twcourse/DivideAndConquer.html

 https://www.cs.berkeley.edu/~vazirani/algorithms/chap2.pdf

 http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgor

ithms/divide.htm

 https://www.khanacademy.org/computing/computer-

science/algorithms/merge-sort/a/divide-and-conquer-algorithms

 https://www.youtube.com/watch?v=pJBG5_ja_YU

 https://www.youtube.com/watch?v=ATCYn9F3oUQ

 https://www.youtube.com/watch?v=6SUmp_Cn-SU
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Agenda
1. Introduction

2. Graphs

3. Preview of Algorithm Designs and Analysis

4. Divide and Conquer

5. Dynamic Programming

6. Greedy Methods

7. NP Completeness
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Dynamic Programming
 Famous Problems and Algorithms

– Matrix-Chain Multiplication

– Longest Common Subsequence

– Optimal Binary Search Trees

– The knapsack Problem

– Single-Source Shortest Path

– All Pairs Shortest Paths

– Image compression

– Component Folding

– Noncrossing Subset of Nets 

– Computing a Binomial Coefficient
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Dynamic Programming
 Dynamic programming is typically applied to 

optimization problems.  In such problem there can 

be many solutions.  Each solution has a value, and 

we wish to find a solution with the optimal value. 
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Matrix-chain multiplication (1/2)
 A product of matrices is fully parenthesized if it 

is either a single matrix, or a product of two fully 

parenthesized matrix product, surrounded by 

parentheses. 
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Matrix-chain multiplication (2/2)

 How to compute                   where     is 

a matrix for every i.

 Example: 

A A An1 2 ... Ai

A A A A1 2 3 4

( ( ( ))) ( (( ) ))

(( )( )) (( ( )) )

((( ) ) )

A A A A A A A A

A A A A A A A A

A A A A

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4
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MATRIX MULTIPLY
MATRIX MULTIPLY(A,B)

1 if columns[A]         column[B]

2 then error “incompatible dimensions”

3 else for   to rows[A]

4 do for to columns[B]

5 do 

6 for to columns[A]

7 do

8 return C



i 1
j 1

c i j[ , ]  0

k 1
c i j c i j A i k B k j[ , ] [ , ] [ , ] [ , ] 



69

May 31, 2015<inhon@mail.tku.edu.tw>

Complexity:

 Let A be a             matrix, and B be a         

matrix. Then the complexity is 

p q

q r

p q r 
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Example:
 is a               matrix,         is a             matrix, 

and        is a           matrix. Then         

takes                                                

time.  However,                          takes                              

time. 

A1 10 100 A2 100 5
A3 5 50

(( ) )A A A1 2 3 10 100 5 10 5 50 7500     
( ( ))A A A1 2 3

100 5 50 10 100 50 75000     
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The matrix-chain multiplication 
problem
 Given a chain of n matrices, where 

for i=0,1,…,n, matrix Ai has dimension pi-1pi, 

fully parenthesize the product                        in a 

way that minimizes the number of scalar 

multiplications.

 nAAA ,...,, 21

A A An1 2 ...
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Counting the number of 
parenthesizations

 [Catalan number] 

P n

if n

P k p n k if n
k

n( )
( ) ( )




 





 


1 1

2
1

1

P n C n( ) ( ) 1









1

1

2 4
3 2n

n

n n

n
( )

/



71

May 31, 2015<inhon@mail.tku.edu.tw>

Step 1: The structure of an 
optimal parenthesization

(( ... )( ... ))A A A A A Ak k k n1 2 1 2 

Optimal

Combine
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Step 2: A recursive solution
 Define m[i, j]= minimum number of scalar 

multiplications needed to compute the matrix

 goal  m[1, n]

A A A Ai j i i j.. .. 1

m i j[ , ] 







 jipppjkmkim

ji

jkijki }],1[],[{min

0

1
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Step 3: Computing the optimal 
costs
Using MATRIX_CHAIN_ORDER algorithm
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MATRIX_CHAIN_ORDER
MATRIX_CHAIN_ORDER(p)

