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Chiang/Wainwright: Fundamental Methods of Mathematical Economics 
 

CHAPTER 12 
EXERCISE 12.2 

1. Use the Lagrange-multiplier method to find the stationary values of z: 
(a) xyz = , subject to 2y2x =+ . 
(b) )4y(xz += , subject to 8yx =+ . 
(c) xyy3xz −−= , subject to 6yx =+ . 
(d) 2xy7z +−= , subject to 0yx =+  

 
 Ans: 

(a) )y2x2(xyZ −−λ+= . The necessary condition is: 

0y2x2Z =−−=λ      0yZx =λ−=      02xZy =λ−=  

Thus 2
1* =λ , 1x* = , 2

1*y = -yielding 2
1*z = . 

(b) )yx8(x4xyZ −−λ++= . The necessary condition is: 

0yx8Z =−−=λ      04yZx =λ−+=      0xZy =λ−=  

Thus 6* =λ , 6x* = , 2y* = -yielding 36z* =  
(c) )yx6(xyy3xZ −−λ+−−= . The necessary condition is: 

0yx6Z =−−=λ      0y1Zx =λ−−=      0x3Zy =λ−−−=  

Thus 4* −=λ , 1x* = , 5y* = -yielding 19z* −=  
(d) )yx(xy7Z 2 −−λ++−= . The necessary condition is: 

0yxZ =−−=λ      0x2Zx =λ−=      01Zy =λ−−=  

Thus 1* −=λ , 2
1*x −= , 2

1*y = -yielding 4
3* 6z =  

 
2. In Prob. 1, find whether a slight relaxation of the constraint will increase or 

decrease the optimal value of z. At what rate? 
 
 Ans: 

(a) Increase; at the rate 2
1*

*

dc
dz

=λ=  

(b) Increase; 6
dc
dz*

= . 
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(c) Decrease; 4
dc
dz*

−=  

(d) Decrease; 1
dc
dz*

−=  

 
3. Write the Lagrangian function and the first-order condition for stationary 

values (without solving the equations) for each of the following: 
(a) ywxyw3y2xz −+++= , subject to 10w2yx =++ . 
(b) 22 ywxy2xz ++= , subject to 24wyx2 2 =++  and 8wx =+ . 

 
 Ans: 

(a) )w2yx10(ywxyw3y2xZ −−−λ+−+++= . Hence: 
0w2yx10Z =−−−=λ      0y1Zx =λ−+=  

0wx2Zy =λ−−+=        02y3Zw =λ−−=  

(b) )wx8(v)wyx224(ywxy2xZ 222 −−+−−−λ+++= . Thus: 

0wyx224Z 2 =−−−=λ      0wx8Zv =−−=  

0v2y2x2Zx =−λ−+=      0wx2Z 2
y =λ−−=  

0vw2yw2Zw =−λ−=  
 

4. If, instead of c)y,x(g = , the constraint is written in the form of 0)y,x(G = , 
how should the Lagrangian function and the first-order condition be modified 
as a consequence? 

 
Ans: [ ] )y,x(G)y,x(f)y,x(G0)y,x(fZ λ−=−λ+= . The first-order condition 

becomes: 0)y,x(GZ =−=λ   0GfZ xxx =λ−=   0GfZ yyy =λ−=  

 
5. In discussing the total-differential approach, it was pointed out that, given the 

constraint c)y,x(g = , we may deduce that 0dg = . By the same token, we 
can further deduce that 0)0(d)dg(dgd2 === . Yet, in our earlier discussion 
of the unconstrained extremum of a function )y,x(fz = , we had a situation 
where 0dz =  is accompanied by either a positive definite or a negative 
definite zd2 , rather than 0zd2 = . How would you account for this disparity 
of treatment in the two cases? 
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Ans: Since the constraint cg =  is to prevail at all times in this constrained 
optimization problem, the equation takes on the sense of an identity, and it 
follows that dg  must be zero. Then it follows that gd2  must be zero, too. In 
contrast, the equation 0dz =  is in the nature of a first-order condition -- dz  is 
not identically zero, but is being set equal to zero to locate the critical values of 
the choice variables. Thus zd2  does not have to be zero as a matter of course. 

