Chiang/Wainwright: Fundamental Methods of Mathematical Economics

CHAPTER 12
EXERCISE 12.2
1. Use the Lagrange-multiplier method to find the stationary values of z:
(@) z=xy, subjectto x+2y=2.
(b) z=x(y+4), subjectto x+y=8.
(c) z=x-3y—xy, subjectto x+y=6.
(d) z=7-y+x?, subjectto x+y=0

Ans:
(@) Z=xy+A(2-x-2y). The necessary condition is:

Z, =2-x-2y=0 Z,=y-1=0 Z,=x-2r=0

Thus X' =4, x" =1, y" =1-yielding 2" =1.

(b) Z=xy+4x+XA(8—-x-y). The necessary condition is:
Z, =8-x-y=0 Z, =y+4-A=0 Z,=x-1=0
Thus A" =6, x =6, y =2-yielding z" =36

() Z=x-3y—xy+A(6—x-Yy). The necessary condition is:
Z, =6-x-y=0 Z, =1-y-1=0 Z,=-3-x-A=0
Thus A" =-4, x =1, y =5-yielding z" =-19

(d) Z=7-y+x*+A(—x—Y). The necessary condition is:

Z, =—x-y=0 Z, =2x-1=0 Z,=-1-%=0

Thus X' =-1, X' =-%, y =1-yielding z" =62

2. In Prob. 1, find whether a slight relaxation of the constraint will increase or
decrease the optimal value of z. At what rate?

Ans:

*
*

(@) Increase; at the rate % =\ =3
c

*

(b) Increase; gz =6.
dc



*

(c) Decrease; gz =—4
dc

*

(d) Decrease; gz =-1
dc

3. Write the Lagrangian function and the first-order condition for stationary
values (without solving the equations) for each of the following:
@ z=x+2y+3w+xy—-yw, subjectto x+y+2w =10.
(b) z=x*+2xy+yw?, subjectto 2x+y+w?’ =24 and x+w =8.

Ans:

@ Z=x+2y+3w+xy—yw+A(l0—x-y—2w). Hence:
Z, =10-x-y-2w =0 Z, =1+y-1r=0
Z,=2+x-w-A=0 Z,=3-y-2AL=0

(b) Z=x*+2xy+yw? +A(24—-2x -y -w?)+Vv(8—x—w). Thus:

Z, =24-2x-y-w?=0 Z,=8-x-w=0

Z, =2X+2y-2L-v=0 Z,=2x-w?-1=0

Z,=2yW-2Aw-v=0

4. If, instead of g(x,y) = c, the constraint is written in the form of G(x,y) =0,
how should the Lagrangian function and the first-order condition be modified
as a consequence?

Ans: Z=f(x,y) +A[0-G(x,y)]=f(x,y) —AG(x,y). The first-order condition

becomes: Z, =-G(x,y)=0 Z, =f, -AG, =0 Z =f -AG, =0

5. Indiscussing the total-differential approach, it was pointed out that, given the
constraint g(X,y) =c, we may deduce that dg =0. By the same token, we

can further deduce that d?g = d(dg) =d(0) =0. Yet, in our earlier discussion
of the unconstrained extremum of a function z =f(x,y), we had a situation

where dz =0 is accompanied by either a positive definite or a negative

definite d®z, rather than d?z = 0. How would you account for this disparity
of treatment in the two cases?



Ans: Since the constraint g=c is to prevail at all times in this constrained
optimization problem, the equation takes on the sense of an identity, and it
follows that dg must be zero. Then it follows that d’g must be zero, too. In
contrast, the equation dz =0 is in the nature of a first-order condition -- dz is
not identically zero, but is being set equal to zero to locate the critical values of
the choice variables. Thus d?z does not have to be zero as a matter of course.

6. If the Lagrangian function is written as Z=f(x,y) +A[g(x,y)—c] rather

than as in (12.7), can we still interpret the Lagrange multiplier as in (12.16)?
Give the new interpretation, if any.

Ans: No, the sign of A~ will be changed. The new A" is the negative of the old

*

A

EXERCISE 12.3
1. Use the bordered Hessian to determine whether the stationary value of z
obtained in each part of Exercise 12.2-1 is a maximum or a minimum.