1 n  length[p] –1 

2 for i  1 to n

3 do m[i, i]  0

4 for l  2 to n

5 do for i  1 to n – l + 1

6 do j  i + l – 1 

7 m[i, j] 

8 for k  i to j – 1 

9 do q  m[i, k] + m[k+1, j]+ pi-1pkpj

10 if q < m[i, j]

11 then m[i, j]  q

12 s[i, j]  k

13 return m and s Complexity: O n( )3
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Example

656

545

434

323

212

101

2520

2010

105

515

1535

3530

ppA

ppA

ppA

ppA

ppA

ppA
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The m and s table computed by 
MATRIX-CHAIN-ORDER for n=6
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Result
m[2,5]=

min{

m[2,2]+m[3,5]+p1p2p5=0+2500+351520=13000,

m[2,3]+m[4,5]+p1p3p5=2625+1000+35520=7125,

m[2,4]+m[5,5]+p1p4p5=4375+0+351020=11374

}

=7125 
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Step 4: Constructing an optimal 
solution

Using MATRIX_CHAIN_MULTIPLY algorithm
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MATRIX_CHAIN_MULTIPLY
MATRIX_CHAIN_MULTIPLY(A, s, i, j)

1 if j > i

2 then

3

4 return MATRIX-MULTIPLY(X,Y)

5 else return Ai

x MCM A s i s i j ( , , , [ , ])

y MCM A s s i j j ( , , [ , ] , )1
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Result of the Example

(( ( ))(( ) ))A A A A A A1 2 3 4 5 6
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Elements of dynamic 
programming
 Optimal substructure

 Subtleties

 Overlapping subproblems
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Optimal substructure (1/3)
 We say that a problem exhibits optimal 

substructure if an optimal solution to the problem 

contains within its optimal solution to subproblems.

 Example:  Matrix-multiplication problem
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Optimal substructure (2/3)
1. You show that a solution to the problem consists of making a 

choice, Making this choice leaves one or more subproblems to be 

solved.

2. You suppose that for a given problem, you are given the choice 

that leads to an optimal solution.

3. Given this choice, you determine which subproblems ensue and 

how to best characterize the resulting space of subproblems.

4. You show that the solutions to the subproblems used within the 

optimal solution to the problem must themselves be optimal by 

using a “cut-and-paste” technique. 
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Optimal substructure (3/3)
Optimal substructure varies across problem domains 

in two ways:

1. how many subproblems are used in an optimal 

solutiion to the original problem, and

2. how many choices we have in determining which 

subproblem(s) to use in an optimal solution.
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Subtleties
 One should be careful not to assume that optimal substructure applies 

when it does not. consider the following two problems in which we are 

given a directed graph G = (V, E) and vertices u, v  V.

– Unweighted shortest path:

• Find a path from u to v consisting of the fewest edges. 

Good for Dynamic programming.

– Unweighted longest simple path:

• Find a simple path from u to v consisting of the most 

edges. Not good for Dynamic programming.
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Overlapping Subprogrammings

 example: MAXTRIX_CHAIN_ORDER
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Longest Common Subsequence
 Longest Common Subsequence is the problem of finding the longest 

common subsequence of two sequences of items. This is used in the 

"diff" file comparison utility. 

 Given two sequence of items, find the longest subsequence present in 

both of them. A subsequence is a sequence that appears in the same 

relative order, but not necessarily contiguous. For example, in the string 

abcdefg, "abc", "abg", "bdf", "aeg" are all subsequences. 

 A naive exponential algorithm is to notice that a string of length n has 

O(2n) different subsequences, so we can take the shorter string, and test 

each of its subsequences for presence in the other string, greedily.
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Longest Common Subsequence
 Recursive solution 

 We can try to solve the problem in terms of smaller subproblems. We 

are given two strings x and y, of length n and m respectively. We solve 

the problem of finding the longest common subsequence of x = x1...n and 

y = y1...m by taking the best of the three possible cases: 

– The longest common subsequence of the strings x1...n - 1 and y1...m

– The longest common subsequence of the strings x1...n and y1...m - 1

– If xn is the same as ym, the longest common subsequence of the strings x1...n

- 1 and y1...m - 1, followed by the common last character. 

