= JSEG
Tamkang Universty Software Engineering Group

I MBI E R B OZE

hetp:/fwww.tkse. tku. edu.tw/

Sy Sl ©

B

ZUbF © Data Structures & Algorithms
Michael T. GoodrichZ% # H [EECH

Reporter : Ying-Hong Wang
E-mail :inhon@mail.tku.edu.tw

Date : May 31, 2015

a= :
73.£G Tamkang Universty software Engineering Group ZTH TEREE http://www.tkse.tku.edu.tw/

i B 5t A

o FERAZE
— Data Structures and Algorithms in Java 4/e GoodrichZ John Wiley 1}
A EE A
- ggﬁﬁ%ﬁﬁ@% s NIEEF N BRI B 2S5 EFE R S ARER

o EFRFA
- BERZGR A BERE - PR Y - BEREEeEE AR
EIRG B A S F s PBLEE » RO AR B R PR 5%
o FERHZE
— HEAFHUEGE ISR - AERL T RS (L TR E S AR AE)
— ERERRIEEIEIK ~ RN AIIZERTE o FESEFI AERRIGRAT - sR1B)5ERK
o EH A
— Closed book

http://mail.tku.edu.tw/inhon

-=_
a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

i B 5t A

o REFEE

— HEE15% BEEE15% fEE+/NE:40% HER:15% BAR
2:15%

- HFERREE - BENER—R O THETESR1S > G AEEHAS
KpERE > FE =R LB A FIBIIHERAE - HEH > 28
HEIARGE S35y - B BRI L EREE - idsEm
EA ARG - IR TR - I % -

- BE| - FURE > FIALS: > BRETEIXE > AREE X

— —WAEZETDUERR - 24/ NN FI10y - HIZ057 By ik

- BEEIEE - VB - BRERE - IEEMEE N THEERERE
HGABRHET R A - 33 - E50FE - BEFEE/NEEITAE
A BB S A FEfRERSE > HEREE -

— BRFZEERGETH AR T—H » S'EEHAR -

http://mail.tku.edu.tw/inhon

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

i B 5t A

o FRATHIER
— NI TL(3/06) R AT IER
— 0830#L - JBRIFHI6057 5%
- AREEAET T ~ EEA
- B2 - RSIEFREATIESA ATIIEATRE
— EREEFE Ry 4RI ~ o4 A 8
- Sy HERE I RGREE T > e B TR
- gﬁiij%zgﬁl:ﬁ E AR E SR G e E L FSH 2
SRR
— BRI RRER A (AR = B — R — R R 0
- FIRA—HIHCEE > MEHEAH K - R ARE

http://mail.tku.edu.tw/inhon

-=_
a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

AR 1 A0l 22
e Introduction o HEIIEY
e Graphs — Recurrences
— Advanced Data Structure:
e Preview of the Algorithm Red-Black Tree. AVL-Tree
Designs and Analysis B-Tree. B* Tree
e Divide and Conquer — NP Complete Problems and

)) Approaching Solutions
e Dynamic Programming

e Greedy Methods

e NP Completeness

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Learning Objects Architecture

| Growth Functions and Recurrence |

|

| Algorithm Designs and Analysis |

| Algorithm Design Methods | Graph Algorithms

Divide and Conquer

l | Minimum Spanning Trees ‘

|

| Single-Source Shortest Paths |

|

| All-Pairs Shortest Paths |

| Dynamic Programming ‘

Greedy Methods

’ NP Completeness |

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
"’ TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Agenda

1. Introduction

2. Graphs

3. Preview of Algorithm Designs and Analysis
4

. Divide and Conquer

(9}

. Dynamic Programming
6. Greedy Methods

7. NP Completeness

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Introduction

Recall The Definition of Algorithm

e The Role of the Algorithms in Computer

e What kind of problem can be solved by algorithm?
e Example

e Analyzing Algorithms

e Designing Algorithms

e NP Problem

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Recall the Definition of Algorithm

e An algorithm is a finite sequence of unambiguous

instructions for solving a well-specified computational
problem.

e Important Features:
— Finiteness.
— Definiteness.
— Input.
— Output.

— Effectiveness.

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Why to Study Algorithm

Develop thinking ability.

— problem solving skills.
(algorithm design and application)
— formal thinking.

(proof techniques & analysis)

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
- TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

The Role of the Algorithms in
Computer

e An instance of a problem consists of all inputs needed to

compute a solution to the problem.

e An algorithm is said to be correct if for every input

instance, it halts with the correct output.

e A correct algorithm solves the given computational
problem. An incorrect algorithm might not halt at all on
some input instance, or it might halt with other than the

desired answer.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
- TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

What kind of problem can be
solved by algorithm?

e The Human Genome Project
e The Internet Applications

e Electronic Commerce with Public-key

cryptography and digital signatures

e Manufacturing and other commercial settings

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
"’ TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Insertion sort

e Example: Sorting problem
— Input: A sequence of n numbers

— Qutput: A permutation of the input sequence
such that

e The number that we wish to sort are known as the
keys.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Insertion sort

Figure 2.1 Sorting a hand of cards using insertion sort.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_

- TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Insertion sort
Insertion-sort(4)
1 forj <2 to length[A]
2 do key<-Al[/]
3 x[nsert A[/] into the sorted sequence A[1..j-1]
4 i<«j-1
5 while >0 and A4[/]>key
6 do A[i+1] «-A[i]
7 i «i-1
8 Ali +1] «<key

<inhon@mail.tku.edu.tw> May 31, 2015

=
s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

The operation of Insertion-Sort

1 6
() |2 3
823455 6
P23 456

<inhon@mail.tku.edu.tw=> May 31, 2015

.-!
s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

SIE {28) 5

e {o]z§Algorithm ?
— http://www.csie.ntnu.edu.tw/~u91029/Algorithm.html
— http://en.wikipedia.org/wiki/Algorithm

— https://www.khanacademy.org/computing/computer-

science/algorithms

— http://whatis.techtarget.com/definition/algorithm

e Video materials

— https://www.youtube.com/watch?v=S-ws2 W6UbPU

— https://www.youtube.com/watch?v=JPyuH4qXLZ0&list=PL 14288
029BOAEEAGE

— https://www.youtube.com/watch?v=HtSuA80QTyo&list=PLUI4u3
cNGP610¢g3tWYp6V F-5ib5L2iHb

<inhon@mail.tku.edu.tw> May 31, 2015

=
s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Analyzing Algorithms

Time Complexity

Space Complexity

Worst-case and Average-Case Analysis

Order of Growth

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
"’ TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Worst, Average, and Best-case
Complexity

e Worst-case Complexity

— Maximum steps the algorithm takes for any possible input.

— Most tractable measure.

e Average-case Complexity
— Average of the running times of all possible inputs.
— Demands a definition of probability of each input, which is usually difficult
to provide and to analyze.
o Best-case Complexity
— Minimum number of steps for any possible input.

— Not a useful measure. Why?

e Stable and Unstable

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Worst-case and average-case
analysis

e Usually, we concentrate on finding only on the

worst-case running time

e Reason:
— It is an upper bound on the running time
— The worst case occurs fair often

— The average case is often as bad as the worst
case. For example, the insertion sort. Again,
quadratic function.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Order of growth

e In some particular cases, we shall be interested in
average-case, or expect running time of an
algorithm.

e It is the rate of growth, or order of growth, of the

running time that really interests us.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Order of growth

e Principal interest is to determine
— how running time grows with input size — Order of growth.

— the running time for large inputs — Asymptotic complexity.

e In determining the above,
— Lower-order terms and coefficient of the highest-order term are insignificant.

— Ex: In 7n5+6n3+n+10, which term dominates the running time for very large n?

e Complexity of an algorithm is denoted by the highest-order term in the
expression for running time.
— Ex: O(n), ©(1), Q(n?), etc.

— Constant complexity when running time is independent of the input size — denoted
o(1).

— Linear Search: Best case ©(1), Worst and Average cases: @(n).

e More on O, ©, and Q in next class. Use ® for the present.

<inhon@mail.tku.edu.tw> May 31, 2015

o= _
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Comparison of Algorithms

e Complexity function can be used to compare the
performance of algorithms.

e Algorithm 4 is more efficient than Algorithm B for
solving a problem, if the complexity function of 4
is of lower order than that of B.

e Examples:
— Linear Search — ®(#n) vs. Binary Search — O(Ig n)

— Insertion Sort — ®(n?) vs. Quick Sort — O(n 1g n)

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Comparison of Algorithms

e Multiplication
— classical technique: O(nm)
— divide-and-conquer: O(nm™!->) ~ O(nm">?)
For operands of size 1000, takes 40 & 15 seconds respectively on a
Cyber 835.

e Sorting
— insertion sort: @(n?)
— merge sort: ®(n 1g n)
For 10° numbers, it took 5.56 hrs on a supercomputer using machine
language and 16.67 min on a PC using C/C++.

<inhon@mail.tku.edu.tw> May 31, 2015

TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

ZIE e B 5

e {i]ZE Asymptotic Notations ?
— http://en.wikibooks.org/wiki/Data_Structures/Asymptotic Notation
— http://content.edu.tw/senior/computer/ks ks/book/algodata/algorith

m/algo5.htm
— http://mathworld.wolfram.com/AsymptoticNotation.html

— https://www.khanacademy.org/computing/computer-

science/algorithms/asymptotic-notation/a/asymptotic-notation

e Video materials
— https://www.youtube.com/watch?v=whjt N9uYFI

— http://mathworld.wolfram.com/AsymptoticNotation.html
— https://www.youtube.com/watch?v=aGjL7YXI31Q
— https://www.youtube.com/watch?v=6012Jbwolp0

<inhon@mail.tku.edu.tw> May 31, 2015

TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Designing Algorithms

Classification of Algorithm Design Methods

— Incremental Approach — Dynamic Programming

— Divide and Conquer — Greedy method

— Randomization — Brute-force
(Randomized — Backtracking
Algorithm)

— Branch and Bound
— Linear Programming

<inhon@mail.tku.edu.tw> May 31, 2015

13

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Designing Algorithms-Examples

¢ Incremental Approach
e Divide-and-Conquer Approach

e Analyzing Divide-and-Conquer Algorithms

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Designing algorithms-Examples

e There are many ways to design algorithms:

e Example of a Sorting Problem
— Incremental approach: insertion sort
— Divide-and-conquer: merge sort

* recursive:
— divide
— (?0/’7({”6/‘

— combine

<inhon@mail.tku.edu.tw> May 31, 2015

.-!
s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Recall Insertion Sort

1 6
() |2 3
[eiendood S 76
) [1]2(3]|4]|5]6
<inhon@mail.tku.edu.tw=> May 31, 2015

=
s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Divide and Conquer

e Recursive in structure

— Divide the problem into sub-problems that are similar to
the original but smaller in size

— Congquer the sub-problems by solving them recursively.
If they are small enough, just solve them in a
straightforward manner.

— Combine the solutions to create a solution to the
original problem

<inhon@mail.tku.edu.tw> May 31, 2015

.-!
e TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

An Example: Merge Sort

Sorting Problem: Sort a sequence of n elements into non-

decreasing order.

e Divide: Divide the n-element sequence to be sorted into

two subsequences of n/2 elements each

e Congquer: Sort the two subsequences recursively using

merge Sort.

o Combine: Merge the two sorted subsequences to produce

the sorted answer.