 
6. If the Lagrangian function is written as ]c)y,x(g[)y,x(fZ −λ+=  rather 

than as in (12.7), can we still interpret the Lagrange multiplier as in (12.16)? 
Give the new interpretation, if any. 

 
Ans: No, the sign of *λ  will be changed. The new *λ  is the negative of the old 

*λ . 
 
EXERCISE 12.3 

1. Use the bordered Hessian to determine whether the stationary value of z 
obtained in each part of Exercise 12.2-1 is a maximum or a minimum. 

 
Ans: 

(a) Since 4
012
101
210

H == , 2
1*z =  is a maximum. 

(b) Since 2
011
101
110

H == , 36z* =  is a maximum 

(c) Since 2
011
101

110
H −=

−
−= , 19z* −=  is a minimum 

(d) Since 2
001
021
110

H −== , 4
3* 6z =  is a minimum 

 
2. In stating the second-order sufficient conditions for constrained maximum 

and minimum, we specified the algebraic signs of 2H , 3H , 4H , etc., but 
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not of 1H . Write out an appropriate expression for 1H , and verify that it 

invariably takes the negative sign. 
 

Ans: 0g
Zg
g0

H 2
1

111

1
1 <−==  

 
3. Recalling Property II of determinants (Sec. 5.3), show that: 

(a) By appropriately interchanging two rows and/or two columns of 2H
 and 

duly altering the sign of the determinant after each interchange, it can be 
transformed into 

(b) By a similar procedure, 3H  can be transformed into 

 
What alternative way of “bordering” the principal minors of the Hessian do 
these results suggest? 

 
Ans: The zero can be made that last (instead of the first) element in the principal 
diagonal, with 1g , 2g  and 3g  (in that order appearing in the last column and 
in the last row). 

 
4. Write out the bordered Hessian for a constrained optimization problem with 

four choice variables and two constraints. Then state specifically the 
second-order sufficient condition for a maximum and for a minimum of z, 
respectively. 

 

Ans: 

44434241
2
4

1
4

34333231
2
3

1
3

24232221
2
2

1
2

14131211
2
1

1
1

2
4

2
3

2
2

2
1

1
4

1
3

1
2

1
1

ZZZZgg
ZZZZgg
ZZZZgg
ZZZZgg
gggg00
gggg00

H =  

A sufficient condition for maximum z is 0H3 <  and 0HH4 >=  

A sufficient condition for minimum z is 0H3 >  and 0H >  



 5

EXERCISE 12.4 
1. Draw a strictly quasiconcave curve )x(fz =  which is 

(a) also quasiconvex     (d) not concave 
(b) not quasiconvex      (e) neither concave nor convex 
(c) not convex          (f) both concave and convex 

 
Ans: Examples of acceptable curves are: 

 
 

2. Are the following functions quasiconcave? Strictly so? First check 
graphically, and then algebraically by (12.20). Assume that 0x ≥ . 
(a) a)x(f =    (b) )0b(bxa)x(f >+=    (c) )0c(cxa)x(f 2 <+=  

 
Ans: 
(a) Quasiconcave, but not strictly so. This is because a)u(f)v(f == , and thus 

a]v)1(u[f =θ−+θ , which is equal to (not greater than) )u(f . 
(b) Quasiconcave, and strictly so. In the present case, )u(f)v(f ≥  means that 

buabva +≥+ , or uv ≥ . Moreover, to have u and v distinct, we must 
actually have uv > . Since 

]v)1(u[ba]v)1(u[f θ−+θ+=θ−+θ  
)bubu(]v)1(u[ba −+θ−+θ+=  

)uv)(1(bbua −θ−++=  
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)u(f)uv)(1(b)u(f =−θ−= +some positive term 
it follows that )u(f]v)1(u[f >θ−+θ . Hence bxa)x(f += , )0b( > , 
strictly quasiconcave. 

