

應用光學-課程目標

- 瞭解光學理論和實際應用
- 瞭解光學儀器之設計原理和應用
- ●增進學生光學專業方面之英文閱讀能力

應用光學-授課進度

週次	內容 (Subject/Topics)	備註
1	Introduction in nano-optics	
2	Theoretical foundations I	
3	Theoretical foundations II	
4	Propagation and focusing of optical fields	
5	Nano-scale optical microscopy I	
6	Nano-scale optical microscopy II	
7	Near-field optical probes I	
8	Near-field optical probes II	
9	Probe-sample distance control	
10	期中考試週	
11	Quantum emitters	
12	Photonic crystals I	
13	Photonic crystals II	
14	Surface plasmons I	
15	Surface plasmons II	
16	Nano-scale optical instruments I	
17	Nano-scale optical instruments II	
18	期末考試週	

應用光學-參考書籍

- Principles of Nano-Optics, Lukas Novotny, Bert Hecht, Cambridge University Press
- Photonic Crystals, J. D. Joannopoulos, R. D. Meade, J. N. Winn, Princeton Univ. Press

應用光學-學期成績計算方式

●平時成績:30%

●期中考成績:30%

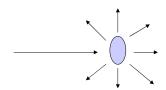
●期末考成績:40%

光學

● 研究光的特性,通常可分成三部份:

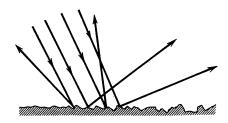
1. 幾何光學:以光線的方法來研討

2. 物理光學:以波動學來研討

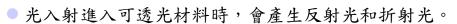

3. 量子光學:以量子力學來研討

光的本質

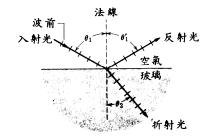
- 十七世紀,Newton首創光的粒子說。光是由光源射出一種無質量的微粒,以極大的速度像四面八方發射所形成,以達於眼中便產生光的感覺,此種說法僅可解釋光的直進及反射。
- 1678年,Huygen證明反射和折射定律可由波動理論的基礎去解釋,但是對於光電效應卻無法解釋。
- 1873年,Maxwell證明振盪電路會輻射電磁波,此種波的傳遞速度接近3 x 10⁸ m/s,此數值等於光的傳播速度,因此光是一種非常短的電磁波。
- 1905年,Einstein提出光之傳播是輻射不連續的光量子學 說,而光電效應則證明光的粒子說。
- 1930年,經由量子力學的證明,光同時具有波動和粒子的 性質。


光的散射

- 當太陽光穿越地球的大氣層時,部份的光被大氣分子所吸收,然後將其往其他方向發射的現象稱為散射(scattering)。
- ●散射光的強度與其波長的四次方成反比。
- 空氣分子對藍光的散射能力較強,所以天空呈現藍色。



光的反射(reflection)

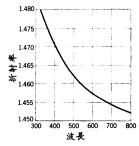

- 漫射(diffuse reflection) : 我們之所以可以看到大部分的物體,乃是因為大部分的物體會將光線反射而進入我們的眼睛。
- 鏡面反射(specular reflection): 將光東朝一個方向反射。

光的折射(refraction)

- 入射光、反射光和折射光均與法線在同一平面上。
- ●反射角等於入射角。
- 入射光與折射光的關係,Snell定律:

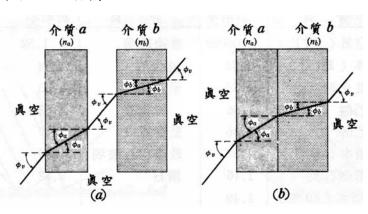
$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{n_2}{n_1}$$

n為折射率


折射率(refractive index)

$$n = \frac{c}{v}$$

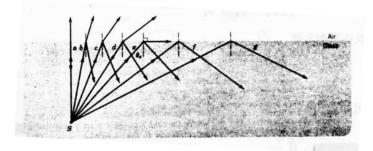
黄光(589 nm)的折射率


介 質	折射率	介 質	折射率
空氣(STP)	1.00029	普通玻璃	1.52
水 (20°C)	1,33	氯化鈉	1.54
氯化鈉	1.33	聚乙烯	1.55
乙酸	1.36	二硫化碳	1.63
乙醇	1.36	藍寶石	1.77
糖水(30%)	1.38	最重火石玻璃	1.89
熔融石英	1.46	鑽石	2.42
糖水(80%)	1.49		

石英的折射率

折射角

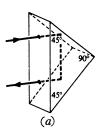
當光線由真空進入折射率大於1的介質時,折射角 均小於入射角。

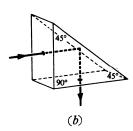


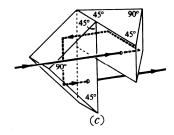
全反射(total internal reflection)

