Chapter Ten

Intertemporal Choice

Intertemporal Choice

- Persons often receive income in "lumps"; *e.g.* monthly salary.
- How is a lump of income spread over the following month (saving now for consumption later)?
- Or how is consumption financed by borrowing now against income to be received at the end of the month?

Present and Future Values

- Begin with some simple financial arithmetic.
- Take just two periods; 1 and 2.
- Let r denote the interest rate per period.

Future Value

- E.g., if r = 0.1 then \$100 saved at the start of period 1 becomes \$110 at the start of period 2.
- The value next period of \$1 saved now is the future value of that dollar.

Future Value

• Given an interest rate r the future value one period from now of \$1 is

FV = 1 + r.

• Given an interest rate r the future value one period from now of \$m is

$$\mathsf{FV} = \mathsf{m}(1+\mathsf{r}).$$

Present Value

- Suppose you can pay now to obtain \$1 at the start of next period.
- What is the most you should pay?
- \$1?
- No. If you kept your \$1 now and saved it then at the start of next period you would have \$(1+r) > \$1, so paying \$1 now for \$1 next period is a bad deal.

Present Value

- Q: How much money would have to be saved now, in the present, to obtain \$1 at the start of the next period?
- A: \$m saved now becomes \$m(1+r) at the start of next period, so we want the value of m for which

m(1+r) = 1That is, m = 1/(1+r), the present-value of \$1 obtained

the present-value of \$1 obtained at the start of next period.

Present Value

• The present value of \$1 available at the start of the next period is

$$PV = \frac{1}{1+r}$$

 And the present value of \$m available at the start of the next period is

$$\mathsf{PV} = \frac{\mathsf{m}}{1+\mathsf{r}}.$$

The Intertemporal Choice Problem

- Let m₁ and m₂ be incomes received in periods 1 and 2.
- Let c₁ and c₂ be consumptions in periods 1 and 2.
- Let p₁ and p₂ be the prices of consumption in periods 1 and 2.

The Intertemporal Choice Problem

- The intertemporal choice problem: Given incomes m₁ and m₂, and given consumption prices p₁ and p₂, what is the most preferred intertemporal consumption bundle (c₁, c₂)?
- For an answer we need to know:
 - the intertemporal budget constraint
 - intertemporal consumption preferences.

The Intertemporal Budget Constraint

 To start, let's ignore price effects by supposing that

$$p_1 = p_2 = $1.$$

- Suppose that the consumer chooses not to save or to borrow.
- Q: What will be consumed in period 1?

- Q: What will be consumed in period 2?
- A: c₂ = m₂.

The Intertemporal Budget Constraint

 Now suppose that the consumer spends nothing on consumption in period 1; that is, c₁ = 0 and the consumer saves

$$s_1 = m_1$$
.

- The interest rate is r.
- What now will be period 2's consumption level?

The Intertemporal Budget Constraint

- Period 2 income is m₂.
- Savings plus interest from period 1 sum to $(1 + r)m_1$.
- So total income available in period 2 is $m_2 + (1 + r)m_1$.
- So period 2 consumption expenditure is

$$c_2 = m_2 + (1+r)m_1$$

The Intertemporal Budget Constraint

- Now suppose that the consumer spends everything possible on consumption in period 1, so $c_2 = 0$.
- What is the most that the consumer can borrow in period 1 against her period 2 income of \$m₂?
- Let b₁ denote the amount borrowed in period 1.

The Intertemporal Budget Constraint

- Only \$m₂ will be available in period 2 to pay back \$b₁ borrowed in period 1.
- So $b_1(1 + r) = m_2$.
- That is, $b_1 = m_2 / (1 + r)$.
- So the largest possible period 1 consumption level is

$$c_1 = m_1 + \frac{m_2}{1+r}$$

The Intertemporal Budget
Constraint

$$(1+r)c_1+c_2 = (1+r)m_1+m_2$$

is the "future-valued" form of the budget
constraint since all terms are in period 2
values. This is equivalent to
 $c_1 + \frac{c_2}{1+r} = m_1 + \frac{m_2}{1+r}$
which is the "present-valued" form of the
constraint since all terms are in period 1
values.

The Intertemporal Budget Constraint

- Now let's add prices p₁ and p₂ for consumption in periods 1 and 2.
- How does this affect the budget constraint?