 It is easy to construct a recursive solution from this: 
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Longest Common Subsequence
func lcs(x,y) 

if ( length(x)=0 or length(y)=0 ) 

return "" 

best = lcs(x[1,n-1],y[1,m]) 

if ( length(best) < length(lcs(x[1,n],y[1,m-1])) ) 

best = lcs(x[1,n],y[1,m-1]) 

if ( x[n] = y[m] and length(best) < length(lcs(x[1,n-1],y[1,m-1]) 1 ) 

best = lcs(x[1,n-1],y[1,m-1]) x[n] 

return best 
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Longest Common Subsequence
 Dynamic programming

 Obviously, this is still not very efficient. But because the subproblems 

are repeated, we can use memoization. An even more (slightly) efficient 

way, which avoids the overhead of function calls, is to order the 

computation in such a way that whenever the results of subproblems are 

needed, they have already been computed, and can simply be looked up 

in a table. This is called Dynamic Programming. 

 In this case, we find lcs(x1..i , y1..j) for every i and j, starting from smaller 

ones, storing the results in an array at index (i,j) as we go along
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Longest Common Subsequence
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Longest Common Subsequence
func lcs(x,y) 

n = length( x ), m = length( y ) 

for i from 0 to n 

for j from 0 to m 

if ( i is 0 or j is 0 ) 

table[i,j] = "" 

if ( x[i] == y[j] ) table[i,j] = x[i] 

else /* Sentinel */ 

table[i,j] = table[i-1,j] 

if ( length( table[i,j] ) < length( table[i,j-1] ) ) table[i,j] = table[i,j-1]; 

if ( x[i] = y[j] and length( table[i,j] ) < length( table[i-1,j-1] )  ) table[i,j] = table[i-1,j-1];

return table[n][m]
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Longest Common Subsequence

 Example

– Two sequences as follows

• HUMAN 

• CHIMPANZE 

– The LCS of the two sequences is 

• HMAN

– HUMAN

– CHIMPANZE
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0/1 Knapsack Problem
 You have a knapsack that has capacity (weight) C.

 You have several items J1, …, Jn.

 Each item Ji has a weight wi and a benefit pi.

 You want to place a certain number of item Ji in the 

knapsack so that:

– The knapsack weight capacity is not exceeded and

– The total benefit is maximal.
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Dynamic Programming solves 0/1 
Knapsack Problem

 The structure of Optimal solution

– maximize  

– subject to  

 The  recursive subtleties

– M(n, C) = max {M(n-1, C),               if n>0 & C-wi < 0

M(n-1, C-wi) + pi,    if n>0 & C-wi  0

0, if n = 0 & C > 0  }
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Example
Item Weight Benefit

A 2 60

B 3 75

C 4 90

Capacity = 5
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Example
 Suppose f(C) represents the maximal possible 

benefit of a knapsack with Capacity C.

 We want to find f(5).

 Recursive Calculation

– f(C) = MAX { pj + f(C-wj) | Ij is an item}.
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Example

 f(0), f(1)

 f(0) = 0. Why?  The knapsack with capacity 0 can 

have nothing in it.

 f(1) = 0.  There is no item with weight 1.  
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Example

 f(2)

 f(2) = 60.  There is only one item with Benefit 60.

 Choose A.
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Example

 f(3)

 f(3) = MAX { bj + f(w-wj) | Ij is an item}.

= MAX { 60+f(3-2), 75 + f(3-3)}

= MAX { 60 + 0, 75 + 0 }

= 75.

 Choose B.
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Example
 f(4)

 f(4) = MAX { bj + f(w-wj) | Ij is an item}.

= MAX { 60 + f(4-2), 75 + f(4-3), 90+f(4-4)}

= MAX { 60 + f(2), 75 + f(1), 90 + f(0)}

= MAX { 60 + 0, 75 + 0, 90 + 0}

=90.