(c) Quasiconcave, and strictly so. Here, )u(f)v(f ≥  means 22 cuacva +≥+ , 
or 22 uv ≤  (since 0c < ). For nonnegative distinct values of u and v, this in 
turn means uv < . Now we have 

)cucu(]v)1(u[ca]v)1(u[f 222 −+θ−+θ+=θ−+θ  
             { }222 u]v)1(u[ccua −θ−+θ++=  
Using the identity )xy)(xy(xy 22 −+≡− , we can rewrite the above 
expression as  

]uv)1(u][uv)1(u[ccua 2 −θ−+θ+θ−+θ++  
)]uv)(1][(v)1(u)1[(c)u(f −θ−θ−+θ++=  

)u(f=  + some positive term )u(f>  
Hence 2cxa)x(f += , )0c( < , is strictly quasiconcave. 

 
3. (a) Let )x(fz =  plot as a negatively sloped curve shaped like the right half        

of a bell in the first quadrant, passing through the points (0,5), (2,4), (3,2), 
and (5,1). Let )x(gz =  plot as a positively sloped °45  line. Are f(x) and 
g(x) quasiconcave? 
(b) Now plot the sum )x(g)x(f + . Is the sum function quasiconcave? 

 
Ans: Both )x(f  and )x(g  are monotonic, and thus quasiconcave. However, 

)x(g)x(f +  displays both a hill and a valley. If we pick 2
15k = , for instance, 

neither ≥S  nor ≤S  will be a convex set. Therefore )x(g)x(f +  is not 
quasiconcave. 

 
4. By examining their graphs, and using (12.21), check whether the following 

functions are quasiconcave, quasiconvex, both, or neither: 
(a) x2x)x(f 3 −=    (b) 2121 x9x6)x,x(f −=   (c) 1221 xlnx)x,x(f −=  

 
Ans: 
(a) This cubic function has a graph similar to Fig. 2.8c, with a hill in the second 

quadrant and valley in the fourth. If we pick 0k = , neither ≥S  nor ≤S  is a 
convex set. The function is neither quasiconcave nor quasiconvex. 

(b) This function is linear, and hence both quasiconcave and quasiconvex. 
(c) Setting kxlnx 12 =− , and solving for 2x , we get the isovalue equation 

kxlnx 12 += . In the 21xx  plane, this plots for each value of k as a log 
curve shifted upward vertically by the amount of k. The set 
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{ }k)x,x(f)x,x(S 2121 ≤=≤  – the set of points on or below the isovalue 

curve – is a convex set. Thus the function is quasiconvex. (but not 
quasiconcave). 

 
5. (a) Verify that a cubic function dcxbxaxz 23 +++=  is in general neither 

quasiconcave nor quasiconvex. 
(b) Is it possible to impose restrictions on the parameters such that the 
function becomes both quasiconcave and quasiconvex for 0x ≥ ? 

 
Ans: 
(a) A cubic curve contains two bends, and would thus violate both parts of 

(12.21). 
(b) From the discussion of the cubic total-cost function in Sec. 9.4, we know that 

if 0d,c,a > , 0b < , and ac3b2 < , then the cubic function will be 
upward-sloping for nonnegative x. Then, by (12.21), it is both quasiconcave 
and quasiconvex. 

 
6. Use (12.22) to check )0x(xz 2 ≥=  for quasiconcavity and quasiconvexity. 
 
Ans: Let u and v be two values of x, and let 22 u)u(fv)v(f =≥= , which 
implies uv ≥ . Since x2)x(f =′ , we find that  

0)uv(u2)uv)(u(f ≥−=−′  
0)uv(v2)uv)(v(f ≥−=−′  

Thus, by (12.22), the function is both quasiconcave and quasiconvex, confirming 
the conclusion in Example 1. 