<inhon@mail.tku.edu.tw=>

May 31, 2015

-
&5 TSEG Tamkang Universty software Engineering Group ZTH TEREE http://www.tkse.tku.edu.tw/

Merge Sort — Example
1812632 6 [43]15) 9| 1 |22]26|19]55|37]43|99] 2
1812632 6 43]15| 9| 1 F22|26]|19]55]|37|43]99] 2
182632 6 [{43|15] 9 i[22T26] 1955 37[43[99] 2
18 (26§32 6 43|15 of 1 2226k 19]55F37[4399] 2
180260328 6 R43f 150 9 § 1 228260 19855037F43099f 2
<inhon@mail.tku.edu.tw> May 31, 2015

16

.-!
s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Merge Sort — Example

Original Sequence Sorted Sequence

1812632 6 143]15] 9] 1 169]15]18]|26]32

43

N

18126132 6 43|15

O
—
(o)}

1812632 11915

43

AN

18126032 6||43|15 L 11826 6 [32|]| 15|43 || 1

/\ /\ /

-

\04—\0\\0

180261328 6 ||43 015 1][18]26](32] 6 [[43] 15] 9
IR |
18](26][32]] 6 |[43[15 1

<inhon@mail.tku.edu.tw> May 31, 2015

=
s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

NP Problem

e A problem is assigned to the NP (nondeterministic

polynomial time) class if it cannot be solved in polynomial

time.

e A problem is said to be NP-hard if an algorithm for solving
it can be translated into one for solving any other NP-
problem. It is much easier to show that a problem is NP
than to show that it is NP-hard.

e A problem which is both NP and NP-hard is called an NP-
complete problem.

<inhon@mail.tku.edu.tw> May 31, 2015

17

-=_
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Agenda

. Introduction

(S

. Graphs

. Preview of Algorithm Designs and Analysis

W

. Divide and Conquer

(9}

. Dynamic Programming

(=)}

. Greedy Methods

~

. NP Completeness

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Graphs

e Recall the Representation of Graphs
e Basic Algorithms of Graphs

e Biconnected Components

e Minimum Cost Spanning Trees

e Single-Source Shortest Paths

e All-Pairs Shortest Paths

e Topological Sort

e Strongly connected components

<inhon@mail.tku.edu.tw> May 31, 2015

18

a=
73.£G Tamkang Universty software Engineering Group Z5THMTERBE http://www.tkse.tku.edu. tw/

Representation of Graphs

o () @ " @
« o v

V(6) = {0, 1, 2, 3} V(6) = {0, 1, 2) V©E) = {0, 1,2 3.4, 5 6 7

E(6y) = {(0. 1). 0, 2), (0. 3), g, = (<0, 15, <1, 0>, <1, 25}

1, 2), (1, 3), 2, 3} E(Gs) = {(0, 1), (0. 2), (1, 3), (2,

3), (4, 5), (5, 6). (6. 7}

(a) 6, (b) &, (c) 65

<inhon@mail.tku.edu.tw> May 31, 2015

a=
73.£G Tamkang Universty software Engineering Group ZTH TEREE http://www.tkse.tku.edu.tw/

Adjacency Matrices

01234567

0f0 1 1.0 000 O]

111 0010000

211 001 000 0
0123 310 1. 1.0 00 00
00 1 11 012 40 00001 00
11T o0 11 00 10 50 0001 010
2(1 1 0 1 I o1 600 00007101
311 110 210 00 710 0000010
(a) 64 (b) 63 (c) 63

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
"’ TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Adjacent Lists

111

12]0]

—12] F—13[+—{0]0]

— 1] 3—13]+—f{0]0]

—10] 11 +—{2]0]

10[0]

HeadNodes
[0] 3]
[1] —
[2] B
310

(a) 6

HeadNodes
[0] ——{1]0]
(1] (2]
(21 o

(b) &,

<inhon@mail.tku.edu.tw=>

May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Adjacent Lists

HeadNodes
[0] —{2[3—1110]
[1] 13| +—10]0]
(2] 0] +—13]0]
[3] (1] 5—11]0]
[4] ——1510]
[5] 6] F——1410]
[6] —— {6 4—1710]
[7] ——{610]

(c) 65

<inhon@mail.tku.edu.tw=>

May 31, 2015

20

-=_
"’ TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Weighted Edges

e Very often the edges of a graph have weights
associated with them.

— distance from one vertex to another

— cost of going from one vertex to an adjacent

vertex.

— To represent weight, we need additional field,
weight, in each entry.

— A graph with weighted edges is called a network.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

The Basic Algorithms of Graphs

e A general operation on a graph G is to visit all

vertices in G that are reachable from a vertex v.
— Depth-first search

— Breath-first search

<inhon@mail.tku.edu.tw> May 31, 2015

a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Graph G and Its Adjacency Lists

HeadNodes

[0]

(1]

[2]

(3]

111

[4]

(5]

(6]

Ol|Oo||o||o

[7

WINN| == OO+
DN (N[N [N[|Or]|w || N

|

T

5] J—16]0]

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Depth-First Search

Starting from vertex, an unvisited vertex w adjacent to v is
selected and a depth-first search from w is initiated.

When the search operation has reached a vertex u such that
all its adjacent vertices have been visited, we back up to the
last vertex visited that has an unvisited vertex w adjacent to

it and initiate a depth-first search from w again.

The above process repeats until no unvisited vertex can be

reached from any of the visited vertices.

<inhon@mail.tku.edu.tw> May 31, 2015

22

-=_
- TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Algorithm of DFS

tree T = empty //T 1s the Spanning Tree

DFS(vertex v) {
visit(v);
for (each neighbor w of v)
if (w 1s unvisited) {

DFS(w);
add edge (v, w) to tree T
b
b
<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Analysis of DFES

e [f G is represented by its adjacency lists, the DFS
time complexity is O(e).

e If G is represented by its adjacency matrix, then
the time complexity to complete DFS is O(n?).

<inhon@mail.tku.edu.tw> May 31, 2015

23

-=_
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Breath-First Search

e Starting from a vertex v, visit all unvisited vertices

adjacent to vertex v.

e Unvisited vertices adjacent to these newly visited

vertices are then visited, and so on.

e [f an adjacency matrix is used, the BFS complexity

is O(n?).
e If adjacency lists are used, the time complexity of
BFS is O(e).
<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Algorithm of BES

list L = empty //L is a Queue
tree T = empty //T is the Spanning Tree
Unmark all vertices
BFS(vertex x) {
choose some starting vertex x
mark x; AddxtoL; Addx to T;
while (L is nonempty) {
choose vertex v from the front of L
visit v for each unmarked neighbor w
mark w;
add w to the end of L
add edge (v, w)to T

b
b

<inhon@mail.tku.edu.tw> May 31, 2015

24

.-!
(s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Depth-First and Breath-First
Spanning Trees

(a) DFS (0) spanning tree (b) BFS (0) spanning tree

<inhon@mail.tku.edu.tw> May 31, 2015

-
(s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

§IE {6 Bel 58
e http://en.wikipedia.org/wiki/Depth-first search

¢ http://en.wikipedia.org/wiki/Breadth-first search

e http://www.csie.ntnu.edu.tw/~u91029/Graph.html#4

e http://www.csie.ntnu.edu.tw/~u91029/Graph.html#5

e https://www.youtube.com/watch?v=zLZhSSXAwxI

e https://www.youtube.com/watch?v=AfSk24UTFS8§

e https://www.youtube.com/watch?v=s-CYnVz-uh4

<inhon@mail.tku.edu.tw> May 31, 2015

25

-=_
"’ TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Biconnected Components

e Definition: A vertex v of G is an articulation point iff the
deletion of v, together with the deletion of all edges
incident to v, leaves behind a graph that has at least two

connected components.

e Definition: A biconnected graph is a connected graph that

has no articulation points.

e Definition: A biconnected component of a connected graph
G is a maximal biconnected subgraph H of G. By maximal,
we mean that G contains no other subgraph that is both
biconnected and properly contains H.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

A Connected Graph and Its
Biconnected Components

dood’

(a) A connected graph

(b) Its biconnected components

<inhon@mail.tku.edu.tw> May 31, 2015

26

.-!
s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

#E(BHRHEE — Self Study Unit

http://en.wikipedia.org/wiki/Biconnected component

http://web.thu.edu.tw/johnaxer/www/algorithm/ppt/chapter
6.ppt

http://www.csie.ntu.edu.tw/~hsinmu/courses/ media/dsa 1

3spring/horowitz 306 311 biconnected.pdf

http://www.csie.ntnu.edu.tw/~u91029/Component.html#3

https:// www.youtube.com/watch?v=J17icfFUCs4

https://www.youtube.com/watch?v=Ss5WikSTtLg

<inhon@mail.tku.edu.tw> May 31, 2015

=
s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Minimum Cost Spanning Tree

The cost of a spanning tree of a weighted, undirected graph is the
sum of the costs (weights) of the edges in the spanning tree.

A minimum-cost spanning tree is a spanning tree of least cost.

Three greedy-method algorithms available to obtain a minimum-
cost spanning tree of a connected, undirected graph.

— Kruskal’s algorithm %X

— Prim’s algorithm %X

— Sollin’s algorithm

<inhon@mail.tku.edu.tw> May 31, 2015

27

a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Kruskal’s Algorithm

e Kiruskal’s algorithm builds a minimum-cost spanning tree T
by adding edges to T one at a time.

e The algorithm selects the edges for inclusion in T in
nondecreasing order of their cost.

e An edge is added to T if it does not form a cycle with the
edges that are already in T.

Theorem 6.1: Let G be any undirected, connected graph.
Kruskal’s algorithm generates a minimum-cost spanning

tree.

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Steps of Kruskal’s Algorithm (1)

e Seti=1 and let E;={}

e Select an edge e; of minimum value not in E;-1
such that T=<E;-1 with {e;} >1s acyclic and define
E=E;-1 with {e;}. If no such edge exists, Let
T=<E>and stop.

e Replace i by i+1. Return to Step 2.

e The time required by Kruskal's algorithm is
O([E|log|V])

<inhon@mail.tku.edu.tw> May 31, 2015

28

-=_
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Steps of Kruskal’s Algorithm((2)

1 T=a;

2 while ((TELEAYE VT — 1E) && (EREZER)) {
3 fREFE—(EEERRAVE (v, w);

4 TEEPRIER (v, w)s

5 if (v, w) NETETHELERE) # (v, w) JIEIT;
6 else Z2H% (v, w);

7}

8 if (TELEHYE RN — 1{#) cout << “no spanning tree” << endl;

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Steps of Kruskal’s Algorithm((3)

1 function Kruskal(G)

2 for each vertex v in G do

3 Define an elementary cluster C(v) «— {v}.

4 Initialize a priority queue Q to contain all edges in G, using the weights as keys.
5 Define a tree 7 «— © //T will ultimately contain the edges of the MST

6 //'n is total number of vertices
7
8
9
1

while 7 has fewer than n-1 edges do
// edge u,v is the minimum weighted route from/to v
(u,v) < Q.removeMin()
0 // prevent cycles in T. add u,v only if T does not already contain an edge consisting of uand v.
// Note that the cluster contains more than one vertex only if an edge containing a pair of
// the vertices has been added to the tree.