Ans:
1

(a) Since [H|=1 0 1]=4, z' =1 isamaximum.
1
1

(b) Since |H|=1 0 1/=2, z' =36 isamaximum
1
1 1

(c) Since Hl=[1 0 -1=-2, z'=-19 isaminimum
-1 0
11

(d) Since H|=1 2 0=-2, z'=62 isaminimum
00

2. In stating the second-order sufficient conditions for constrained maximum

and minimum, we specified the algebraic signs of ‘ﬁz‘, ‘E‘ : ‘ﬁ4‘, etc., but
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not of ‘ﬁl‘. Write out an appropriate expression for ‘ﬁl‘, and verify that it

invariably takes the negative sign.

Ans: |H,|= =

1 11

=-g; <0

3. Recalling Property Il of determinants (Sec. 5.3), show that:

. : . H
(a) By appropriately interchanging two rows and/or two columns of ‘ 2‘ and

duly altering the sign of the determinant after each interchange, it can be
transformed into

(b) By a similar procedure, ‘ﬁg‘ can be transformed into

What alternative way of “bordering” the principal minors of the Hessian do
these results suggest?

Ans: The zero can be made that last (instead of the first) element in the principal
diagonal, with g,, g, and g, (in that order appearing in the last column and
in the last row).

4. Write out the bordered Hessian for a constrained optimization problem with
four choice variables and two constraints. Then state specifically the
second-order sufficient condition for a maximum and for a minimum of z,
respectively.

0 0 9 9 9 0
0 0 9 9; 95 Ui
Ans: ‘ﬁ‘ _ gli 912 Z, Z, Zy Z,
gZ gZ Z21 ZZZ Z23 Z24
gé gg Ly Ly Ly Ly,
g:l-l gzzl Z41 Z42 Z43 Z44

A sufficient condition for maximum z is ‘E‘ <0 and ‘ﬁ4‘ = H >0

A sufficient condition for minimum z is ‘ﬁg‘ >0 and H >0
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EXERCISE 12.4
1. Draw a strictly quasiconcave curve z =f(x) which is

(a) also quasiconvex (d) not concave
(b) not quasiconvex (e) neither concave nor convex
(c) not convex (f) both concave and convex

Ans: Examples of acceptable curves are:

N
{ E

.
ta}) = - i

yau ‘\
A~
r \F

(k) = — z

[f) =

2. Are the following functions quasiconcave? Strictly so? First check
graphically, and then algebraically by (12.20). Assume that x >0.
(@ f(x)=a (b) f(x)=a+bx (b>0) (c) f(X)=a+cx® (c<0)

Ans:

(a) Quasiconcave, but not strictly so. This is because f(v)=f(u)=a, and thus
f[6u + (1—06)v] = a, which is equal to (not greater than) f(u).

(b) Quasiconcave, and strictly so. In the present case, f(v)>f(u) means that
a+bv>a-+bu, or v>u. Moreover, to have u and v distinct, we must
actually have v >u. Since
f[6u+(1—06)v]=a+b[6u+ (1-06)Vv]

=a+b[6u + (L-06)v]+ (bu —bu)
=a+bu+b(l-0)(v-u)



=f(u)b(l-6)(v—u)=f(u) +some positive term
it follows that f[6u+(@1—0)v]>f(u). Hence f(x)=a+bx, (b>0),
strictly quasiconcave.

(c) Quasiconcave, and strictly so. Here, f(v)>f(u) means a+cv®>a+cu?,
or v><u® (since c¢<0).For nonnegative distinct values of u and v, this in
turn means v < u. Now we have
f[6u + (1—0)v] = a+c[6u + (1- O)Vv]* + (cu® —cu?)

=a+cu’ +c{[eu +(@1-0)V]? —uz}
Using the identity y*—x*=(y+x)(y—x), we can rewrite the above
expression as
a+cu® +c[6u+ (L—0)v+u][6u + (1-0)v—u]
=f(u)+c[l+06)u+@-0)V][QA-6)(v-u)]
=f(u) +some positive term > f(u)
Hence f(x)=a+cx?, (c<0), isstrictly quasiconcave.

3. (a) Let z="f(x) plot as a negatively sloped curve shaped like the right half
of a bell in the first quadrant, passing through the points (0,5), (2,4), (3,2),
and (5,1). Let z=g(x) plot as a positively sloped 45° line. Are f(x) and

g(x) quasiconcave?
(b) Now plot the sum f(x)+g(x). Is the sum function quasiconcave?