 
7. Show that )0y,x(xyz ≥=  is not quasiconvex. 
 
Ans: The set ≤S , involving the inequality kxy ≤ , consists of the points lying 
on or below a rectangular hyperbola – not a convex set. Hence the function is 

quasiconvex by (12.21). Alternatively, since yf x = , xf y = , 0f xx = , 1f xy = , 

and 0f yy = , we have 0yB 2
1 ≤−=  and 0xy2B2 ≥= , which violates the 

necessary condition (12.25’) for quasiconvexity. 
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8. Use bordered determinants to check the following functions for 
quasiconcavity and quasiconvexity: 
(a) )0y,x(yxz 22 >−−=      (b) )0y,x()2y()1x(z 22 >+−+−=  

 
Ans: 

(a) Since x2f x −= , y2f y −= , 2f xx −= , 2f yy −= , 0f xy = , we have 

0x4B 2
1 <−=     0)yx(8B 22

2 >+=  

By (12.26), the function is quasiconcave. 

(b) Since )1x(2f x +−= , )2y(2f y +−= , 2f xx −= , 2f yy −= , 0f xy = , we 

have 0)1x(4B 2
1 <+−=     0)2y(8)1x(8B 22

2 >+++=  

By (12.26), the function is quasiconcave 
 
EXERCISE 12.5 

1. Given )1y)(2x(U ++=  and 4Px = , 6Py = , and 130B = : 

(a) Write the Lagrangian function. 
(b) Find the optimal levels of purchase *x  and *y . 
(c) Is the second-order sufficient condition for maximum satisfied? 
(d) Does the answer in (b) give any comparative-static information? 

 
Ans: 
(a) )y6x4130()1y)(2x(Z −−λ+++=  
(b) The first-order condition requires that 

0y6x4130Z =−−=λ , 041yZx =λ−+= , 062xZy =λ−+=  

Thus we have 3=λ∗ , 16x* = , and 11y* = . 

(c) 048
016
104
640

H >== . Hence utility is maximized. 

(d) No. 
 

2. Assume that )1y)(2x(U ++= , but this time assign no specific numerical 
values to the price and income parameters. 
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(a) Write the Lagrangian function. 

(b) Find *x , *y , and *λ  in terms of the parameters xP , yP , and B. 

(c) Check the second-order sufficient condition for maximum. 

(d) By setting 4Px = , 6Py = , and 130B = , check the validity of your 

answer to Prob. 1. 
 

Ans: 

(a) )yPxPB()1y)(2x(Z yx −−λ+++=  

(b) As the necessary condition for extremum, we have 

0yPxPBZ yx =−−=λ       or  ByPxP yx −=−−  

0P1yZ xx =λ−+=             1yPx −=+λ−  

0P2xZ yy =λ−+=             2xPy −=+λ−  

By Cramer’s Rule, we can find that 

yx

yx*

PP2
PP2B ++

=λ    
x

yx*

P2
PP2B

x
+−

=    
y

yx*

P2
PP2B

y
−+

=  

(c) 0PP2
01P
10P
PP0

H yx

y

x

yx

>== . Utility is maximized. 

(d) When 4Px = , 6Py = , and 130B = , we get 3* =λ , 16x* =  and 11y* = . 

These check with preceding problem. 
 

3. Can your solution ( *x  and *y ) in Prob. 2 yield any comparative-static 
information? Find all the comparative-static derivatives you can, evaluate 
their signs, and interpret their economic meanings. 

 

Ans: Yes. 0
P2
1

B
x

x

*

>=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ , 0

P2
PB

P
x

2
x

y

x

*

<
+

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ , 0

P2
1

P
x

xy

*

>=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂ , 

0
P2
1

B
y

y

*

>=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ , 0

P
1

P
y

yx

*

>=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ , 0

P2
P2B

P
y

2
y

x

y

*

<
+

−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂ . 
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An increase in income B raises the level of optimal purchases of x and y both; an 
increase in the price of one commodity reduces the optimal purchase of that 
commodity itself, but raises the optimal purchase of the other commodity. 