11 Let C(v) be the cluster containing v, and let C(u) be the cluster containing u.
12 if C(v) # C(u) then

13 Add edge (v,u) to T.

14 Merge C(v) and C(u) into one cluster, that is, union C(v) and C(u).

15 return tree 7'

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
- TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Stages in Kruskal’s Algorithm (1)

’ @ﬁ Yo 10/.@

O, ® © @ @ ® @

"’ @ @ @

22 © ©)

(a) (b) (c)

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Stages in Kruskal’s Algorithm((2)

s % Lt

(;;//// 10 “;/}l' 10 11//g:i16
@f@ @ ® ® @
® g @ ® o

(d) (e) (f)

<inhon@mail.tku.edu.tw> May 31, 2015

a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Stages in Kruskal’s Algorithm((3)

©

10 é/j%
e "

22‘

(9)

©
10 (D

14 16

O

22@

(h)

<inhon@mail.tku.edu.tw=>

May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Prim’s Algorithm

e Similar to Kruskal’s algorithm, Prim’s algorithm constructs

the minimum-cost spanning tree edge by edge.

e The difference between Prim’s algorithm and Kruskal’s

algorithm is that the set of selected edges forms a tree at all

times when using Prim’s algorithm while a forest is formed

when using Kruskal’s algorithm.

e In Prim’s algorithm, a least-cost edge (u, v) is added to T
such that TU {(u, v)} is also a tree. This repeats until T

contains n-1 edges.

<inhon@mail.tku.edu.tw=>

May 31, 2015

31

a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Steps of Prim’s Algorithm (1)

Set i=0, Sy= {uy=s}, L(uy)=0, and L(v)=infinity for v <> u,. If |V|
= 1 then stop, otherwise go to step 2.

For each v in V\S,, replace L(v) by min{L(v), d,*}. If L(v) is
replaced, put a label (L(v), u;) on v.

Find a vertex v which minimizes {L(v): v in V\S;}, say u+1.
Let S;+1 =S, with {u;+1}.
Replace i by i+1. If i=|V|-1 then stop, otherwise go to step 2.

The time required by Prim's algorithm is O(|V]?). It will be reduced to
O(|E|log|V]) if heap is used to keep {v in V\Si : L(v) < infinity}.

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Steps of Prim’s Algorithm((2)

1

2

(3]

7

8

9

IMREGE /D H—{EERE
TV ={0}; // {ETEEL 0 ~ SR A BAVIRAREG
for (T'= @ ; TEHIEHYEAFKan — M 5 #2 (u, v) JIAT)
{
% (u,v) FACE R/ VIVE » [Fue TVHY ¢ TV
if (2 151E1%) break;
BVIIATY;
H

if (TEEHYERFin — 1{E) cout << “no spanning tree” << endl;

<inhon@mail.tku.edu.tw> May 31, 2015

32

-=_
- TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Stages in Prim’s Alogrithm (1)

©

© ©
y@ 10 @ 10 @
® @ ®©® @ ® ® @
? e ®

25

22\‘

(a) (b) (©)

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Stages in Prim’s Alogrithm(2)

© © ©

10 @ 10
16

@/o @f o/;
2\@ 2\@ 2\@

(d) (e) (f)

May 31, 2015

<inhon@mail.tku.edu.tw=>

33

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Sollin’s Algorithm

e Contrast to Kruskal’s and Prim’s algorithms, Sollin’s algorithm selects
multiple edges at each stage.

e At the beginning, the selected edges and all the n vertices form a
spanning forest.

e During each stage, an minimum-cost edge is selected for each tree in
the forest.

e [t’s possible that two trees in the forest to select the same edge. Only
one should be used.

e Also, it’s possible that the graph has multiple edges with the same cost.
So, two trees may select two different edges that connect them together.
Again, only one should be retained.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Steps of Sollin’s Algorithm

for each t = N do
S; = {1}
end for
T=10 {These are the tree edges}
while |T'| < (n—1) do
for each tree 5, do
nearest-neighber(Sy, 15, Ji)-

end for
for each tree 5, do
if nodes 14, and j, belong to different trees then
merge(i, Jr.)
end if
end for
end while

<inhon@mail.tku.edu.tw> May 31, 2015

34

.-!
s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Stages in Sollin’s Algorithm

© ©

v/ @ o/
5 @/;

~3) 2 @

(@) (b)

<inhon@mail.tku.edu.tw> May 31, 2015

=
s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

SIE {28) 58

e http://en.wikipedia.org/wiki/Shortest path problem

e https://www.cs.princeton.edu/~rs/AlgsDS07/15ShortestPat
hs.pdf

e https://www.cs.princeton.edu/~rs/AlgsDS07/15ShortestPat
hs.pdf

e https://www.youtube.com/watch?v=WN3RbOwVYDY

e https://www.youtube.com/watch?v=dS1Di2ZHI4k

e https://www.youtube.com/watch?v=8Ls1RqHCOPw

<inhon@mail.tku.edu.tw> May 31, 2015

35

-=_
a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Shortest Paths

e Usually, the highway structure can be represented by
graphs with vertices representing cities and edges
representing sections of highways.

o Edges may be assigned weights to represent the distance or
the average driving time between two cities connected by a
highway.

e Often, for most drivers, it is desirable to find the shortest
path from the originating city to the destination city.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Single Source/ZAll Destinations:
Nonnegative Edge Costs
e Let S denotes the set of vertices to which the shortest paths

have already been found.

1) If the next shortest path is to vertex u, then the path begins at v,
ends at u, and goes through only vertices that are in S.

2) The destination of the next path generated must be the vertex u that
has the minimum distance among all vertices not in S.

3) The vertex u selected in 2) becomes a member of S.

e The algorithm is first given by Edsger Dijkstra. Therefore,
it’s sometimes called Dijkstra Algorithm.

<inhon@mail.tku.edu.tw> May 31, 2015

36

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Steps of Dijkstra Algorithm

1 function Dijkstra(G, w, s)

2
3
4
5
6
7
8

9

10
11
12
13
14

for each vertex v in V]G] // Initializations
d[v] :=infinity // Known distance function from s to v
previous[v] := undefined
d[s]:=0 //Distance from s to s
S :=empty set //Set of all visited vertices
Q:=VI[G] //Set of all unvisited vertices
while Q is not an empty set // The algorithm itself
u := Extract Min(Q) // Remove best vertex from priority queue
S :=Sunion {u} // Mark it 'visited'
for each edge (u,v) outgoing from u
if d[u] + w(u,v) <d[v] //Relax (u,v)
d[v] :=d[u] + w(u,v)
previous[v] :=u

The running time is O(|V].|E]).

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Graph and Shortest Paths From

Vertex O to all destinations(1)

Path Length
10,3 10
2)0,3,4 25
3)0,3,4,1 45

4)0,3,4,1,2 55

5)0, 5 +00
(a) Graph (b) Shortest paths from O
<inhon@mail.tku.edu.tw> May 31, 2015

37

-=_
a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Graph and Shortest Paths From
Vertex 4 to all destinations(2-1)

Chicago Boston

250
. 1200 000 //
San Francisco
<i> 800 e ®) New York
Denver 1400
300 1000

1500

1700 900

- 1000

Los Angeles New Orleans Miami

0 1 2 3 4 5 6 7
of 0 .
11300 O
2|1000 800 0O
3 1200 0
4 1500 0 250
5 1000 0 900 1400
6 0 1000
711700 0 |
<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Graph and Shortest Paths From
Vertex 4 to all destinations(2-2)

iteration | S Vertex Distance
selected | | gF DEN |CHI |BOST |NY |MIA |NO
[0] [1] [2] [3] [4] [5] [6] [7]
Initial | - |40 |+ +oo | 1500 |0 250 |+o | 4w
1] (43 5 Hoo | 4o +o [1250 |0 250 | 1150 | 1650
2| (4,5} 6 too | +oo +oo | 1250 |0 250 | 1150 | 1650
3| {456} 3 4o | +oo 2450 | 1250 |0 250 | 1150 | 1650
4| {4,563} 7 3350 | +oo 2450 | 1250 |0 250 | 1150 | 1650
5| 44,5,63,7} 2 3350 | 3250 |2450 | 1250 |0 250 | 1150 | 1650
6| {4,5,63.7.2} 1 3350 | 3250 |2450 | 1250 |0 250 | 1150 | 1650
{4,5,63,7.2,1}

<inhon@mail.tku.edu.tw> May 31, 2015

a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

All-Pairs Shortest Paths

¢ In all-pairs shortest-path problem, we are to find

the shortest paths between all pairs of vertices u
and v, u # v.

— Use n independent single-source/all-destination
problems using each of the n vertices of G as a source
vertex. Its complexity is O(n?) (or O(n? logn + ne) if
Fibonacci heaps are used).

— On graphs with negative edges the run time will be
O(n%). if adjacency matrices are used and O(n?%e) if
adjacency lists are used.

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

SIE {28) 58

http://en.wikipedia.org/wiki/Minimum spanning tree

http://www.csie.ntnu.edu.tw/~u91029/Spanning Tree.html#2

http://www.csie.ntnu.edu.tw/~u91029/SpanningTree.html#3

https://www.youtube.com/watch?v=8{Jek VpxbQg

https://www.youtube.com/watch?v=G28gJ-uQREc

https://www.youtube.com/watch?v=YyLaRffCdk4

https://www.youtube.com/watch?v=k9jemw3SZe0

<inhon@mail.tku.edu.tw> May 31, 2015

39

a=
73.£G Tamkang Universty software Engineering Group Z5THMTERBE http://www.tkse.tku.edu. tw/

Strongly Connected Components

e In the directed graphs, a graph is said to
be strongly connected if every vertex
is reachable from every other vertex.

e The strongly connected components of an
arbitrary directed graph form a partition into
subgraphs that are themselves strongly connected.

Self Study Unit

<inhon@mail.tku.edu.tw> May 31, 2015

a=
73.£G Tamkang Universty software Engineering Group ZTH TEREE http://www.tkse.tku.edu.tw/

Strongly Connected Components

Two examples o

40

.-!
s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

SIE {28) 5

e http://en.wikipedia.org/wiki/Strongly connected compone

nt

o http://www.cs.berkeley.edu/~vazirani/s99cs170/notes/lec12.pdf

e http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgor

ithms/GraphAlgor/strongComponent.htm

e http://www.columbia.edu/~cs2035/courses/csor4231.F11/sc
c.pdf

e https://www.youtube.com/watch?v=J JI r UalQ

e https://www.youtube.com/watch?v=PZQO0Pdk15RA

<inhon@mail.tku.edu.tw> May 31, 2015

=
s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Topological Sort

A topological sort of a dag G = (V, E) is a linear ordering of all its
vertices such that if G contains an edge (u, v), then u appears before

v in the ordering.