 Choose C.
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Example
 f(5)

 f(5) = MAX { bj + f(w-wj) | Ij is an item}.

= MAX { 60 + f(5-2), 75 + f(5-3), 90+f(5-4)}

= MAX { 60 + f(3), 75 + f(2), 90 + f(1)}

= MAX { 60 + 75, 75 + 60, 90 + 0}

=135.

 Choose A + B.
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Example
 Optimal knapsack Benefit is 135

 Remain capacity = 0.

 The optimal solutions: Take A and B
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Another Example
Item Weight Benefit

A 4Kg $4500

B 5Kg $5700

C 2Kg $2250

D 1Kg $1100

E 6Kg $6700

Capacity = 8 Kg
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延伸閱讀
 http://en.wikipedia.org/wiki/Dynamic_programming

 http://www.csie.ntnu.edu.tw/~u91029/DynamicProgramming.ht

ml

 http://acm.nudt.edu.cn/~twcourse/DynamicProgramming.html

 https://www.cs.berkeley.edu/~vazirani/algorithms/chap6.pdf

 https://www.youtube.com/watch?v=OQ5jsbhAv_M

 https://www.youtube.com/watch?v=gm9QkcdIN9o

 https://www.youtube.com/watch?v=sF7hzgUW5uY

 https://www.youtube.com/watch?v=PLJHuErj-Tw

 https://www.youtube.com/watch?v=UhFvK3uERGg
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Agenda
1. Introduction

2. Graphs

3. Preview of Algorithm Designs and Analysis

4. Divide and Conquer

5. Dynamic Programming

6. Greedy Methods

7. NP Completeness
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Greedy Methods
 Famous Problems and Algorithms

– Minimum Cost Spanning Tree

– Single-Source Shortest Path

– Bipartite Cover

– Topological Sorting

– The Knapsack problem

– Container Loading

– Task Scheduling

– Huffman Code
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Greedy Methods
 Like dynamic programming, used to solve optimization 

problems.

 Problems exhibit optimal substructure (like DP).

 Problems also exhibit the greedy-choice property.

– When we have a choice to make, make the one that looks best right 

now.

– Make a locally optimal choice in hope of getting a globally 

optimal solution.
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Greedy Methods
 Greedy Strategy

– The choice that seems best at the moment is the one we 

go with.

• Prove that when there is a choice to make, one of the optimal 

choices is the greedy choice. Therefore, it’s always safe to 

make the greedy choice.

• Show that all but one of the subproblems resulting from the 

greedy choice are empty.
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Greedy Methods
 Elements of Greedy Algorithms

– Greedy-choice Property.

• A globally optimal solution can be arrived at by making a 

locally optimal (greedy) choice.

– Optimal Substructure.
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Greedy Methods
 Examples

– Minimal Cost Spanning Tree

– Knapsack Problem (0/1, Fractional, Multiple items)

– Huffman Codes
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Recall 0/1 Knapsack Problem
 You have a knapsack that has capacity (weight) C.

 You have several items I1,…,In.

 Each item Ij has a weight wj and a benefit bj.

 You want to place a certain number of item Ij in the 

knapsack so that:

– The knapsack weight capacity is not exceeded and

– The total benefit is maximal.
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0/1 Knapsack Problem
 Two kinds of selected directions

– Best Benefit only 

– Best Unit_Benefit (Cost)

 f(C) = f(C - wj) + f(C - wj –wj+1) + … + f(0) or no 

more item can be added 

– which Ij is the Best Choice, Ij+1 is the second 

Best Choice, and so on. 
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Recall Example
Item Weight Benefit

A 2 60

B 3 75

C 4 90

Capacity = 5
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Choice by Benefit only
 Step 1. Choose the item with Max. Benefit,

– Choose Item C, Benefit = 90, remain Capacity = 1

 Step 2. No more item with weight less then remain 

Capacity, Stop

 Take Item C, Total Benefit is 90
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Choice by Cost (Benefit/Weight)
 Step 1. Choose the item with Max. Cost,

– Item A, Cost = 30

– Item B, Cost = 25

– Item C, Cost = 22.5

– Choose Item A, remain Capacity = 3

 Step 2. Choose the next item with Max. Cost,

– Choose Item B, remain Capacity = 0

 Remain Capacity = 0, Stop

 Take Items A and B, Total Benefit is 135
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Another Example
 Knapsack of capacity 50.