 
4. From the utility function )1y)(2x(U ++=  and the constraint 

ByPxP yx =+  of Prob. 2, we have already found the ijU  and H , as well 

as *x  and *λ . Moreover, we recall that HJ = . 

(a) Substitute these into (12.39) and (12.40) to find ( )Bx* ∂∂  and 
( )By* ∂∂ . 

(b) Substitute into (12.42) and (12.43) to find ( )x
* Px ∂∂  and ( )x

* Py ∂∂ . 
Do these results check with those obtained in Prob. 3? 

 

Ans: We have 0UU yyxx* == , 1UU *yxxy == , yx PP2HJ == . 

x

yx*

P2
PP2B

x
+−

= , and 
yx

yx*

PP2
PP2B ++

=λ . Thus: 

(a) 
x

*

P2
1

B
x

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ , and 

y

*

P2
1

B
y

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ . 

(b) 2
x

y

x

*

P2
PB

P
x +

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ , and 

yx

*

P
1

P
y

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂  

These answers check with the preceding problem. 
 

5. Comment on the validity of the statement: “If the derivative ( )x
* Px ∂∂  is 

negative, then x cannot possibly represent an inferior good.” 
 

Ans: A negative sign for that derivative can mean either that the income effect 
)T( 1  and the substitution effect )T( 2  in (12.33’) are both negative (normal 

good), or that the income effect is positive (inferior good) but is overshadowed 
by the negative substitution effect. The statement is not valid. 

 
6. When studying the effect of xdP  alone, the first equation in (12.37) reduces 

to x
**

y
*

x dPxdyPdxP =−− , and when we compensate for the consumer’s 
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effective income loss by dropping the term x
*dPx , the equation becomes 

0dyPdxP *
y

*
x =−− . Show that this last result can be obtained alternatively 

from a compensation procedure whereby we try to keep the consumer’s 
optimal utility level *U  (rather than effective income) unchanged, so that 

the term 2T  can alternatively be interpreted as ( ) ttanconsUx
*

*Px =∂∂ . [Hint: 

Make use of (12.31”).] 
 

Ans: The optimal utility level can be expressed as )y,x(UU **** = . Thus 

*
y

*
x

* dyUdxUdU += , where xU  and yU  are evaluated at the optimum. 

When *U  is constant, we have 0dU* = , or 0dyUdxU *
y

*
x =+ . From 

(12.42’), we have 
y

x

y

x

P
P

U
U

=  at the optimum. Thus we can also express 

0dU* =  by 0dyPdxP *
y

*
x =+ , or 0dyPdxP *

y
*

x =−− . 

 
7. (a) Does the assumption of diminishing marginal utility to goods x and y 

imply strictly convex indifference curves? 
(b) Does the assumption of strict convexity in the indifference curves imply 
diminishing marginal utility to goods x and y? 

 
Ans:  

(a) No; diminishing marginal utility means only that xxU  and yyU  are 

negative, but says nothing about xyU . Therefore we cannot be sure that 

0H >  in (12.32) and 0
dx

yd
2

2

>  in (12.33’). 

(b) No; if 0
dx

yd
2

2

> , and hence 0H > , nothing definite be said about the sign 

of xxU  and yyU , because xyU  also appears in H . 
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EXERCISE 12.6 
1. Determine whether the following functions are homogeneous. If so, of what 

degree? 

(a) xy)y,x(f =           (d) xy3yx2)y,x(f ++=  

(b) 2
1)yx()y,x(f 22 −=      (e) xw2

w
xy)w,y,x(f

2

+=  

(c) 33 yxyx)y,x(f +−=     (f) 34 yw5x)w,y,x(f −=  
 
 Ans: 

(a) xyj)jy)(jx( == ; homogeneous of degree one. 