Dag: Directed Acicular Graph

JEFS T A5 AE AOV-network H1 > V, /& V; FVFTITH
AESRIERTRES IR > V; —ELE V; HTATH] > FURERS
MRS > B REERERE (topological sort) ©

AOV: Activity On Vertices

AOE: Activity On Edges

<inhon@mail.tku.edu.tw> May 31, 2015

.-!
(s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

AOV and AOE

e Definition: A directed graph G in which the
vertices represent tasks or activities and the edges

represent precedence relations between tasks is an
Activity-On-Vertex network or AOV network.

e Definition: A directed graph G in which the edges
represent tasks or activities and the vertices
represent precedence relations between tasks 1s an
Activity-On-Edge network or AOE network.

<inhon@mail.tku.edu.tw> May 31, 2015

-
(s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Example of AOV

Course number Course name Prerequisites

C1 Programming 1 None

2 Discrete Mathematics None

C3 Data Structures C1,C2

Cc4 Calculus T None

(&) Calculus 11 Cc4

C6 Linear Algebra cs

c7 Analysis of Algorithms C3,C6

Cc8 Assembly Language Cc3

c9 Operating Systems C7,C8

c1o Programming Languages c7

cll Compiler Design clo

C12 Artificial Intelligence Cc7

C13 Computational Theory Cc7

Cl4 Parallel Algorithms C13

C1s Numerical Analysis Cs
<inhon@mail.tku.edu.tw> May 31, 2015

42

-=_
"’ TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Example of AOV(Cont.)

@ @

@\

<inhon@mail.tku.edu.tw> May 31, 2015

)

® ® ® ®

C3 ~(C7 Cl14

—

®
®

C1

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Example of AOE

event interpretation

0 Start of project

1 Completion of activity a,

4 Completion of activities a, and as
7 Completion of activities ag and a,
8 Completion of project

<inhon@mail.tku.edu.tw> May 31, 2015

ETSEG

Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Topological Sort -Algorithms

Bl o
(2) S FL TR
%Eﬁ‘
i Ay Ik

IF)

<inhon@mail.tku.edu.tw=>

=1L AOV-network FBEFEFHUBIEZAIT
(1) 1F AOV-network i {F-=HkiEE

AR TEHIEN

ZERL AT AR PR -

DB (1) RPER(2) > —E R AR,

May 31, 2015

ETSEG

Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Topological Sort -Algorithms

void topsort (hdnodes , graph[], intn)
{
inti,j,k,top;
node pointer ptr;
top=-1;
for(i=0;i<n;i++)
if (!graph[i].count)
{
graphl[i].count = top ;
top=1i;
}
for(i=0;i<n;i++)
if (top==-1)
{

fprintf (stderr, “\n Network has a cycle.

Sort terminated. \n”) ;
exit (1) ;
¥

<inhon@mail.tku.edu.tw=>

The Time Complexity is O(n+e)

else
{
J=top;
top = graph[top].count ;
printf (“v%d, " j);
for (ptr = graph[j].link ; ptr ; ptr = ptr-
>link)
{
k = ptr -> vertex ;
graph[k].count -- ;
if (!graph[k].count)
{
graph[k].count = top ;
top =k ;

May 31, 2015

44

TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Topological Sort -Example
K NH AOV-network MYHEEHER

—®

O/O\O\O

\®//'

<inhon@mail.tku.edu.tw> May 31, 2015

EEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Topological Sort -Example

Step One:

it V1 o SR < V1,V2 > B < V1,V6 > Fi{EE

/ o\o

%

<inhon@mail.tku.edu.tw> May 31, 2015

45

-.-!
TSEG Tamkang Universty software Engineering Group ZTHRMIEREE htp://www.tkse.tku.edu.tw/

Topological Sort -Example

Step Two:

i V2 o dEMIER < V2,V3 > Bl < V2,4 > [%
@ —

o

<inhon@mail.tku.edu.tw=>

May 31, 2015

-.-!
TSEG Tamkang Universty software Engineering Group ZTHMITEREE http://www.tkse.tku.edu.tw/

Topological Sort -Example

Step Three:

B V6 s AR < V6,V4 > Bl < V6,VS > [{EIE

—

.>. —®

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Topological Sort -Example

Step Four:

gt V3 o JGHER < V3,V7 > B < V3,V5 > Ji{EE

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
- TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Topological Sort -Example

Step Five:

i V4 o TEIER < V4,V5 >

)

>

<inhon@mail.tku.edu.tw> May 31, 2015

47

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Topological Sort -Example

Step Six:

it V7 o dEMER < V7,V8>

)

>

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
- TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Topological Sort -Example

Step Seven:

g VS o R < VS, V8>

Step Eight: @

B V8
ﬁﬁ?%@ﬁﬁﬁjl[gﬁ%192’693’497’598
FHIEIAOV » BJEEAR —{ELL_ Y Topological SortiH

<inhon@mail.tku.edu.tw> May 31, 2015

48

.-!
s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Topological Sort —Another Example

(a)

o o) o)) o) () @) (o))~ k)

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

<inhon@mail.tku.edu.tw=> May 31, 2015

=
s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

SIE {28) 58

o http://en.wikipedia.org/wiki/Topological sorting

e http://www.csie.ntnu.edu.tw/~u91029/DirectedAcyclicGraph.ht
ml

e http://'www.csie.ntnu.edu.tw/~u91029/DirectedAcyclicGraph.ht
ml#2

e http://120.118.165.132/LMS/Content/C010/Tbank/Read/CH7/7-
9/7-9.htm

e https://www.youtube.com/watch?v=jksMzq4LgfM

e https://www.youtube.com/watch?v=2E7tzF4ihvI

e https://www.youtube.com/watch?v=jHWGir3Jk8o

<inhon@mail.tku.edu.tw> May 31, 2015

49

-=_
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Agenda

Growth of Functions

Self Study Unit

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Asymptotic Complexity

e Running time of an algorithm as a function of

input size » for large n.

e Expressed using only the highest-order term in
the expression for the exact running time.

— Instead of exact running time, say ®(n?).

e Describes behavior of function in the limit.

e Written using Asymptotic Notation.

<inhon@mail.tku.edu.tw> May 31, 2015

50

a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Asymptotic Notation

e 0,0,Q 0,0

e Defined for functions over the natural numbers.
~ Ex: fin) = O(m?).

— Describes how f(n) grows in comparison to 72.

Define a set of functions; in practice used to compare two
function sizes.

e The notations describe different rate-of-growth relations
between the defining function and the defined set of
functions.

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Relations Between 0, O, Q

cg(n) cg(n)
_a
i fn)
Sfn) £(n)
ig(n) cg(n)

I '
i
'

n ' n . n

Ry

f(n)=0(g(n))

" fn) = 0(g(n))

f fn)=Q(g(n)

<inhon@mail.tku.edu.tw=>

May 31, 2015

51

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Agenda

1. Introduction

2. Graphs

3. Preview of Algorithm Designs and Analysis
4. Divide and Conquer

5. Dynamic Programming

6. Greedy Methods

7. NP Completeness

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Preview of Algorithm Designs and
Analysis

e Incremental Approach e Greedy method
e Divide and Conquer e Amortized analysis
e Randomization e Brute-force

(Randomized Algorithm)
e Backtracking
e Linear Programming

. , e Branch and Bound
e Dynamic Programming

<inhon@mail.tku.edu.tw> May 31, 2015

52

o= _
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Divide and Conquer

e Recall the key idea of Divide and Conquer

e Recursive in structure

— Divide the problem into sub-problems that are similar to
the original but smaller in size

— Congquer the sub-problems by solving them recursively.
If they are small enough, just solve them in a
straightforward manner.

— Combine the solutions to create a solution to the
original problem

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Dvnamic Programming

e Dynamic programming (DP) is typically applied to
optimization problems. In such problem there can be many
solutions. Each solution has a value, and we wish to find a
solution with the optimal value.

e Example problems: 0/1 knapsack problem, Matrix
Multiplication Chains problem

e Like divide and conquer, DP solves problems by

combining solutions to subproblems.

<inhon@mail.tku.edu.tw> May 31, 2015

53

a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Dvnamic Programming

e Unlike divide and conquer, subproblems are not
independent.
— Subproblems may share subsubproblems,

— However, solution to one subproblem may not affect the solutions

to other subproblems of the same problem. (More on this later.)

e DP reduces computation by
— Solving subproblems in a bottom-up fashion.
— Storing solution to a subproblem the first time it is solved.

— Looking up the solution when subproblem is encountered again.

e Key: determine structure of optimal solutions

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Dvnamic Programming

e The development of a dynamic programming
algorithm can be broken into a sequence of four
steps:

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom up
fashion.

4. Construct an optimal solution from computed

information.

<inhon@mail.tku.edu.tw> May 31, 2015

54

.-!
(s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Greedy Method

¢ Like dynamic programming, used to solve
optimization problems.

e Problems exhibit optimal substructure (like DP).

e Problems also exhibit the greedy-choice property.

— When we have a choice to make, make the one that
looks best right now.

— Make a locally optimal choice in hope of getting a
globally optimal solution.

<inhon@mail.tku.edu.tw> May 31, 2015

-
(s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Greedy Method

e The choice that seems best at the moment is the
one we go with.
— Prove that when there is a choice to make, one of the

optimal choices is the greedy choice. Therefore, it’s
always safe to make the greedy choice.

— Show that all but one of the subproblems resulting from

the greedy choice are empty.

e Example Problems: Container Loading problem, 0/1
Knapsack problem

<inhon@mail.tku.edu.tw> May 31, 2015

.-!
(s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Brute-Force

e Brute-force algorithms are distinguished not by their
structure or form, but by the way in which the problem to
be solved is approached.

e A brute-force algorithm solves a problem in the most
simple, direct or obvious way. As a result, such an
algorithm can end up doing far more work to solve a given
problem than a more clever or sophisticated algorithm
might do.

¢ On the other hand, a brute-force algorithm is often easier to
implement than a more sophisticated one and, because of
this simplicity, sometimes it can be more efficient.

<inhon@mail.tku.edu.tw> May 31, 2015

-
(s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Brute-Force

e Often a problem can be viewed as a sequence of decisions
to be made.
— For example, consider the problem of finding the best way to place
electronic components on a circuit board.

— To solve this problem we must decide where on the board to place
each component.

e Typically, a brute-force algorithm solves such a problem by
exhaustively enumerating all the possibilities. I.e., for every
decision we consider each possible outcome.

e Example Problems: 0/1 knapsack problem, Sequential
Search problem, Hamilton Circuits problem, Board
Permutation problem

<inhon@mail.tku.edu.tw> May 31, 2015

.-!
e TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Backtracking

Backtracking is a refinement of the brute force approach, which
systematically searches for a solution to a problem among all available
options.

A backtracking algorithm systematically considers all possible
outcomes for each decision.

In this sense, backtracking algorithms are like the brute-force
algorithms.

However, backtracking algorithms are distinguished by the way in
which the space of possible solutions is explored.

Sometimes a backtracking algorithm can detect that an exhaustive

search is unnecessary and, therefore, it can perform much better.

<inhon@mail.tku.edu.tw> May 31, 2015

-
&5 TSEG Tamkang Universty software Engineering Group ZTH TEREE http://www.tkse.tku.edu.tw/

Backtracking

It does so by assuming that the solutions are represented by vectors
(v}, ..., v,,) of values and by traversing, in a depth first manner, the
domains of the vectors until the solutions are found.

When invoked, the algorithm starts with an empty vector. At each stage
it extends the partial vector with a new value.