 3 items

– Item 1 has weight 10, benefit 60

– Item 2 has weight 20,benefit 100

– Item 3 has weight 30, benefit 120

 Apply two kinds of selection criteria to find the solution by 

Greedy Method

– Benefit only: take Items 3 and 2, Total benefit is 220

– Cost: take Item 1 and 2, Total benefit is 160
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Another Example
Item Weight Benefit

A 4Kg $4500

B 5Kg $5700

C 2Kg $2250

D 1Kg $1100

E 6Kg $6700

Capacity = 8 Kg
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Huffman Coding
 Huffman coding is an entropy encoding algorithm used for 

lossless data compression. 

 The term refers to the use of a variable-length code table 

for encoding a source symbol (such as a character in a file) 

where the variable-length code table has been derived in a 

particular way based on the estimated probability of 

occurrence for each possible value of the source symbol. 

– It was developed by David A. Huffman while he was a Ph.D. 

student at MIT 
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Huffman Coding
 Main properties：

– Use variable-length code for encoding a source symbol.

– Shorter codes are assigned to the most frequently used 

symbols, and longer codes to the symbols which appear 

less frequently.

– Unique decodable & Instantaneous code.

– It was shown that Huffman coding cannot be improved 

or with any other integral bit-width coding stream.
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Huffman Coding
 Compare to ASCII (Examples), fixed-length codes

Character Binary Code Hexadecimal Code

A 01000001 41

J 01001010 4A

V 01010110 56

# 00100011 23

a 01100001 61

n 01101110 6E

t 01110100 74

~ 01111110 7E
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Huffman Coding
 Huffman coding uses a specific method for choosing the representation 

for each symbol, resulting in a prefix code (sometimes called "prefix-

free codes") that expresses the most common characters using shorter 

strings of bits than are used for less common source symbols. 

 Huffman was able to design the most efficient compression method of 

this type: no other mapping of individual source symbols to unique 

strings of bits will produce a smaller average output size when the 

actual symbol frequencies agree with those used to create the code. 

 A method was later found to do this in linear time if input probabilities 

(also known as weights) are sorted. 
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Huffman Tree
 Definition

– A Huffman tree is a binary tree which minimizes the 

sum of f(i)D(i) over all leaves i, 

• where f(i) is the frequency or weight of leaf i, and 

• D(i) is the length of the path from the root to leaf i. 

• In each of the applications, f(i) has a different physical meaning. 

 Properties 
– Every internal node has 2 children. 

– Smaller frequencies are further away from the root. 

– The 2 smallest frequencies are siblings. 
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Example of Huffman Tree and Coding

 If all our messages are made up of the eight symbols A, B, 

C, D, E, F, G, and H

 We can choose a code with three bits per character

– For example A 000,  B 001, C 010, D 011, E 100, F 101 

– G 110,  H 111

 With this code, the message 

– BACADAEAFABBAAAGAH 

 is encoded as the string of 54 bits 

– 001000010000011000100000101000001001000000000110000111 
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Example of Huffman Tree and Coding

 We count the 

frequency of each 

character shown in the 

message.

