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Chapter Fifteen

Market Demand

From Individual to Market 
Demand Functions

• Think of an economy containing n 
consumers, denoted by i = 1, … ,n.

• Consumer i’s ordinary demand function for 
commodity j is

x p p mj
i i* ( , , )1 2

From Individual to Market 
Demand Functions

• When all consumers are price-takers, 
the market demand function for 
commodity j is

• Aggregate demand depend on prices 
and the distribution of incomes
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From Individual to Market 
Demand Functions

• If all consumers are identical then 
where M = nm or a constant proportion 
of individual income. 
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From Individual to Market 
Demand Functions

• The market demand curve is the 
“horizontal sum” of the individual 
consumers’ demand curves.

• E.g. suppose there are only two 
consumers; i = A,B.

From Individual to Market 
Demand Functions
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The “horizontal sum”
of the demand curves
of individuals A and B.

Elasticities

• Elasticity measures the “sensitivity” of one 
variable with respect to another.

• The elasticity of variable X with respect to 
variable Y is

εεεεx y
x
y,

%
%

.==== ∆∆∆∆
∆∆∆∆

Economic Applications of 
Elasticity

• Economists use elasticities to measure 
the sensitivity of
– quantity demanded of commodity i with 

respect to the price of commodity i (own-
price elasticity of demand)

– demand for commodity i with respect to the 
price of commodity j (cross-price elasticity 
of demand). 
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Economic Applications of 
Elasticity

– demand for commodity i with respect to 
income (income elasticity of demand)

– quantity supplied of commodity i with respect 
to the price of commodity i (own-price 
elasticity of supply)

Economic Applications of 
Elasticity

– quantity supplied of commodity i with respect 
to the wage rate (elasticity of supply with 
respect to the price of labor)

– and many, many others.

Own-Price Elasticity of Demand

• Q: Why not use a demand curve’s slope to 
measure the sensitivity of quantity 
demanded to a change in a commodity’s 
own price?

Own-Price Elasticity of Demand
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In which case is the quantity demanded
X1* more sensitive to changes to p 1?
It is the same in both cases.
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Own-Price Elasticity of Demand

• Q: Why not just use the slope of a demand 
curve to measure the sensitivity of quantity 
demanded to a change in a commodity’s 
own price?

• A: Because the value of sensitivity then 
depends upon the (arbitrary) units of 
measurement used for quantity demanded. 

Own-Price Elasticity of Demand
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is a ratio of percentages and so has no
units of measurement.  
Hence own-price elasticity of demand is 
a sensitivity measure that is independent 
of units of measurement.

Arc and Point Elasticities

• An “average” own-price elasticity of 
demand for commodity i over an interval of 
values for pi is an arc-elasticity, usually 
computed by a mid-point formula.

• Elasticity computed for a single value of pi
is a point elasticity. 

Arc Own-Price Elasticity
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Arc Own-Price Elasticity
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is the arc own-price elasticity of demand.
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Point Own-Price Elasticity
p i
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What is the own-price elasticity
of demand in a very small interval
of prices centered on p i’?
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Point Own-Price Elasticity
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What is the own-price elasticity
of demand in a very small interval
of prices centered on p i’?
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Point Own-Price Elasticity
p i
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What is the own-price elasticity
of demand in a very small interval
of prices centered on p i’?
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Point Own-Price Elasticity
p i

Xi*
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What is the own-price elasticity
of demand in a very small interval
of prices centered on p i’?
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Point Own-Price Elasticity

E.g. Suppose p i = a - bX i. 
Then X i = (a-p i)/b and

εεεεX p
i

i

i

ii i

p

X

dX
dp

* , *

*
==== ××××

.
b
1

dp
dX

i

*
i −−−−==== Therefore,

εεεεX p
i

i

i

ii i

p
a p b b

p
a p

* , ( ) /
.====

−−−−
×××× −−−−





 ==== −−−−

−−−−
1

Point Own-Price Elasticity
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Point Own-Price Elasticity
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own-price elastic

own-price inelastic
(own-price unit elastic)

Point Own-Price Elasticity
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Revenue and Own-Price 
Elasticity of Demand

• If raising a commodity’s price causes little 
decrease in quantity demanded, then 
sellers’ revenues rise.

• Hence own-price inelastic demand  
causes sellers’ revenues to rise as price 
rises.

Revenue and Own-Price 
Elasticity of Demand

• If raising a commodity’s price causes a 
large decrease in quantity demanded, 
then sellers’ revenues fall.

• Hence own-price elastic demand causes 
sellers’ revenues to fall as price rises.

Revenue and Own-Price 
Elasticity of Demand

R p p X p( ) ( ).*==== ××××Sellers’ revenue is

So
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Revenue and Own-Price 
Elasticity of Demand

[[[[ ]]]]dR
dp
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so if εεεε ==== −−−−1 then
dR
dp

==== 0

and a change to price does not alter
sellers’ revenue.
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Revenue and Own-Price 
Elasticity of Demand

[[[[ ]]]]dR
dp

X p==== ++++* ( ) 1 εεεε

but if −−−− <<<< ≤≤≤≤1 0εεεε then
dR
dp

>>>> 0

and a price increase raises sellers’
revenue.

Revenue and Own-Price 
Elasticity of Demand

[[[[ ]]]]dR
dp
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And if εεεε <<<< −−−−1 then
dR
dp

<<<< 0

and a price increase reduces sellers’
revenue.

Revenue and Own-Price 
Elasticity of Demand

In summary:

−−−− <<<< ≤≤≤≤1 0εεεεOwn-price inelastic demand;
price rise causes rise in sellers’ revenue.
Own-price unit elastic demand;
price rise causes no change in sellers’
revenue.

εεεε ==== −−−−1

Own-price elastic demand;
price rise causes fall in sellers’ revenue.

εεεε <<<< −−−−1

Marginal Revenue and Own-
Price Elasticity of Demand

• A seller’s marginal revenue is the rate at 
which revenue changes with the number 
of units sold by the seller.
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Marginal Revenue and Own-
Price Elasticity of Demand

p(q) denotes the seller’s inverse demand 
function; i.e. the price at which the seller 
can sell q units.  Then
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Marginal Revenue and Own-
Price Elasticity of Demand
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Marginal Revenue and Own-
Price Elasticity of Demand

MR q p q( ) ( )==== ++++





1

1
εεεε says that the rate

at which a seller’s revenue changes
with the number of units it sells
depends on the sensitivity of quantity
demanded to price; i.e., upon the
of the own-price elasticity of demand.

Marginal Revenue and Own-
Price Elasticity of Demand
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If εεεε ==== −−−−1 then MR q( ) .==== 0

If −−−− <<<< ≤≤≤≤1 0εεεε then MR q( ) .<<<< 0

If εεεε <<<< −−−−1 then MR q( ) .>>>> 0
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Selling one
more unit raises the seller’s revenue.

Selling one
more unit reduces the seller’s revenue.

Selling one
more unit does not change the seller’s
revenue.

Marginal Revenue and Own-
Price Elasticity of Demand

If εεεε ==== −−−−1 then MR q( ) .==== 0

If −−−− <<<< ≤≤≤≤1 0εεεε then MR q( ) .<<<< 0

If εεεε <<<< −−−−1 then MR q( ) .>>>> 0

Marginal Revenue and Own-
Price Elasticity of Demand

An example with linear inverse demand.
p q a bq( ) .==== −−−−

Then R q p q q a bq q( ) ( ) ( )==== ==== −−−−

and MR q a bq( ) .==== −−−− 2

Marginal Revenue and Own-
Price Elasticity of Demand
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