Upon reaching a partial vector (v, ..., v;) which can’t represent a partial
solution, the algorithm backtracks by removing the trailing value from
the vector, and then proceeds by trying to extend the vector with
alternative values.

Example Problems: 0/1 knapsack problem, Container Loading problem, Max
Clique problem, Traveling Salesman problem, Board Permutation problem

<inhon@mail.tku.edu.tw> May 31, 2015

57

-=_
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Branch and Bound

e Branch-and-bound is an approach developed for solving
discrete and combinatorial optimization problems.

e The discrete optimization problems are problems in which
the decision variables assume discrete values from a
specified set.

e The combinatorial optimization problems, on the other
hand, are problems of choosing the best combination out of
all possible combinations.

e Example problems: 0/1 knapsack problem, Container
Loading problem, Max Clique problem, Traveling
Salesman problem, Board Permutation problem

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Branch and Bound

e The essence of the branch-and-bound approach is the following
observation:

— In the total enumeration tree, at any node, if I can show that the optimal solution
cannot occur in any of its descendents, then there is no need for me to consider those
descendent nodes.

— Hence, I can "prune” the tree at that node. If I can prune enough branches of the tree
in this way, I may be able to reduce it to a computationally manageable size.

— Note that, I am not ignoring those solutions in the /eaves of the branches that I have
pruned, I have left them out of consideration after I have made sure that the optimal
solution cannot be at any one of these nodes.

e Thus, the branch-and-bound approach is not a heuristic, or
approximating, procedure, but it is an exact, optimizing procedure that
finds an optimal solution.

<inhon@mail.tku.edu.tw> May 31, 2015

-.-!
TSE 6 Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

SIE {28) 5

e http://en.wikipedia.org/wiki/Algorithm design

e http://www.csie.ntnu.edu.tw/~u91029/AlgorithmDesign.html

e http://code.tutsplus.com/tutorials/understanding-the-

principles-of-algorithm-design--net-26561

e https://www.youtube.com/watch?v=a otxyu0mSQ

e https://www.youtube.com/watch?v=0Qe6PUzVu2pk

e https://www.youtube.com/watch?v=SDgo4kVSiiw

<inhon@mail.tku.edu.tw> May 31, 2015

a=
TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Agenda

1. Introduction

2. Graphs

3. Preview of Algorithm Designs and Analysis
4. Divide and Conquer

5. Dynamic Programming

6. Greedy Methods

7. NP Completeness

<inhon@mail.tku.edu.tw> May 31, 2015

59

a= :
73.£G Tamkang Universty software Engineering Group Z5THMTERBE http://www.tkse.tku.edu. tw/

Divide and Conquer

e Famous Problems and Algorithms
— Merge Sort
— Quick Sort
— Binary Search
— Binary Tree traversals
— Multiplication of Large Integers
— Matrix Multiplication
— Closest Pair of Points

— Convex-Hull

<inhon@mail.tku.edu.tw> May 31, 2015

a=
73.£G Tamkang Universty software Engineering Group ZTH TEREE http://www.tkse.tku.edu.tw/

Example Problem: Closest Pair

e Define Problem
— Input:
P={p(1), p(2) ..., p(n) } where p(i) = (x(i), y(i)).

A set of n points in the plane.
— QOutput

The distance between the two points that are closest.

Note: The distance DELTA(i, j) between p(i) and p(j) is
defined by the expression:

Square root of { (x(1)-x())"2 + (v(i)-y())"2 }

<inhon@mail.tku.edu.tw> May 31, 2015

60

-=_
== 7- 5 E G Tamkang Universty Software Engineering Group ZHTWMTEREE huwp:/www.tkse.tku.edu.tw/

Closest Pair Problem

<inhon@mail.tku.edu.tw=> May 31, 2015

-=_
= 7'
-~ SEG Tamkang Universty Software Engineering Group ZTRTEREE hitp://www.tkse.tku.edu.twf

Solved in Divide and Conquer(1/3)

o We assume that:
e 1 is an exact power of 2, n = 2k.

e For each i, x(i) < = x(i+1), i.e. the points are
ordered by increasing x from left to right.

e Consider drawing a vertical line (L) through the set
of points P so that half of the points in P lie to the
left of L and half lie to the right of L.

<inhon@mail.tku.edu.tw=> May 31, 2015

61

-=_
== 7- 5 E G Tamkang Universty Software Engineering Group ZHTWMTEREE huwp:/www.tkse.tku.edu.tw/

Solved in Divide and Conquer(2/3)

<inhon@mail.tku.edu.tw=> May 31, 2015

-=_
= 7'
-~ SEG Tamkang Universty Software Engineering Group ZTRTEREE hitp://www.tkse.tku.edu.twf

Solved in Divide and Conquer(3/3)

e There are three possibilities:
— The closest pair lie in P-LEFT.
— The closest pair lie in P-RIGHT.
— The closest pair contains:
One Point from P-LEFT
and
One Point from P-RIGHT

e So we have a (rough) Divide-and-Conquer Method as
follows:

<inhon@mail.tku.edu.tw=> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Algorithm for Closest Pair Problem

function closest_pair (P: point set; n: integer)
float DELTA-LEFT, DELTA-RIGHT : float; DELTA :
begin
if n = 2 then return distance from p(1) to p(2);
else P-LEFT := (p(1), p(2) ... p(n/2));
P-RIGHT := (p(n/2+1), p(n/2+2) ..., p(n));
DELTA-LEFT := closest_pair(P-LEFT, n/2),
DELTA-RIGHT := closest_pair(P-RIGHT, n/2);
DELTA := minimum (DELTA-LEFT, DELTA-RIGHT);
ko R R R R R
Determine whether there are points p(l) in P-LEFT and p(r) in P-RIGHT with distance(p(l), p(r)) < DELTA.
If there are such points, set DELTA to be the smallest distance.
__ekokskokskokskokskokok sk skl ok stk ok o ook ok ook skokskokokokokok kol sk ok skok ok ok ko ok
return DELTA; end if;

end closest_pair;

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Combine (1/3)

e The section between the two comment lines is the

‘combine' stage of the Divide-and-Conquer algorithm.

o If there are points p(/) and p(r) whose distance apart is less
than DELTA then it must be the case that
— The x-coordinates of p(l) and p(r) differ by at most DELTA.
— The y-coordinates of p(l) and p(r) differ by at most DELTA.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
== 7- 5 E G Tamkang Universty Software Engineering Group ZHTWMTEREE huwp:/www.tkse.tku.edu.tw/

Combine (2/3)

<inhon@mail.tku.edu.tw=> May 31, 2015

-=_
-~ SEG Tamkang Universty Software Engineering Group ZTRTEREE hitp://www.tkse.tku.edu.twf

Combine (3/3)

e The combine stage can be implemented by:

— Finding all points in P-LEFT whose x-coordinate is at least x(n/2)-
DELTA.

— Finding all points in P-RIGHT whose x-coordinate is at most
x(n/2)+DELTA.

e Call the set of points found in (1) and (2) P-strip. and sort
the s points in this in order of increasing y-coordinate.
letting (q(1),q(2) ,..., q(s)) denote the sorted set of points.

e Then the combine stage of the algorithm consists of two
nested for loops:

<inhon@mail.tku.edu.tw=> May 31, 2015

64

.-!
s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Statements of Combine section

for i in /..s loop

forjin i+/..s loop

exit when (| x(i) - x(j) | > DELTA or | y(i) - y(j) | > DELTA);
if distance(q(i), q(j)) < DELTA then DELTA := distance (q(i), q(j));

end if;

end loop;

end loop;

<inhon@mail.tku.edu.tw> May 31, 2015

=
s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

SIE {28) 58

http://en.wikipedia.org/wiki/Divide and conquer algorithms

http://acm.nudt.edu.cn/~twcourse/DivideAndConquer.html

https://www.cs.berkeley.edu/~vazirani/algorithms/chap2.pdf

http://www.personal kent.edu/~rmuhamma/Algorithms/MyAlgor
ithms/divide.htm

https://www.khanacademy.org/computing/computer-

science/algorithms/merge-sort/a/divide-and-conquer-algorithms

https://www.youtube.com/watch?v=pJBGS5 ja YU
https://www.youtube.com/watch?v=ATCYn9F30UQ

https://www.youtube.com/watch?v=6SUmp Cn-SU

<inhon@mail.tku.edu.tw> May 31, 2015

65

e~
- 7- S £ G Tamkang Universty software Engineering Group TSR TIRBIAE http://www.tkse. tku.edu. tw)

Agenda

. Introduction

(S

. Graphs

. Preview of Algorithm Designs and Analysis
. Divide and Conquer

. Dynamic Programming

. Greedy Methods

~N N B W

. NP Completeness

<inhon@mail.tku.edu.tw=>

May 31, 2015

- 73‘ £ G Tamkang Universty software Engineering Group TSR TIZBAE http://www.tkse. tku.edu.tw)

Dvnamic Programming

e Famous Problems and Algorithms
— Matrix-Chain Multiplication
— Longest Common Subsequence
— Optimal Binary Search Trees
— The knapsack Problem
— Single-Source Shortest Path
— All Pairs Shortest Paths
— Image compression
— Component Folding
— Noncrossing Subset of Nets

— Computing a Binomial Coefficient

<inhon@mail.tku.edu.tw=>

May 31, 2015

66

-=_
"’ TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Dvnamic Programming

e Dynamic programming 1s typically applied to
optimization problems. In such problem there can
be many solutions. Each solution has a value, and

we wish to find a solution with the optimal value.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Matrix-chain multiplication (1/2)

e A product of matrices is fully parenthesized if it
1s either a single matrix, or a product of two fully
parenthesized matrix product, surrounded by
parentheses.

<inhon@mail.tku.edu.tw> May 31, 2015

67

a=
73.£G Tamkang Universty software Engineering Group Z5THMTERBE http://www.tkse.tku.edu. tw/

Matrix-chain multiplication (2/2)

e How to compute 4 A4y...4, where 4; 1s

a matrix for every i.
e Example: 41 4o A3 4,

(A4 (A2(A4344))) (A4 ((ApA3)A4))
(A4 A42)(A3A41)) ((A(A2A43))Az)
(4 42)A3)A44)

<inhon@mail.tku.edu.tw> May 31, 2015

a=
73.£G Tamkang Universty software Engineering Group ZTH TEREE http://www.tkse.tku.edu.tw/

MATRIX MULTIPLY
MATRIX MULTIPLY (4, B)

1 if columns[4] 7 column[B]
then error “incompatible dimensions”
else for j «1 torows[4]
do for J <=1 to columns[B]

for « 1 to columns[4]
do c[i,j] «cli,j]+ Ali,k] Bk, j]

2

3

4

5 do c[i, /] <0
6

7

8 return C

<inhon@mail.tku.edu.tw> May 31, 2015

68

= 7:S‘£G Tamkang Universty Software Engineering Group #5T@IBLIEMEE hetp://www.tkse.tku. edu. tw/

Complexity:

e Let4Abea p X g matrix, and B be a

g X v matrix. Then the complexity is

pXqgXxr

<inhon@mail.tku.edu.tw> May 31, 2015

- 73‘ £ G Tamkang Universty software Engineering Group TSR TIZBAE http://www.tkse. tku.edu.tw)

Example:

e 4 isa10x100 matrix, 42 is a]00x5 matrix,
and 43 is a 5x50matrix. Then

((A445)A3) takes 10 x100 x5 +10 x5 x50 =7500
time. However, (4 (4o A43)) takes

100 x5 x50 +10 x100 x 50 = 75000 time.