Ans: Both f(x) and g(x) are monotonic, and thus quasiconcave. However,
f(x)+g(x) displays both a hill and a valley. If we pick k=51, for instance,
neither S® nor S° will be a convex set. Therefore f(x)+g(x) is not
quasiconcave.

4. By examining their graphs, and using (12.21), check whether the following
functions are quasiconcave, quasiconvex, both, or neither:
@ f(x)=x>-2x  (b) f(x,,%x,)=6x,-9x, (c) f(x,X,)=X,-Inx,

Ans:

(&) This cubic function has a graph similar to Fig. 2.8c, with a hill in the second
quadrant and valley in the fourth. If we pick k=0, neither S* nor S° isa
convex set. The function is neither quasiconcave nor quasiconvex.

(b) This function is linear, and hence both quasiconcave and quasiconvex.

(c) Setting x, —Inx,=k, and solving for x,, we get the isovalue equation
X, =Inx, +K. In the Xx,;x, plane, this plots for each value of k as a log
curve shifted upward vertically by the amount of k. The set



S* = {(xl,x2)|f(xl,x2)£ k} — the set of points on or below the isovalue

curve — is a convex set. Thus the function is quasiconvex. (but not
quasiconcave).

5. (a) Verify that a cubic function z =ax® +bx® +cx+d is in general neither
quasiconcave nor quasiconvex.
(b) Is it possible to impose restrictions on the parameters such that the
function becomes both quasiconcave and quasiconvex for x >0?

Ans:

(@) A cubic curve contains two bends, and would thus violate both parts of
(12.21).

(b) From the discussion of the cubic total-cost function in Sec. 9.4, we know that
if a,c,d>0, b<0, and b”<3ac, then the cubic function will be
upward-sloping for nonnegative x. Then, by (12.21), it is both quasiconcave
and quasiconvex.

6. Use (12.22) to check z =x* (x >0) for quasiconcavity and quasiconvexity.

Ans: Let u and v be two values of x, and let f(v)=v?>f(u)=u?, which
implies v>u. Since f'(x)=2x, we find that

f'(u)(v-u)=2u(v-u)>0

f'(v)(v—u)=2v(v—-u)>0

Thus, by (12.22), the function is both quasiconcave and quasiconvex, confirming
the conclusion in Example 1.

7. Show that z =xy (x,y >0) is not quasiconvex.

Ans: The set S, involving the inequality xy <k, consists of the points lying
on or below a rectangular hyperbola — not a convex set. Hence the function is

=x, f, =0, f, =1,

XX Xy

quasiconvex by (12.21). Alternatively, since f, =y, f,

and f, =0, we have |B,|=-y?<0 and |B,|=2xy>0, which violates the

necessary condition (12.25’) for quasiconvexity.



8. Use bordered determinants to check the following functions for
quasiconcavity and quasiconvexity:
@ z=-x"-y*(x,y>0) (b) z=~(x+1)*-(y+2)* (x,y>0)

Ans:

(@ Since f, =-2x, f =-2y, f,=-2, f =-2, f,,=0, we have

XX

B)|=-4x*<0  [B,[=8(x*+Yy*)>0
By (12.26), the function is quasiconcave.

(b) Since f, =-2(x+1), f, =-2(y+2), f,=-2, f =-2, f,,=0, we

have [B|=-4(x+1)*<0 B,|=8(x+1)*+8(y+2)* >0

By (12.26), the function is quasiconcave

EXERCISE 12.5

1. Given U=(x+2)(y+1) and P, =4, P, =6,and B=130:

(a) Write the Lagrangian function.

(b) Find the optimal levels of purchase x™ and y .

(c) Is the second-order sufficient condition for maximum satisfied?
(d) Does the answer in (b) give any comparative-static information?

Ans:
@ Z=(x+2)(y+1)+A(130-4x-6Yy)
(b) The first-order condition requires that

Z, =130-4x-6y=0, Z, =y+1-41L=0, Zy=X+2—6X=0
Thuswe have X' =3, x" =16,and y =11.

0 46
() H =14 0 1/=48> 0. Hence utility is maximized.
6 1 0

(d) No.

2. Assume that U= (x+2)(y+1), but this time assign no specific numerical
values to the price and income parameters.



(a) Write the Lagrangian function.