Intertemporal Choice

- Given her endowment (m₁,m₂) and prices p₁, p₂ what intertemporal consumption bundle (c₁*,c₂*) will be chosen by the consumer?
- Maximum possible expenditure in period 2 is $m_2 + (1+r)m_1$ so maximum possible consumption in

period 2 is
$$c_2 = \frac{m_2 + (1+r)m_1}{p_2}.$$

Intertemporal Choice

• Finally, if c1 units are consumed in period 1 then the consumer spends p_1c_1 in period 1, leaving $m_1 - p_1c_1$ saved for period 1. Available income in period 2 will then be

so $m_2 + (1+r)(m_1 - p_1c_1)$

 $p_2c_2 = m_2 + (1+r)(m_1 - p_1c_1).$

The Intertemporal Budget

 $c_{2} Constraint (1+r)p_{1}c_{1}+p_{2}c_{2} = (1+r)m_{1}+m_{2}$

values.

t
1

$$p_2$$

 m_2/p_2
 m_2/p_2
 m_1/p_1
 m_1/p_1
 $m_1 + m_2/(1+r)$
 p_1
 p_2
 m_1/p_1
 m_1/p_1
 $m_1 + m_2/(1+r)$

 \mathbf{p}_2

Price Inflation

- Define the inflation rate by $\pi\,$ where

$$p_1(1+\pi) = p_2$$
.

- For example,
 - $\pi\,$ = 0.2 means 20% inflation, and
 - π = 1.0 means 100% inflation.

Price Inflation

- We lose nothing by setting $p_1=1$ so that $p_2 = 1 + \pi$.
- Then we can rewrite the budget constraint

as
$$p_1c_1 + \frac{p_2}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$

 $c_1 + \frac{1+\pi}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$

Real Interest Rate

$$-(1+\rho) = -\frac{1+r}{1+\pi}$$
gives

$$\rho = \frac{r-\pi}{1+\pi}.$$
For low inflation rates ($\pi \approx 0$), $\rho \approx r - \pi$.
For higher inflation rates this
approximation becomes poor.

F	Real Interest Rate								
r	0.30	0.30	0.30	0.30	0.30				
π	0.0	0.05	0.10	0.20	1.00				
r - π	0.30	0.25	0.20	0.10	-0.70				
ρ	0.30	0.24	0.18	0.08	-0.35				

Comparative Statics • The slope of the budget constraint is $-(1+\rho) = -\frac{1+r}{1+\pi}.$ • The constraint becomes flatter if the interest rate r falls or the inflation rate π rises (both decrease the real rate of interest).

Valuing Securities

- A financial security is a financial instrument that promises to deliver an income stream.
- E.g.; a security that pays \$m₁ at the end of year 1, \$m₂ at the end of year 2, and \$m₃ at the end of year 3.
- What is the most that should be paid now for this security?

Valuing Securities

- The security is equivalent to the sum of three securities;
 - the first pays only m_1 at the end of year 1,
 - the second pays only \$m₂ at the end of year 2, and
 - the third pays only m_3 at the end of year 3.

- The PV of m_1 paid 1 year from now is $m_1 \, / \, (1\!+\!r)$
- The PV of $m_2 paid 2 years from now is <math display="inline">m_2 \, / \, (1\!+\!r)^2$
- The PV of m_3 paid 3 years from now is $m_3/(1+r)^3$
- The PV of the security is therefore $m_1/(1+r) + m_2/(1+r)^2 + m_3/(1+r)^3$.

Valuing Bonds

- A bond is a special type of security that pays a fixed amount \$x for T years (its maturity date) and then pays its face value \$F.
- What is the most that should now be paid for such a bond?

Valuing Bonds

• Suppose you win a State lottery. The prize is \$1,000,000 but it is paid over 10 years in equal installments of \$100,000 each. What is the prize actually worth?

Valuing Consols									
End of Year	1	2	3		t				
Income Paid	\$x	\$x	\$x	\$x	\$x	\$x			
Present -Value	$\frac{\$x}{1+r}$	$\frac{\$x}{(1+r)^2}$	$\frac{\$x}{(1+r)^3}$	•••	$\frac{\$x}{(1+r)^t}$				
$PV = \frac{x}{1+r} + \frac{x}{(1+r)^2} + K + \frac{x}{(1+r)^t} + K.$									

Valuing Consols

$$PV = \frac{x}{1+r} + \frac{x}{(1+r)^2} + \frac{x}{(1+r)^3} + K$$

$$= \frac{1}{1+r} \left[x + \frac{x}{1+r} + \frac{x}{(1+r)^2} + K \right]$$

$$= \frac{1}{1+r} [x + PV]. \text{ Solving for PV gives}$$

$$PV = \frac{x}{r}.$$