<inhon@mail.tku.edu.tw> May 31, 2015

69

e~
- 7- S £ G Tamkang Universty software Engineering Group TSR TIRBIAE http://www.tkse. tku.edu. tw)

The matrix-chain multiplication
problem

e Given a chain (A,4,,...,4) of n matrices, where
for i=0,1,...,n, matrix 4, has dimension p, ,xp,,
fully parenthesize the product 4 45...4, ina
way that minimizes the number of scalar

multiplications.

<inhon@mail.tku.edu.tw> May 31, 2015

e~
- 7- S £ G Tamkang Universty software Engineering Group TSR TIZBAE http://www.tkse. tku.edu.tw)

Counting the number of

parenthesizations
1 ifn=1
_Jn-1
P =S pypn—k) if n>2
k=1

o P(n) = C(n-— 1) [Catalan number]

1 2nj 4"
= :Q _
n+1(n (n3/2)

<inhon@mail.tku.edu.tw> May 31, 2015

70

-=_

‘? TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/
Step 1: The structure of an
optimal parenthesization

Optimal

RN

(A4 Ap... A)(Ap14k+2--4,))

|

Combine

<inhon@mail.tku.edu.tw> May 31, 2015

a=
73.£G Tamkang Universty software Engineering Group ZTH TEREE http://www.tkse.tku.edu.tw/

Step 2: A recursive solution

e Define m[i, j]= minimum number of scalar
multiplications needed to compute the matrix
4. j = 4414

e goal m[l, n]

0 i=J
mli,j]= {minmq imli, k] +mlk+1, 1+ pppy 0%

<inhon@mail.tku.edu.tw> May 31, 2015

71

-=_

- TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/
Step 3: Computing the optimal
costs

Using MATRIX CHAIN ORDER algorithm

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

MATRIX CHAIN ORDER

MATRIX_CHAIN ORDER(p)
n < length[p] -1

2 for i< 1ton

3 do m[i,i] < 0

4 for l«<2ton

5 dofor i< 1ton—1I+1

6 do j«i+/-1

7 m[i, j] < ©

8 for k<« itoj—1

9 do g <« mli, kK] + m[k+1, j1+ p.\pip;
10 if ¢ <mli,J]

11 then m[i, j] < ¢q
12 s[i,j] <k

13 return mands Complexity: 0(n3)

<inhon@mail.tku.edu.tw> May 31, 2015

72

-! i
TSEG Tamkang Universty software Engineering Group ZTRMIEREE hitp:/www.tkse.tku.edu.tw/

4, 30x35 =pyxp
A, 35x15 =p;xp;
Ay 15x5 =py,xp;
Ay 5x10 =pyxp,
As 10x20 = py x ps
As 20x25 = psxpg

<inhon@mail.tku.edu.tw> . May 31, 2015

-! ;
fas TSEG Tamkang Universty software Engineering Grou

The m and s table computed by
MATRIX-CHAIN-ORDER for n=6

<inhon@mail.tku.edu.tw>

73

a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Result

m[2,5]=

min{

m[2,2]+m[3,51+p p,ps=0+2500+35x15x20=13000,
m[2,31+m[4,51+p pps=2625+1000+35x5x20=7125,
m[2,41+m[5,51+p p ps=4375+0+35x10x20=11374

}
=7125

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Step 4: Constructing an optimal
solution

Using MATRIX CHAIN MULTIPLY algorithm

<inhon@mail.tku.edu.tw> May 31, 2015

74

a=
73.£G Tamkang Universty software Engineering Group Z5THMTERBE http://www.tkse.tku.edu. tw/

MATRIX CHAIN MULTIPLY
MATRIX_CHAIN MULTIPLY(4, s, i, /)
1if j>i

2 then x « MCM(A,s,i,s[i,]])
3y« MCM(A,s,s[i,j]+1,))
4 return MATRIX-MULTIPLY(X,Y)

5 else return 4;

<inhon@mail.tku.edu.tw> May 31, 2015

a=
73.£G Tamkang Universty software Engineering Group ZTH TEREE http://www.tkse.tku.edu.tw/

Result of the Example

((4(A42A43))((A4245)45))

<inhon@mail.tku.edu.tw> May 31, 2015

75

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Elements of dynamic
programming

e Optimal substructure

e Subtleties

e Overlapping subproblems

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Optimal substructure (1/3)

e We say that a problem exhibits optimal
substructure if an optimal solution to the problem

contains within its optimal solution to subproblems.

e Example: Matrix-multiplication problem

<inhon@mail.tku.edu.tw> May 31, 2015

76

o= _
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Optimal substructure (2/3)

1. You show that a solution to the problem consists of making a
choice, Making this choice leaves one or more subproblems to be
solved.

2. You suppose that for a given problem, you are given the choice
that leads to an optimal solution.

3. Given this choice, you determine which subproblems ensue and
how to best characterize the resulting space of subproblems.

4. You show that the solutions to the subproblems used within the
optimal solution to the problem must themselves be optimal by
using a “cut-and-paste” technique.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Optimal substructure (3/3)

Optimal substructure varies across problem domains

n two ways:

1. how many subproblems are used in an optimal

solutiion to the original problem, and

2. how many choices we have in determining which

subproblem(s) to use in an optimal solution.

<inhon@mail.tku.edu.tw> May 31, 2015

77

-=_
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Subtleties

e One should be careful not to assume that optimal substructure applies

when it does not. consider the following two problems in which we are
given a directed graph G = (V, E) and vertices u, v € V.

— Unweighted shortest path:

* Find a path from u to v consisting of the fewest edges.
Good for Dynamic programming.

— Unweighted longest simple path:

* Find a simple path from u to v consisting of the most
edges. Not good for Dynamic programming.

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Overlapping Subprogrammings

e cxample: MAXTRIX CHAIN ORDER

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
"’ TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Longest Common Subsequence

Longest Common Subsequence is the problem of finding the longest
common subsequence of two sequences of items. This is used in the
"diff" file comparison utility.

Given two sequence of items, find the longest subsequence present in
both of them. A subsequence is a sequence that appears in the same
relative order, but not necessarily contiguous. For example, in the string
abcdefg, "abc", "abg", "bdf", "aeg" are all subsequences.

A naive exponential algorithm is to notice that a string of length # has
O(27) different subsequences, so we can take the shorter string, and test
each of its subsequences for presence in the other string, greedily.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Longest Common Subsequence

Recursive solution

We can try to solve the problem in terms of smaller subproblems. We
are given two strings x and y, of length n and m respectively. We solve
the problem of finding the longest common subsequence of x =x, , and
Y=Y, by taking the best of the three possible cases:

— The longest common subsequence of the strings x, ,_,andy, ,,

— The longest common subsequence of the strings x;, , andy, , _,

— Ifx, is the same as y,,, the longest common subsequence of the strings x,_,
_yandy, , _, followed by the common last character.

It is easy to construct a recursive solution from this:

<inhon@mail.tku.edu.tw> May 31, 2015

79

-=_
a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Longest Common Subsequence

func les(x,y)
if (length(x)=0 or length(y)=0)
return ""
best = les(x[1,n-11,y[1,m])
if (length(best) < length(les(x[1,n],y[1,m-11)))
best = les(x[1,n],y[1,m-1])
if (x[n] = y[m] and length(best) < length(les(x[1,n-11,y[1,m-1]) 1)
best = les(x[1,n-11,y[1,m-1]) x[n]

return best

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Longest Common Subsequence

e Dynamic programming

e Obviously, this is still not very efficient. But because the subproblems
are repeated, we can use memoization. An even more (slightly) efficient
way, which avoids the overhead of function calls, is to order the
computation in such a way that whenever the results of subproblems are
needed, they have already been computed, and can simply be looked up

in a table. This is called Dynamic Programming.

e Inthis case, we find les(x, ;, y, ;) for every i and j, starting from smaller

ones, storing the results in an array at index (i,j) as we go along

<inhon@mail.tku.edu.tw> May 31, 2015

80

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Longest Common Subsequence

LCS — Length(X,Y)

Jl

1 m « length[X]

2 n < lengthlY]

3 fori«1tom

4 do i, 0] — 0

5 forj—O0Oton

6 do c0,j] — 0

7 fori<—1tom

8 do for j— 1 ton

9 do if z; = y;
10 then cfi,j| —¢fi — 1,7 —1]+1
11 bi, 7] — N\
12 else if ¢fi —1,j] > cli,j —1]
13 then cli, j] — c[i — 1
14 bli, j] — 17
15 else ¢fi,j] —cli,j — 1]
16 bl] — %

17 return c and b

<inhon@mail.tku.edu.tw>

May 31, 2015

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Longest Common Subsequence

func les(x,y)
n = length(x), m =length(y)
for i from 0 ton
for j from 0 to m
if(iisOorjis0)
table[i,j]=""
if (x[i] ==yl[j]) table[i,j] = x[i]
else /* Sentinel */

table[i,j] = table[i-1,j]

if (length(table[i,j]) <length(table[i,j-1])) table[i,j] = table][i,j-1];

if (x[i] = y[j] and length(table[i,j]) <length(table[i-1,j-1])) t:

return table[n][m]

able[i,j] = table[i-1,j-1];

<inhon@mail.tku.edu.tw=>

May 31, 2015

81

e~
- 7- S £ G Tamkang Universty software Engineering Group TSR TIRBIAE http://www.tkse. tku.edu. tw)

Longest Common Subsequence

e Example

— Two sequences as follows
* HUMAN
* CHIMPANZE

— The LCS of the two sequences is

« HMAN
— HUMAN
— CHIMPANZE

<inhon@mail.tku.edu.tw> May 31, 2015

- 73‘ £ G Tamkang Universty software Engineering Group TSR TIZBAE http://www.tkse. tku.edu.tw)

0/1 Knapsack Problem

¢ You have a knapsack that has capacity (weight) C.

e You have several items J, ..., J,.

e Each item J; has a weight w; and a benefit p;.

¢ You want to place a certain number of item J; in the
knapsack so that:
— The knapsack weight capacity is not exceeded and

— The total benefit is maximal.

<inhon@mail.tku.edu.tw> May 31, 2015

82

a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Dynamic Programming solves 0/1
Knapsack Problem

e The structure of Optimal solution
— maximize »_ p;;
j=1

— subjectto Y wjz; < W, x; € {0,1}

i=1

e The recursive subtleties

— M(n, C) =max {M(n-1, C), if n>0 & C-w; <0
M(n-1, C-w)) +p;, ifn>0& C-w; 20
0, ifn=0&C>0 }

<inhon@mail.tku.edu. tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Example
Item Weight Benefit
A 2 60
B 3 75
C 4 90
Capacity = 5
<inhon@mail.tku.edu.tw> May 31, 2015

83

- 73‘ £ G Tamkang Universty software Engineering Group TSR TIRBIAE http://www.tkse. tku.edu. tw)

Example

e Suppose f(C) represents the maximal possible
benefit of a knapsack with Capacity C.

e We want to find f(5).

e Recursive Calculation
— f(C) = MAX { p; + f(C-w;) | I; is an item}.