Character Frequency

A 9

B 3

C 1

D 1

E 1

F 1

G 1

H 1
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Example of Huffman Tree and Coding

9

18
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Example of Huffman Tree and Coding

 Thus, we encode the 

character with 

variable-lengh codes 

as follow.
A 0, B 100, C 1010, D 1011,  E 1100, 

F 1101 , G 1110,  H 1111

Character Frequency Huffman Codes

A 9 0

B 3 100

C 1 1010

D 1 1011

E 1 1100

F 1 1101

G 1 1110

H 1 1111
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Example of Huffman Tree and Coding

 With Huffman coding, the message 

– BACADAEAFABBAAAGAH 

 is encoded as the string of 42 bits 

– 100010100101101100011010100100000111001111 
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Another Example
Character Frequency Huffman Codes

Space 7

a 4

e 4

f 3

h 2

i 2

l 1

m 2

n 2

o 1

p 1

r 1

s 2

t 2

u 1

x 1
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延伸閱讀

 http://en.wikipedia.org/wiki/Greedy_algorithm

 http://ccckmit.wikidot.com/so:greedyalgorithm

 http://www.personal.kent.edu/~rmuhamma/Algorithms/My

Algorithms/Greedy/greedyIntro.htm

 https://www.youtube.com/watch?v=A8CEvPmNpKQ

 https://www.youtube.com/watch?v=ZFK9_jgCBrE

 htps://www.youtube.com/watch?v=apcCVfXfcqE
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Agenda
1. Introduction

2. Graph

3. Preview of Algorithm Designs and Analysis

4. Divide and Conquer

5. Dynamic Programming

6. Greedy Methods

7. NP Completeness
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Recall NP Problem
 A problem is assigned to the NP (nondeterministic 

polynomial time) class if it cannot be solved in polynomial 

time.

 A problem is said to be NP-hard if an algorithm for solving 

it can be translated into one for solving any other NP-

problem. It is much easier to show that a problem is NP

than to show that it is NP-hard. 

 A problem which is both NP and NP-hard is called an NP-

complete problem.  
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Recall NP Problem

NP

NP-complete
P
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NP Completeness
 Famous Problems

– Hamiltonian cycle in a directed graph.

– 3-CNF satisfiability.

– Circuit satisfiability problem.

– Longest simple paths in a directed graph.

– Vertex-cover problem in an undirected graph.

– Traveling-salesman problem.
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NP Completeness
 The problems we are trying to solve are basically 

of two kinds. 

 In decision problems we are trying to decide 

whether a statement is true or false. 
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NP Completeness
 In optimization problems we are trying to find the 

solution with the best possible score according to 

some scoring scheme. 

 Optimization problems can be either maximization 

problems, where we are trying to maximize a 

certain score, or minimization problems, where we 

are trying to minimize a cost function.



104

May 31, 2015<inhon@mail.tku.edu.tw>

Hamiltonian cycles
 Given a directed graph, we want to decide whether 

or not there is a Hamiltonian cycle in this graph. 

 This is a decision problem.
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Traveling-salesman problem
 Given a complete graph and an assignment of 

weights to the edges, find a Hamiltonian cycle of 

minimum weight. 

 This is the optimization version of the problem. In 

the decision version, we are given a weighted 

complete graph and a real number c, and we want 

to know whether or not there exists a Hamiltonian 

cycle whose combined weight of edges does not 

exceed c.
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The Hamiltonian Cycle Problem
 Let G be a finite graph with V(G) the set of vertices and 

E(G) the set of edges. A Hamiltonian cycle c of G is a 

cycle that goes through every vertex exactly once. The 

Hamiltonian cycle problem (HCP) asks whether a given 

graph G has a Hamiltonian cycle
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The Hamiltonian Cycle Problem
 The cycle v1v6v4v3v2v5v1 is a Hamiltonian cycle. Of 

course, there are many other cycles that are not 

Hamiltonian, for example, v1v6v5v1 or the loop 

v2v5v1v2v5v1v2 
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Traveling-salesman problem
 The traveling salesman problem (TSP) asks for the shortest route to 

visit a collection of cities and return to the starting point. Despite an 

intensive study by mathematicians, computer scientists, operations 

researchers, and others, over the past 50 years, it remains an open 

question whether or not an efficient general solution method exists
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Traveling-salesman problem

 若採用暴力法去解TSP問題，則會發現要找出所

有可能的路徑所花費的時間是呈指數

(Exponentially) 成長的!!

– 3 cities  1 solution.