(b) [ ] 2
12

1

)yx(j)jy()jx( 2222 −=− ; homogeneous of degree one. 

(c) Not homogeneous. 

(d) )xy3yx2(j)jy)(jx(3jyjx2 ++=++ ; homogeneous of degree one. 

(e) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+ xw2

w
xyj)jw)(jx(2

jw
)jy)(jx( 2

2
2

; homogeneous of degree two. 

(f) )yw5x(j)jw)(jy(5)jx( 34434 −=− ; homogeneous of degree four. 
 

2. Show that the function (12.45) can be expressed alternatively as 

⎟
⎠
⎞

⎜
⎝
⎛ψ=

K
LKQ  instead of ⎟

⎠
⎞

⎜
⎝
⎛φ=

L
KLQ . 

 

 Ans: Let 
k
1j = , then ⎟

⎠
⎞

⎜
⎝
⎛ψ=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

K
L

K
L,f

K
L,

K
Kf

K
Q

l . Thus ⎟
⎠
⎞

⎜
⎝
⎛ψ=

K
LKQ . 

(a) When 0MPPK = , we have Q
L
QL =
∂
∂ , or 

L
Q

L
Q
=

∂
∂ , or LL APPMPP = . 

(b) When 0MPPL = , we have Q
K
QK =
∂
∂ , or 

K
Q

K
Q
=

∂
∂ , or KK APPMPP = . 

 
3. Deduce from Euler’s theorem that, with constant returns to scale: 

(a) When 0MPPK = , LAPP  is equal to LMPP . 

(b) When 0MPPL = , KAPP  is equal to KMPP . 
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Ans: Yes, they are true. 
 

4. On the basis of (12.46) through (12.50), check whether the following are true 
under conditions of constant returns to scale: 
(a) An LAPP  curve can be plotted against )LK(k =  as the independent 

variable (on the horizontal axis). 
(b) KMPP  is measured by the slope of that LAPP  curve. 
(c) KAPP  is measured by the slope of the radius vector to the LAPP  

curve. 
(d) kAPP)MPP(kAPPMPP LKLL −=−= (slope of LAPP ) 

 
 Ans:  

(a) )k(APPL φ= ; hence LAPP  indeed can be plotted against k. 
(b) =φ′= )k(MPPK  slope of LAPP . 

(c) 
point that of abscissa

curve APP on thepoint  of ordinate
k

APP
k

)k(APP LL
K ==

φ
=  

curve APP  the vector toradius of slope L=  
(d) KLL MPPkAPP)k(k)k(MPP ⋅−=φ′−φ=  

 
5. Use (12.53) and (12.54) to verify that the relations described in Prob. 4b, c, 

and d are obeyed by the Cobb-Douglas production function. 
 
 Ans:  
 b. α= AkAPPL , thus the slope of K

1
L MPPkAAPP =α= −α . 

 c. Slope of a radius vector K
1 APPAk

k
Ak

=== −α
α

. 

 d. L
1

KL MPPk)1(AkAAkkkAAkMPPkAPP =α−=α−=α−=⋅− ααα−αα  
 

6. Given the production function βα= LAKQ , show that: 
(a) 1>β+α  implies increasing returns to scale. 
(b) 1<β+α  implies decreasing returns to scale. 
(c) α  and β  are, respectively, the partial elasticities of output with respect 

to the capital and labor inputs. 
 

Ans: 
(a) Since the function is homogeneous of degree )( β+α , if 1>β+α , the 

value of the function will increases more than j-fold when K and L are 
increase j-fold, implying increasing returns to scale. 



 14

(b) If 1<β+α , the value of the function will increase less than j-fold when K 
and L are increased j-fold, implying decreasing returns to scale. 