<inhon@mail.tku.edu.tw> May 31, 2015

- 73‘ £ G Tamkang Universty software Engineering Group TSR TIZBAE http://www.tkse. tku.edu.tw)

Example
e 1(0), (1)

e f(0) =0. Why? The knapsack with capacity 0 can

have nothing in it.

e f(1) =0. There is no item with weight 1.

<inhon@mail.tku.edu.tw> May 31, 2015

84

- TSEG Tamkang Universty software Engineering Group Z5THMTERBE http://www.tkse.tku.edu. tw/
Example
* f(2)

e f(2) =60. There is only one item with Benefit 60.

e Choose A.

<inhon@mail.tku.edu.tw> May 31, 2015

a=
73.£G Tamkang Universty software Engineering Group ZTH TEREE http://www.tkse.tku.edu.tw/

Example
e f(3)

e f(3) =MAX {b; + f(w-w;) | [is an item}.
=MAX { 60+f(3-2), 75 + {(3-3)}

=MAX {60+0,75+0}

=175.

e Choose B.

<inhon@mail.tku.edu.tw> May 31, 2015

85

a=
73.56 Tamkang Universty software Engineering Group Z5THMTERBE http://www.tkse.tku.edu. tw/

Example

. f(4)

e f(4)=MAX {b; + f(w-w;) | [is an item}.
=MAX { 60 + f(4-2), 75 + £(4-3), 90+f(4-4)}
=MAX {60 + f(2), 75 + f(1), 90 + {(0)}
=MAX {60+0,75+0,90+ 0}

=90.

e Choose C.

<inhon@mail.tku.edu.tw> May 31, 2015

a=
73.56 Tamkang Universty software Engineering Group ZTH TEREE http://www.tkse.tku.edu.tw/

Example

o f(5)

o f(5)=MAX {b; + f(w-w;) | [is an item}.
=MAX { 60 + f(5-2), 75 + £(5-3), 90+f(5-4)}
=MAX {60+ f(3), 75 + £(2), 90 + {(1)}
=MAX {60+ 75,75+ 60, 90 + 0}

=135.

e Choose A +B.

<inhon@mail.tku.edu.tw> May 31, 2015

.-!
s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Example

e Optimal knapsack Benefit is 135
e Remain capacity = 0.

e The optimal solutions: Take A and B

<inhon@mail.tku.edu.tw> May 31, 2015

=
s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Another Example

Item Weight Benefit
A 4Kg $4500
B 5Kg $5700
C 2Kg $2250
D 1Kg $1100
E 6Kg $6700

Capacity = 8 Kg

<inhon@mail.tku.edu.tw> May 31, 2015

87

-.-!
TSE 6 Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

SIE {28) 5

e http://en.wikipedia.org/wiki/Dynamic programming

e http://www.csie.ntnu.edu.tw/~u91029/DynamicProgramming.ht

ml

e http://acm.nudt.edu.cn/~twcourse/DynamicProgramming.html

o https://www.cs.berkeley.edu/~vazirani/algorithms/chap6.pdf

e https://www.youtube.com/watch?v=0Q5jsbhAv M

e https://www.youtube.com/watch?v=gm9QkcdIN9o

e https://www.youtube.com/watch?v=sF7hzgUW5uY

e https://www.youtube.com/watch?v=PLJHuErj-Tw

e https://www.youtube.com/watch?v=UhFvK3uERGg

<inhon@mail.tku.edu.tw> May 31, 2015

a=
TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Agenda

1. Introduction

2. Graphs

3. Preview of Algorithm Designs and Analysis
4

. Divide and Conquer

(9}

. Dynamic Programming
6. Greedy Methods

7. NP Completeness

<inhon@mail.tku.edu.tw> May 31, 2015

88

-=_
a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Greedy Methods

e Famous Problems and Algorithms
— Minimum Cost Spanning Tree
— Single-Source Shortest Path
— Bipartite Cover
— Topological Sorting
— The Knapsack problem
— Container Loading
— Task Scheduling
— Huffman Code

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Greedy Methods

e Like dynamic programming, used to solve optimization
problems.

e Problems exhibit optimal substructure (like DP).

e Problems also exhibit the greedy-choice property.

— When we have a choice to make, make the one that looks best right
now.

— Make a locally optimal choice in hope of getting a globally
optimal solution.

<inhon@mail.tku.edu.tw> May 31, 2015

89

e~
- 7- S £ G Tamkang Universty software Engineering Group TSR TIRBIAE http://www.tkse. tku.edu. tw)

Greedy Methods

e (Greedy Strategy

— The choice that seems best at the moment is the one we
go with.

* Prove that when there is a choice to make, one of the optimal
choices is the greedy choice. Therefore, it’s always safe to
make the greedy choice.

» Show that all but one of the subproblems resulting from the
greedy choice are empty.

<inhon@mail.tku.edu.tw> May 31, 2015

e~
- 7- S £ G Tamkang Universty software Engineering Group TSR TIZBAE http://www.tkse. tku.edu.tw)

Greedy Methods

e Elements of Greedy Algorithms
— Greedy-choice Property.

A globally optimal solution can be arrived at by making a
locally optimal (greedy) choice.

— Optimal Substructure.

<inhon@mail.tku.edu.tw> May 31, 2015

e~
- 7- S £ G Tamkang Universty software Engineering Group TSR TIRBIAE http://www.tkse. tku.edu. tw)

Greedy Methods

e Examples
— Minimal Cost Spanning Tree
— Knapsack Problem (0/1, Fractional, Multiple items)
— Huffman Codes

<inhon@mail.tku.edu.tw> May 31, 2015

- 73‘ £ G Tamkang Universty software Engineering Group TSR TIZBAE http://www.tkse. tku.edu.tw)

Recall 0/1 Knapsack Problem

¢ You have a knapsack that has capacity (weight) C.
e You have several items I,,...,1.
e Each item [, has a weight w; and a benefit b;.

* You want to place a certain number of item [; in the
knapsack so that:
— The knapsack weight capacity is not exceeded and

— The total benefit is maximal.

<inhon@mail.tku.edu.tw> May 31, 2015

91

a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

0/1 Knapsack Problem

e Two kinds of selected directions

— Best Benefit only
— Best Unit_Benefit (Cost)

e f{C)=1(C-w)+1{(C-wj—w;;;)+...+10)orno
more item can be added

— which [; is the Best Choice, L, is the second
Best Choice, and so on.

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Recall Example

Item Weight Benefit
A 2 60
B 3 75
C 4 90
Capacity = 5
<inhon@mail.tku.edu.tw> May 31, 2015

92

a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Choice by Benefit only

e Step 1. Choose the item with Max. Benefit,
— Choose Item C, Benefit = 90, remain Capacity = 1

e Step 2. No more item with weight less then remain
Capacity, Stop

e Take Item C, Total Benefit is 90

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Choice by Cost (Benefit/\Weight)

e Step 1. Choose the item with Max. Cost,
— Item A, Cost =30
— Item B, Cost =25
— Item C, Cost=22.5

— Choose Item A, remain Capacity = 3

e Step 2. Choose the next item with Max. Cost,

— Choose Item B, remain Capacity =0
e Remain Capacity = 0, Stop

e Take Items A and B, Total Benefit is 135

<inhon@mail.tku.edu.tw> May 31, 2015

93

-=_
"’ TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Another Example

e Knapsack of capacity 50.

e 3items
— Item 1 has weight 10, benefit 60
— Item 2 has weight 20,benefit 100
— Item 3 has weight 30, benefit 120

e Apply two kinds of selection criteria to find the solution by
Greedy Method
— Benefit only: take Items 3 and 2, Total benefit is 220
— Cost: take Item 1 and 2, Total benefit is 160

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Another Example

Item Weight Benefit
A 4Kg $4500
B 5Kg $5700
C 2Kg $2250
D 1Kg $1100
E 6Kg $6700

Capacity = 8 Kg

<inhon@mail.tku.edu.tw> May 31, 2015

> :
7:S‘£G Tamkang Universty software Engineering Group ZTRMIEREE hitp:/www.tkse.tku.edu.tw/

Huffman Coding

e Huffman coding is an entropy encoding algorithm used for

lossless data compression.

e The term refers to the use of a variable-length code table
for encoding a source symbol (such as a character in a file)
where the variable-length code table has been derived in a
particular way based on the estimated probability of
occurrence for each possible value of the source symbol.

— It was developed by David A. Huffman while he was a Ph.D.
student at MIT

<inhon@mail.tku.edu.tw> May 31, 2015

- :
- 73‘ £ G Tamkang Universty software Engineering Group TSR TIZBAE http://www.tkse. tku.edu.tw)

Huffman Coding

e Main properties :
— Use variable-length code for encoding a source symbol.

— Shorter codes are assigned to the most frequently used
symbols, and longer codes to the symbols which appear
less frequently.

— Unique decodable & Instantaneous code.

— It was shown that Huffman coding cannot be improved
or with any other integral bit-width coding stream.

<inhon@mail.tku.edu.tw> May 31, 2015

.-!
(s TSE G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Huffman Coding

e Compare to ASCII (Examples), fixed-length codes

Character Binary Code Hexadecimal Code
A 01000001 41
J 01001010 4A
\% 01010110 56
00100011 23
a 01100001 61
n 01101110 6E
t 01110100 74
~ 01111110 7E
<inhon@mail.tku.edu.tw> May 31, 2015

-
(s TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Huffman Coding

e Huffman coding uses a specific method for choosing the representation

for each symbol, resulting in a prefix code (sometimes called "prefix-

free codes") that expresses the most common characters using shorter

strings of bits than are used for less common source symbols.

e Huffman was able to design the most efficient compression method of

this type: no other mapping of individual source symbols to unique

strings of bits will produce a smaller average output size when the

actual symbol frequencies agree with those used to create the code.

e A method was later found to do this in linear time if input probabilities

(also known as weights) are sorted.

<inhon@mail.tku.edu.tw=>

May 31, 2015

96

e~
- 7- S £ G Tamkang Universty software Engineering Group TSR TIRBIAE http://www.tkse. tku.edu. tw)

Huffman Tree

e Definition

— A Huffman tree is a binary tree which minimizes the
sum of f(i)D(i) over all leaves 1i,
» where f(i) is the frequency or weight of leaf i, and
* D(i) is the length of the path from the root to leaf i.
* In each of the applications, (i) has a different physical meaning.

e Properties
— Every internal node has 2 children.
— Smaller frequencies are further away from the root.

— The 2 smallest frequencies are siblings.