– 10 cities  181,440 possible tours

– n cities  (n-1)!/2 possible tours
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Traveling-salesman problem

 若 n=26，則有 25! /2條不同路徑：

–25!=155112100433309859840000001.55 x 1025這

個數字寫來輕鬆，究竟有多大？

–假設電腦每秒可計算 106 條路徑的成本，一年有

3.15 x 107秒， 故一年可計算 3.15 x 1013條路徑，

求出所有路徑的成本需時
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Traveling-salesman problem

–即便是對不太大的 n=26，就需時五千億年，

顯然這種方法毫無用處。



108

May 31, 2015<inhon@mail.tku.edu.tw>

CIRCUIT-SAT Problem
 A Boolean circuit is a circuit of AND, OR, and 

NOT gates; the CIRCUIT-SAT problem is to 

determine if there is an assignment of 0’s and 1’s 

to a circuit’s inputs so that the circuit outputs 1.

 The Circuit-SAT Problem is a NP-Complete 

Problem
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CIRCUIT-SAT Problem
 Non-deterministically choose a set of inputs and 

the outcome of every gate, then test each gate’s I/O.
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P vs. NP

 In each of the following pairs of problems, 
one is solvable in polynomial time and the 
other is NPC (NP-Completeness).
1. Shortest path vs. longest simple path

a. Shortest path (even with negative edge weights) is solvable in 
polynomial time. We can find a shortest path from a single 
source to a single destination in a graph, G = (V,E) , in O(VE) 
time.

b. Finding the longest simple path between two vertices in G = 
(V,E) is NPC. ”Simple” means the path does not cross over  
itself by going the same vertex more than once.
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P vs. NP
2. Euler Tour vs. Hamiltonian Cycle

• a. An Euler Tour traverses each edge of a directed graph G = 

(V,E) exactly once, although it may visit a vertex more than 

once. If a graph has an Euler Tour we can find the edges in O(E)

time.

• b. A Hamiltonian Cycle of a directed graph, G = (V,E) , is a 

simple cycle that contains each vertex of G. Determining 

whether a directed graph has a Hamiltonian Cycle is NPC,
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P vs. NP
2. Euler Tour vs. Hamiltonian Cycle

• a. An Euler Tour traverses each edge of a directed graph G = 

(V,E) exactly once, although it may visit a vertex more than 

once. If a graph has an Euler Tour we can find the edges in O(E)

time.

• b. A Hamiltonian Cycle of a directed graph, G = (V,E) , is a 

simple cycle that contains each vertex of G. Determining 

whether a directed graph has a Hamiltonian Cycle is NPC,
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Approximation Algorithm
· 近似演算法 (Approximation Algorithm)

–一個問題Q若經由上述証明方式，得知其屬於NP-

complete問題，則代表此問題目前尚無有效率的演

算法可以解決(即：無法在Polynomial Time內解

決) 。

–然而，某些屬於NP-complete的問題卻常常出現在各

種領域!!若我們可退而求其次，去找尋一個近似解

而非最佳解的話，則能夠預期以有效率的方式解決

此問題。此即Approximation Algorithm的精神。
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Approximation Algorithm

· 近似演算法 (Approximation Algorithm)

–設計一個近似演算法需注意的Issue:

‧近似演算法的時間複雜度要很低 (至少要為Polynomial 

Time)

‧需保証近似演算法所求出的解也是該問題的可行解

‧在最差的情況下，用近似演算法所求出之近似可行解有多

靠近最佳解
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延伸閱讀

 http://en.wikipedia.org/wiki/Approximation_algorithm

 http://www.designofapproxalgs.com/

 http://www.win.tue.nl/~mdberg/Onderwijs/AdvAlg_Materi

al/Course%20Notes/lecture5.pdf

 https://www.youtube.com/watch?v=hdch8ioLRqE

 https://www.youtube.com/watch?v=Dd0XNsAkkqE

 https://www.youtube.com/watch?v=f7U7UK6iiU4&list=P

LTZbNwgO5eboxncIsmq95u_4nCtyziLKX
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Reporter : Ying-Hong Wang

The End
累積在妳(你)身上的價值是

別人拿不走、破壞不了的
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