(b) Find x", y",and A" in terms of the parameters P,, P, and B.

(c) Check the second-order sufficient condition for maximum.

(d) By setting P, =4, P, =6, and B=130, check the validity of your
answer to Prob. 1.
Ans:
(@ Z=(x+2)(y+1)+1r(B-xP, —yP))

(b) As the necessary condition for extremum, we have

Z, =B-xP, —-yP, =0 or -P,x-Py=-B
Z, =y+1-AP, =0 -PA+y=-1
Z,=X+2-2\P, =0 -PA+Xx=-2

By Cramer’s Rule, we can find that

_BH2 4P B-2R 4R B4R -
2P.P, 2P, 2P,
0 P, P,
(c) H =|P, 0 1|=2P,P, >0. Utility is maximized.
P, 1 0

(d) When P, =4, P, =6,and B=130,weget A’ =3, x =16 and y =11.
These check with preceding problem.
3. Can your solution (x~ and y”) in Prob. 2 yield any comparative-static

information? Find all the comparative-static derivatives you can, evaluate
their signs, and interpret their economic meanings.

* * B+P *
Ans: Yes. x_ :i>0 , x :——2y<0 , x :L>O ,
oB 2P oP, 2P; 8Py 2P

%:i>0, aL:i>0, o =—B+22PX<O.
oB ) 2P oP P, oP, 2P,

y X




An increase in income B raises the level of optimal purchases of x and y both; an
increase in the price of one commodity reduces the optimal purchase of that
commodity itself, but raises the optimal purchase of the other commaodity.

4. From the utility function U=(x+2)(y+1) and the constraint

xP, +yP, =B of Prob. 2, we have already found the U; and H as well

as x" and A". Moreover, we recall that |J|:H.

(a) Substitute these into (12.39) and (12.40) to find (ox"/oB) and
(oy*/oB).

(b) Substitute into (12.42) and (12.43) to find (x"/aP, ) and (y"/eP,).

Do these results check with those obtained in Prob. 3?

Ans:Wehave U . =U, =0, U, =U_.=1, [JJ=|H=2PP,.

. B-2P +P . B+2P +P
=— X Y oand ' =———= Y Thus:

2P 2P, P

X X'y

(@) (L{Jzi,and [%J:i
oB 2P, oB 2P,

“\  B+P ‘
0 |2 |- and [ 2 ]= -
oP, 2P P, ) P

y

X

These answers check with the preceding problem.

5. Comment on the validity of the statement: “If the derivative (ax*/an) is
negative, then x cannot possibly represent an inferior good.”

Ans: A negative sign for that derivative can mean either that the income effect
(T,) and the substitution effect (T,) in (12.33’) are both negative (normal
good), or that the income effect is positive (inferior good) but is overshadowed
by the negative substitution effect. The statement is not valid.

6. When studying the effect of dP, alone, the first equation in (12.37) reduces

to —P.dx —P,dy" =x"dP,, and when we compensate for the consumer’s
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effective income loss by dropping the term x’dP,, the equation becomes

—P,dx” —P,dy” =0. Show that this last result can be obtained alternatively

from a compensation procedure whereby we try to keep the consumer’s
optimal utility level U™ (rather than effective income) unchanged, so that

the term T, can alternatively be interpreted as (ax*/apx) [Hint:

U'=constant *

Make use of (12.317).]

Ans: The optimal utility level can be expressed as U =U"(x",y"). Thus

du” =U,dx" +U,dy", where U, and U, are evaluated at the optimum.

When U" is constant, we have dU" =0, or U.dx +U,dy =0. From

u, P .
(12.42°), we have UX :P—X at the optimum. Thus we can also express
y y

du” =0 by Pdx +Pdy =0,0r —P,dx —P,dy" =0.

7. (a) Does the assumption of diminishing marginal utility to goods x and y
imply strictly convex indifference curves?
(b) Does the assumption of strict convexity in the indifference curves imply
diminishing marginal utility to goods x and y?