若光線在折射率為n₁的玻璃內射出經過界面折射至折射率 為n₂的空氣內,由Snell定律

$$\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1 \quad \text{ln}_1 > n_2 \qquad \Longrightarrow \qquad \sin \theta_2 > \sin \theta_1$$

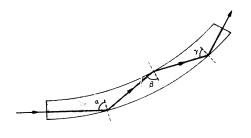

$$\implies$$
 $\sin \theta_2 = 1$ $\theta_2 = 90^{\circ}$ 為臨界角 θ_c



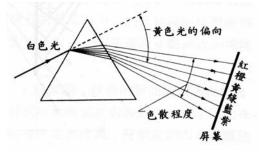

全反射(total internal reflection)

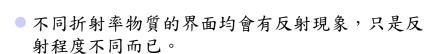
- 全反射只發生在光由折射率較大之介質中發出的情況。
- 臨界角 $\sin \theta_c = \frac{n_2}{n_1}$
- 玻璃之臨界角,假設其折射率為1.5

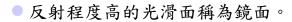
$$\sin \theta_c = \frac{1}{1.5} = 0.667 \Rightarrow \theta_c = 41.8^{\circ}$$

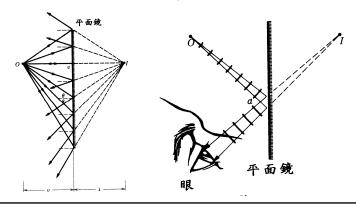


全反射(total internal reflection)

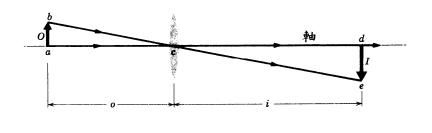

- 使用三菱鏡(45度-90度-45度)來反射光線比金屬好,因為:
- 1. 光線可以全部反射
- 2. 反射特性不受表面情況影響
- 光纖(fiber)



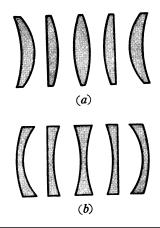

色散(dispersion)