<inhon@mail.tku.edu.tw> May 31, 2015

- 73‘ £ G Tamkang Universty software Engineering Group TSR TIZBAE http://www.tkse. tku.edu.tw)

Example of Huffman Tree and Coding

e If all our messages are made up of the eight symbols A, B,
C,D,E, F,G,and H

e We can choose a code with three bits per character
— For example A 000, B 001, C 010,D 011, E 100, F 101
- G110, H111

e With this code, the message
— BACADAEAFABBAAAGAH

e is encoded as the string of 54 bits
— 001000010000011000100000101000001001000000000110000111

<inhon@mail.tku.edu.tw> May 31, 2015

97

a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Example of Huffman Tree and Coding

e We count the Character Frequency
frequency of each A 0
character shown in the B 3
message. C 1

D 1
E 1
F 1
G 1
H 1
<inhon@mail.tku.edu. tw=> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Example of Huffman Tree and Coding

(ABCDEFGHBH 18

(BECDEFGH 9

<inhon@mail.tku.edu.tw> May 31, 2015

98

a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Example of Huffman Tree and Coding

e Thus. we encode the Character | Frequency | Huffman Codes
M
character with A 9 0
variable-lengh codes B 3 100
as follow. C 1 1010
A0, B100,C1010,D 1011, E 1100, D 1 1011
F1101,G 1110, H1111
E 1 1100
F | 1101
G 1 1110
H 1 1111
<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Example of Huffman Tree and Coding

e With Huffman coding, the message
— BACADAEAFABBAAAGAH

e is encoded as the string of 42 bits
— 100010100101101100011010100100000111001111

<inhon@mail.tku.edu.tw> May 31, 2015

99

-.-!
TSEG Tamkang Universty software Engineering Group ZTHRMIEREE htp://www.tkse.tku.edu.tw/

Another Example

Character Frequency Huffman Codes
Space 7
a 4
e 4
f 3
h 2
i 2
1 1
m 2
n 2
o 1
p 1
r 1
s 2
t 2
u 1
X 1

<inhon@mail.tku.edu.tw=>

May 31, 2015

-.-!
TSEG Tamkang Universty software Engineering Group ZTHMITEREE http://www.tkse.tku.edu.tw/

SIE {28) 58

http://en.wikipedia.org/wiki/Greedy algorithm

http://ccckmit.wikidot.com/so:greedyalgorithm

http://www.personal kent.edu/~rmuhamma/Algorithms/My

Algorithms/Greedy/greedylntro.htm

https://www.youtube.com/watch?v=A8CEvPmNpKQ

https://www.youtube.com/watch?v=ZFK9 jeCBrE

htps://www.youtube.com/watch?v=apcCV{XfcqE

<inhon@mail.tku.edu.tw=>

May 31, 2015

100

o= _
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Agenda

1. Introduction

2. Graph

3. Preview of Algorithm Designs and Analysis
4. Divide and Conquer

5. Dynamic Programming

6. Greedy Methods

7. NP Completeness

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Recall NP Problem

e A problem is assigned to the NP (nondeterministic

polynomial time) class if it cannot be solved in polynomial
time.

e A problem is said to be NP-hard if an algorithm for solving
it can be translated into one for solving any other NP-
problem. It is much easier to show that a problem is NP
than to show that it is NP-hard.

e A problem which is both NP and NP-hard is called an NP-
complete problem.

<inhon@mail.tku.edu.tw> May 31, 2015

101

a=
73.56 Tamkang Universty software Engineering Group Z5THMTERBE http://www.tkse.tku.edu. tw/

Recall NP Problem

NP-complete

<inhon@mail.tku.edu.tw> May 31, 2015

a=
73.56 Tamkang Universty software Engineering Group ZTH TEREE http://www.tkse.tku.edu.tw/

NP Completeness

e Famous Problems
— Hamiltonian cycle in a directed graph.
— 3-CNF satisfiability.
— Circuit satisfiability problem.
— Longest simple paths in a directed graph.
— Vertex-cover problem in an undirected graph.

— Traveling-salesman problem.

<inhon@mail.tku.edu.tw> May 31, 2015

102

-=_
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

NP Completeness

e The problems we are trying to solve are basically
of two kinds.

e In decision problems we are trying to decide

whether a statement 1s true or false.

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

NP Completeness

e In optimization problems we are trying to find the
solution with the best possible score according to

some scoring scheme.

e Optimization problems can be either maximization
problems, where we are trying to maximize a
certain score, or minimization problems, where we
are trying to minimize a cost function.

<inhon@mail.tku.edu.tw> May 31, 2015

103

-=_
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Hamiltonian cycles

e Given a directed graph, we want to decide whether
or not there is a Hamiltonian cycle in this graph.

e This is a decision problem.

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Traveling-salesman problem

e (Given a complete graph and an assignment of
weights to the edges, find a Hamiltonian cycle of

minimum weight.

o This is the optimization version of the problem. In
the decision version, we are given a weighted
complete graph and a real number ¢, and we want
to know whether or not there exists a Hamiltonian
cycle whose combined weight of edges does not

exceed c.

<inhon@mail.tku.edu.tw> May 31, 2015

104

a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

The Hamiltonian Cycle Problem

e Let G be a finite graph with V(G) the set of vertices and
E(G) the set of edges. A Hamiltonian cycle c of G is a
cycle that goes through every vertex exactly once. The
Hamiltonian cycle problem (HCP) asks whether a given
graph G has a Hamiltonian cycle

V4 Y3

Y6 Y1

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

The Hamiltonian Cycle Problem

e The cycle v1v6v4v3v2y5vl is a Hamiltonian cycle. Of
course, there are many other cycles that are not
Hamiltonian, for example, v1v6v5v1 or the loop

v2v5v1v2vSviv2
V4 Y3
Vs v
Ve V1
<inhon@mail.tku.edu.tw> May 31, 2015

105

-=_
- TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Traveling-salesman problem

e The traveling salesman problem (TSP) asks for the shortest route to
visit a collection of cities and return to the starting point. Despite an
intensive study by mathematicians, computer scientists, operations
researchers, and others, over the past 50 years, it remains an open
question whether or not an efficient general solution method exists

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
‘? TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Traveling-salesman problem

o EHT R4 23 jATSPR AT > B € HORE A4t
FOE ARSI e LR gk
(Exponentially) = £ &)

— 3 cities = 1 solution.
— 10 cities = 181,440 possible tours

— n cities = (n-1)!/2 possible tours

<inhon@mail.tku.edu.tw> May 31, 2015

106

a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Traveling-salesman problem

e & n=26 A5 25! /2iF% RIS :
- 251=15511210043330985984000000=1. 55 x 10%iz
FHF B RER TR F 7
- BERTRE TR 100 RS A - &5
3.15 x 1077f/ v og- £V E 315 x 10BiE R T
Redi ATy BT e A FpF

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Traveling-salesman problem

1.55 x 10%
3.15 x 1013

~5 x 101 (4)

<inhon@mail.tku.edu.tw> May 31, 2015

107

-=_
a 7"5' E G Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

CIRCUIT-SAT Problem

e A Boolean circuit is a circuit of AND, OR, and
NOT gates; the CIRCUIT-SAT problem is to
determine if there is an assignment of 0’s and 1’s

to a circuit’s inputs so that the circuit outputs 1.

e The Circuit-SAT Problem is a NP-Complete
Problem

<inhon@mail.tku.edu.tw> May 31, 2015

-=_
a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

CIRCUIT-SAT Problem

e Non-deterministically choose a set of inputs and
the outcome of every gate, then test each gate’s I/O.

Loghc Dwmn — 3 1
— 4
3 WO 1
OT 4
bt ——tpol o Crper
or 1

<inhon@mail.tku.edu.tw> May 31, 2015

108

-.-!
TSE 6 Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

P vs. NP

e In each of the following pairs of problems,
one is solvable in polynomial time and the

other is NPC (NP-Completeness).
1. Shortest path vs. longest simple path

a. Shortest path (even with negative edge weights) is solvable in
polynomial time. We can find a shortest path from a single
source to a single destination in a graph, G = (V,E) , in O(VE)
time.

b. Finding the longest simple path between two vertices in G =
(V,E) is NPC. ’Simple” means the path does not cross over
itself by going the same vertex more than once.

<inhon@mail.tku.edu.tw> May 31, 2015

a=
TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

P vs. NP

2. Euler Tour vs. Hamiltonian Cycle

* a. An Euler Tour traverses each edge of a directed graph G =
(V,E) exactly once, although it may visit a vertex more than
once. If a graph has an Euler Tour we can find the edges in O(E)
time.

* b. A Hamiltonian Cycle of a directed graph, G = (V,E) , is a
simple cycle that contains each vertex of G. Determining

whether a directed graph has a Hamiltonian Cycle is NPC,

<inhon@mail.tku.edu.tw> May 31, 2015

109

a TSEG Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

P vs. NP

2. Euler Tour vs. Hamiltonian Cycle

* a. An Euler Tour traverses each edge of a directed graph G =

(V,E) exactly once, although it may visit a vertex more than
once. If a graph has an Euler Tour we can find the edges in O(E)
time.

* b. A Hamiltonian Cycle of a directed graph, G = (V,E) , is a
simple cycle that contains each vertex of G. Determining
whether a directed graph has a Hamiltonian Cycle is NPC,

<inhon@mail.tku.edu.tw> May 31, 2015

a TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

Approximation Algorithm

i w &2 (Approximation Algorithm)
- - BRAQE S FiER B N # el NP

completef* 42 » Pl & £ L P JE P o & & F AT auF
BEV URA(T L mk &Polynomlal Timep fz

i) e
R o & B3t NP-completesnf S84 % # MM i
i.é‘ _‘E‘;\.q’a i9m FH =% 7%#‘}-’%—?]}3&1]1?1

ﬁ ’j‘ ’ E] i ;(:]‘)Eﬁ}; Tl [»;t.-‘% e i\‘ﬁ;/l‘—

\\“‘

ST
i

\ﬂ'

b

gL %E oyt T Approximation AlgorithmeF4? -

<inhon@mail.tku.edu.tw> May 31, 2015

110

-.-!
TSE 6 Tamkang Universty Software Engineering Group ZGTHMTIEREE http://www.tkse. thu.edu. tw/

Approximation Algorithm

7w B2 (Approximation Algorithm)

- K3 - BT RUF R E F LR dilssue:
C AT 0w B pE R AR R & % (2 & 5 Polynomial
Time)
© B OEIERT OUF B E e R enfids 3R AT (713
c B A ERT 0 R TR E BT RO 2T T TR 5

Fitd it f2

<inhon@mail.tku.edu.tw> May 31, 2015

a=
TSEG Tamkang Universty Software Engineering Group ZTHMIEREE http://www.tkse. thu.edu. tw/

SIE {28) 58

http://en.wikipedia.org/wiki/Approximation algorithm

http://www.designofapproxalgs.com/

http://www.win.tue.nl/~mdberg/Onderwijs/AdvAlg Materi
al/Course%?20Notes/lectureS.pdf

https://www.youtube.com/watch?v=hdch8ioLRgE

https://www.youtube.com/watch?v=Dd0XNsAkkgE

https://www.youtube.com/watch?v=f7U7UK 61iU4&list=P
LTZbNwgO5eboxnclsmg95u 4nCtyziLKX

<inhon@mail.tku.edu.tw> May 31, 2015

111

= JSEG
Tamkang Universty Software Engineering Group

I MBI E R B OZE

hetp:/fwww.tkse. tku. edu.tw/

The End

EREHRIRE LNEER
FIAEARTE ~ BEEA THY

Reporter : Ying-Hong Wang
E-mail :inhon@mail.tku.edu.tw

<inhon@mail.tku.edu.tw> May 31, 2015

112