(c) Taking the natural log of both sides of the function, we have 

LlnKlnAlnQln β+α+= . Thus α=
∂
∂

=ε
)K(ln
)Q(ln

QK  and 

β=
∂
∂

=ε
)L(ln
)Q(ln

QL  

 
7. Let output be a function of three inputs: cba NLAKQ = . 

(a) Is this function homogeneous? If so, of what degree? 
(b) Under what condition would there be constant returns to scale? 

Increasing returns to scale? 
(c) Find the share of product for input N, if it is paid by the amount of its 

marginal product. 
 

Ans: 
(a) QjNLAKj)jN()jL()jK(A cbacbacbacba ++++ =⋅= ; homogeneous of degree 

cba ++  
(b) 1cba =++  implies constant returns to scale; 1cba >++  implies 

increasing returns to scale. 

(c) Share for c
NLAK
cNLNAK

Q
N
QN

N cba

1cba

==
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
−

 

 
 

8. Let the production function )L,K(gQ =  be homogeneous of degree 2. 
(a) Write an equation to express the second-degree homogeneity property of 

this function. 
(b) Find an expression for Q in terms of )k(φ , in the vein of (12.45’). 
(c) Find the KMPP  function. Is KMPP  still a function of k alone, as in the 

linear-homogeneity case? 
(d) Is the KMPP  function homogeneous in K and L? If so, of what degree? 

 
Ans:  
(a) )jL,jK(gQj2 =  

(b) Let 
L
1j = . Then the equation in (a) yield: )k(

L
K1,

L
Kg

L
Q

2 φ=⎟
⎠
⎞

⎜
⎝
⎛φ=⎟

⎠
⎞

⎜
⎝
⎛= . 

This implies that )k(LQ 2φ= . 
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(c) )k(L
L
1)k(L

K
k)k(L

k
QMPP 22

K φ′=⎟
⎠
⎞

⎜
⎝
⎛φ′=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

φ′=
∂
∂

= . Now KMPP  depends 

on L as well as k. 
(d) If K and L are both increased j-fold in the KMPP  expression in (c), we get 

KMPPj)k(jL
L
KjL

jL
jK)jL( ⋅=φ′=⎟

⎠
⎞

⎜
⎝
⎛φ′=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
φ′ . Thus KMPP  is homogeneous 

of degree one in K and L. 
 
EXERCISE 12.7 

1. Suppose that the isoquants in Fig. 12.9b are derived from a particular 
homogeneous production function )b,a(QQ = . Noting that 

EEEEEOE ′′′=′= , what must be the ratio between the output levels 
represented by the three isoquants if the function Q is homogeneous 
(a) of degree one?       (b) of degree two? 

 
Ans: 
(a) Linear homogeneity implies that the output levels of the isoquants are in the 

ratio of 1:2:3 (from southwest to northeast). 
(b) With second-degree homogeneity, the output levels are in the ratio of 

22 3:2:1 , or 1:4:9. 
 

2. For the generalized Cobb-Douglas case, if we plot the ratio ** ab  against 
the ratio ba PP , what type of curve will result? Does this result depend on 
the assumption that 1=β+α ? Read the elasticity of substitution graphically 
from this curve. 

 

Ans: Since ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
α
β

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

b

a
*

*

P
P

a
b , it will plot as a straight line passing through the 

origin, with a (positive) slope equal to 
α
β . This result does not depend on the 

assumption 1=β+α . The elasticity of substitution is merely the elasticity of 
this line, which can be read (by the method of Fig. 8.2) to be unity at all points. 

 
3. Is the CES production function characterized by diminishing returns to each 

input for all positive levels of input? 
 
 Ans: Yes, because LLQ  and KKQ  have both been found to be negative. 
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4. Show that, on an isoquant of the CES function, 0LdKd 22 > . 
 