- 大部分的可見光是由一些波長不同的光混合而成。
- 這些光在真空中的傳播速度均相同,但是當其進入某一介質時,其速度隨著波長而有所改變,這種特性稱之為色散。

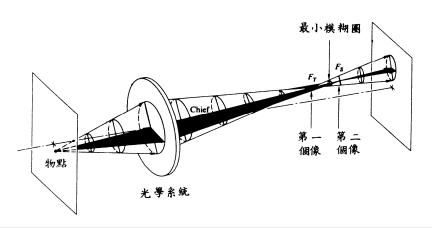
平面鏡的反射

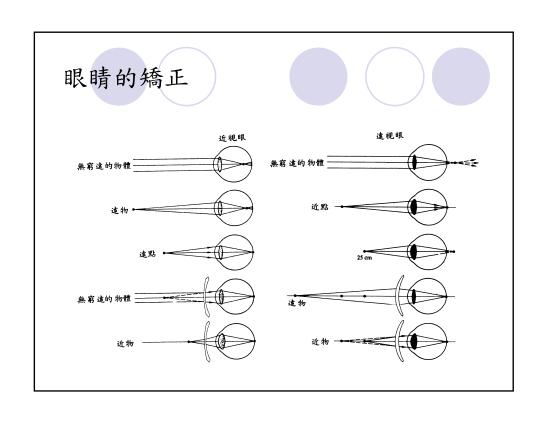


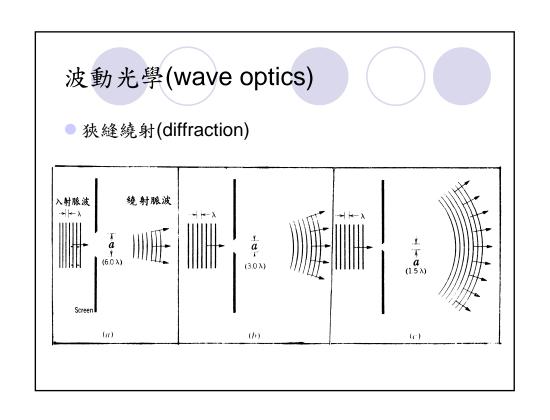
薄透鏡


●高斯的薄透鏡方程式

$$\frac{1}{o} + \frac{1}{i} = \frac{1}{f}$$

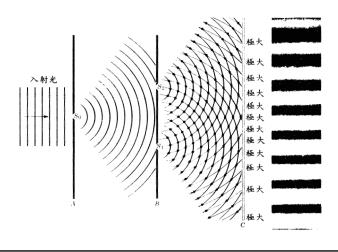

薄透鏡種類

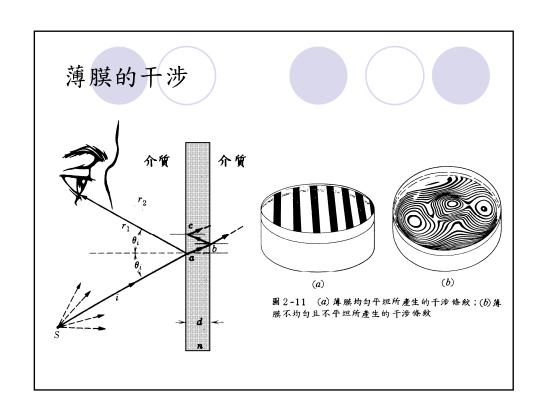

- 會聚透鏡(converging lens)
- 發散透鏡(diverging lens)

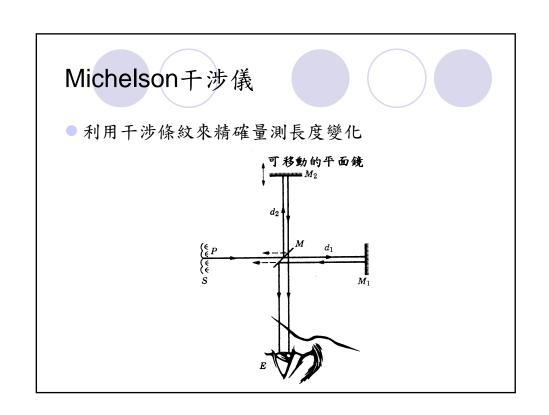


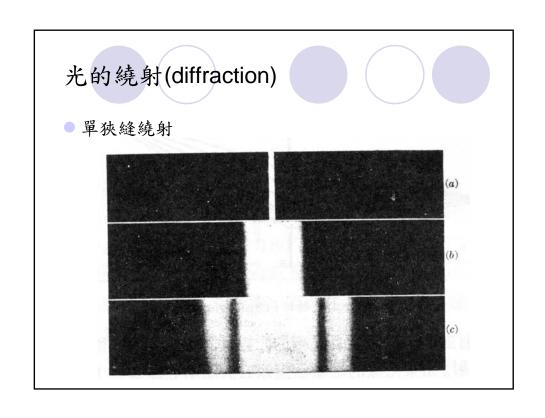
透鏡像差

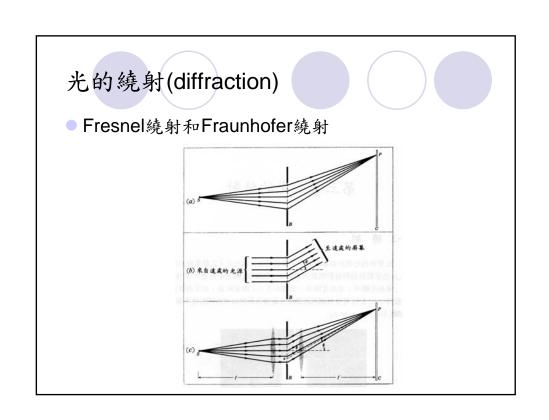
由物體上發出的光源不同,經過透鏡所形成的像 會有不同的色彩,且位置和大小均不相同。



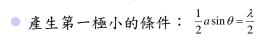

光的干涉(interference)

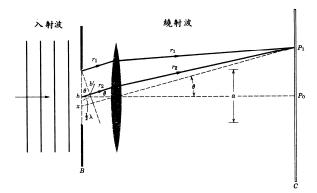





相干性(coherent)

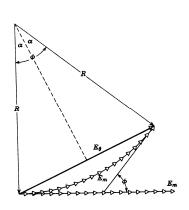
- 光波的干涉就是二個以上的光波互相疊加產生的現象
- 光波產生干涉現象則需有三個條件
- > 光波頻率一致
- >有相互平行的振動分量
- > 光波相位差穩定




單狹縫繞射

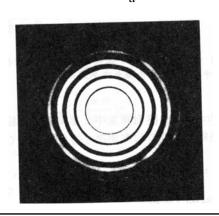
• 產生第二極小的條件: $\frac{1}{4}a\sin\theta = \frac{\lambda}{2}$

Arr 產生極小的條件 $a\sin\theta = m\lambda, m = 1,2,3...$


單狹縫繞射公式

$$E_{\theta} = E_{m} \frac{\sin \alpha}{\alpha}$$

$$I_{\theta} = I_{m} \left(\frac{\sin \alpha}{\alpha}\right)^{2}$$


$$\alpha \left(=\frac{1}{2}\phi\right) = \frac{\pi a}{\lambda} \sin \theta$$

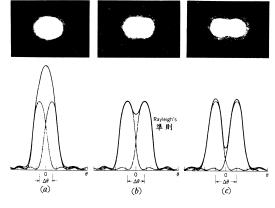
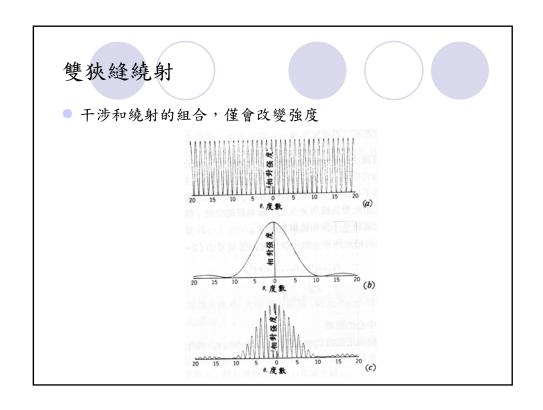
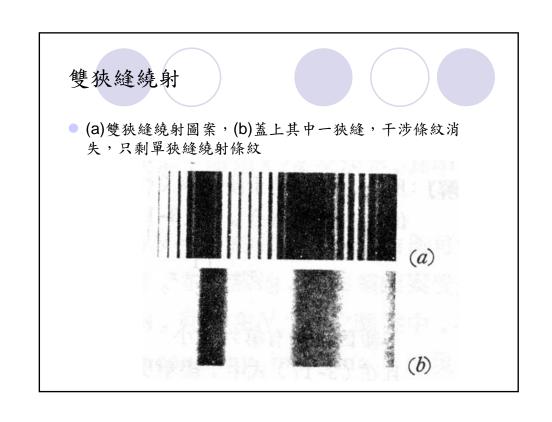
$$a \sin \theta = m\lambda, m = 1, 2, 3...$$

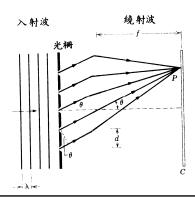
圓孔繞射

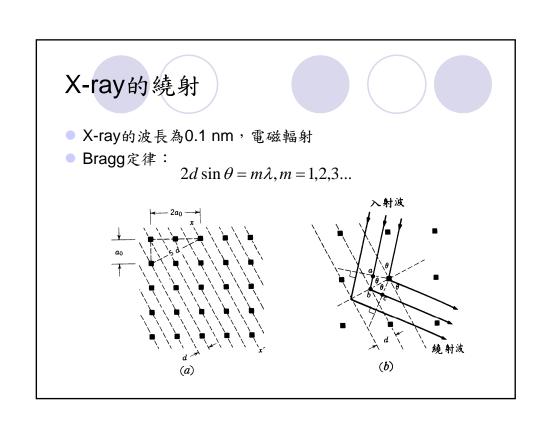
- 繞射程度取決為透鏡的直徑d
- 產生第一極小的條件: $\sin \theta = 1.22 \frac{\lambda}{d}$

圓孔繞射的鑑別率

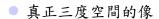
兩光源之一的繞射條紋的中央最亮部份與另一光源的第一 暗圈剛接觸時,此兩點光源恰可鑑別。

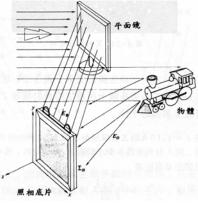





圖 3-10 (a) 不可鑑別 (b) 恰可鑑別 (c) 可鑑別

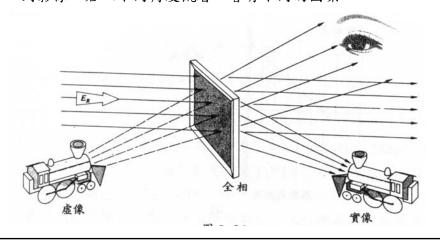

多狹縫繞射

- ●狹縫數N
- 干涉條紋間隔由 λ/d決定
- 條紋強度由繞射圖案決定,即λ/a





全相學(holography)


將底片放在由物體散射的光以及直接由光源照射的光可到 達之處,直射和散射的光在底片上產生干涉而形成複雜的

干涉圖形。

全相學(holography)

要產生全相時,僅需將雷射光照射在沖洗過的底片即可得 到影像,若以不同角度觀看,會有不同的圖案。