Ans: On the basis of (12.66), we have 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ρ+

δ
−δ

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

δ
−δ

=
ρρ+

L
K

dL
d

L
K)1(1

L
K1

dL
d

dL
Kd 1

2

2

 

    0K
dL
dKL

L
1

L
K)1(1

2 >⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ρ+

δ
−δ

=
ρ

   (because 0
dL
dK

< ) 

 
5. (a) For the CES function, if each factor of production is paid according to its 

marginal product, what is the ratio of labor’s share of product to capital’s 
share of product? Would a larger value of δ  mean a larger relative share for 
capital? 
(b) For the Cobb-Douglas function, is the ratio of labor’s share to capital’s 
share dependent on the LK  ratio? Does the same answer apply to the CES 
function? 

 
 Ans: 

(a) 
ρ

⎟
⎠
⎞

⎜
⎝
⎛

δ
δ−

==
L
K1

Kf
Lf

share Capital
shareLabor 

K

L . A larger ρ  implies a larger capital share 

in relation to the labor share. 
(b) No; no. 

 
6. (a) The CES production function rules out 1−=ρ . If 1−=ρ , however, what 

would be the general shape of the isoquants for positive K and L? 
(b) Is σ  defined for 1−=ρ ? What is the limit of σ  as 1−→ρ ? 
(c) Interpret economically the results for parts (a) and (b). 

 
 Ans:  

(a) If 1−=ρ , (12.66) yields ttancons)1(
dL
dK

=
δ
δ−

−= . The isoquants would 

be downward-sloping straight lines. 
(b) By (12.68), σ  is not defined for 1−=ρ . But as 1−→ρ , ∞→σ . 
(c) Linear isoquants and infinite elasticity of substitution both imply that the two 

inputs are perfect substitutes. 
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7. Show that by writing the CES function as [ ] ρ−ρ−ρ− δ−+δ=
r

L)1(KAQ , 

where 0r >  is a new parameter, we can introduce increasing returns to 
scale and decreasing returns to scale. 

 
Ans: If both K and L are changed j-fold, output will change from Q to: 

[ ] [ ]{ } QjQ)j(L)1(KjA)jL)(1()jk(A r
rrr

==δ−+δ=δ−+δ ρρρ
−ρ−−ρ−ρ−ρ−−ρ−ρ−  

Hence r denotes the degree of homogeneity. With 1r >  ( 1r < ), we have 
increasing (decreasing) returns to scale. 

 
8. Evaluate the following: 

(a) 
4x

12xxlim
2

4x −
−−

→
   (c) 

x
e5lim

xx

0x

−
→

 

(b) 
x

1elim
x

0x

−
→

    (d) 
x
xlnlim

x ∞→
 

 
Ans: By L’Hôpital’s Rule, we have: 

(a) 7
1

1x2lim
4x

12xxlim
4x

2

4x
=

−
=

−
−−

→→
 

(b) 1
1
elim

x
1elim

x

0x

x

0x
==

−
→→

 

(c) 15ln
1

e5ln5lim
x

e5lim
xx

0x

xx

0x
−=

−
=

−
→→

 

(d) 0
1

lim
x
xlnlim x

1

xx
==

∞→∞→
 

 
 

9. By use of L’Hopital’s rule, show that 

(a) 0
e
xlim x

n

x
=

∞→
   (b) 0xlnxlim

0x
=

+→
   (c) 1xlim x

0x
=

+→
 

 
Ans: 
(a) By successive applications of the rule, we find that 

0
e

!nlim...
e

x)1n(nlim
e

nxlim
e
xlim xxx

2n

xx

1n

xx

n

x
===

−
==

∞→

−

∞→

−

∞→∞→
 

(b) By taking xln)x(m = , and 
x
1)x(n = , we have 
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0xlimlimxlnlim
0x

x
1

x
1

0x
x
10x

2

=−=
−

=
+++ →→→

 

(c) Since )xlnxexp()xexp(lnx xx == , and since, from (b) above, the 
expression xlnx  tends to zero as +→ 0x , xx  must tend to 1e0 =  as 

+→ 0x .  
 

 
 