Ans:

(@) No; diminishing marginal utility means only that U,, and U, are

negative, but says nothing about U, . Therefore we cannot be sure that

2
[H|>0 in (12.32) and j¥>o in (12.33").
X

2
(b) No; if j 32/ >0, and hence H > 0, nothing definite be said about the sign
X

of U, and U, , because U, alsoappears in ‘H‘
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EXERCISE 12.6

1. Determine whether the following functions are homogeneous. If so, of what
degree?

@ fouy) =+xy (d) F(xy)=2x+y+3xy

2

(b) F(x,y)=(x*-y*)* (e) f(X,y.W)=%+2XW

© fxy)=x*-xy+y> (® f(x,y,w)=x"-5yw’

Ans:

@ Xy =j= \/x_y; homogeneous of degree one.

(b) [(jx)2 - (jy)z]% = j(x? — y?)”; homogeneous of degree one.

(c) Not homogeneous.
(d) 2jx+ jy+3J(iX)(jy) = j(2x +y + 3\/x_y) ; homogeneous of degree one.

. N2 2
(e) M +2(x)(jw) = j° [& + 2XWJ : homogeneous of degree two.
jw w

®  (x)* =50y)(jw)® = j* (x* —5yw?) ; homogeneous of degree four.

2. Show that the function (12.45) can be expressed alternatively as

L) . K
Q= KW(EJ instead of Q= Lq{tj :

o1 Q K L L L L
Ans: Let j=—,then ==f] —,— |=f| /,— |=w| —|. Thus Q =Ky| —|.
™k (K Kj ( Kj “’(Kj 0 “’(Kj

(@ When MPP, =0, we have L@:Q,or @:g,or MPP, = APP, .
oL oL L

(b) When MPP, =0, we have K@: Q,or @=9 or MPP, =APP,.
oK oK K
3. Deduce from Euler’s theorem that, with constant returns to scale:

(2) When MPP, =0 APP MPP,

L isequal to

(b) When MPP,_ =0, APP, isequalto MPP,.

12



Ans: Yes, they are true.

4. On the basis of (12.46) through (12.50), check whether the following are true

under conditions of constant returns to scale:

(@ An APP,_ curve can be plotted against k(= K/L) as the independent
variable (on the horizontal axis).

(b) MPP, is measured by the slope of that APP_ curve.

(c) APP, is measured by the slope of the radius vector to the APP_
curve.

(d) MPP_=APP, - k(MPP,) = APP_—Kk (slope of APP,)

Ans:
(@ APP_ =¢(k); hence APP, indeed can be plotted against k.
(b) MPP, =¢'(k) = slope of APP, .

&(k) APP_ ordinate of point on the APP, curve
(c) APP, = = = - -
k k abscissa of that point
= slope of radius vector to the APP, curve
(d) MPP,_ =¢(k) —kd'(k) = APP_ —k-MPP,

5. Use (12.53) and (12.54) to verify that the relations described in Prob. 4b, c,
and d are obeyed by the Cobb-Douglas production function.

Ans:
b. APP_=Ak“, thus the slope of APP_ = Aak®" = MPP,.

o

c. Slope of a radius vector = A: = AK*™" = APP, .

d. APP_ —k-MPP, = Ak* —kAak“™ = Ak* — Aak® = A(l-a)k* = MPP,

6. Given the production function Q = AK“L", show that:
(@ o+p>1 implies increasing returns to scale.
(b) a+P <1 implies decreasing returns to scale.
(c) o and B are, respectively, the partial elasticities of output with respect
to the capital and labor inputs.

Ans:
(@) Since the function is homogeneous of degree (a+p), if a+p>1, the

value of the function will increases more than j-fold when K and L are
increase j-fold, implying increasing returns to scale.

13



(b) If a+p <1, the value of the function will increase less than j-fold when K
and L are increased j-fold, implying decreasing returns to scale.
(c) Taking the natural log of both sides of the function, we have

_d(InQ) o

INnQ=InA INnK+BInL . Thus = = and
Q=InA+alnk+p * = 3(InkK)
_9d(InQ)

S =5y P

7. Let output be a function of three inputs: Q = AK*L°N°®,
(@) Is this function homogeneous? If so, of what degree?
(b) Under what condition would there be constant returns to scale?
Increasing returns to scale?
(c) Find the share of product for input N, if it is paid by the amount of its
marginal product.

Ans:

(@) A(K)*(L)°(jN)® = j**"*° . AK*L°N°® = j****°Q ; homogeneous of degree
a+b+c

(b) a+b+c=1 implies constant returns to scale; a+b+c>1 implies
increasing returns to scale.

aQ
N ON) NAK?L°cN®*
(c) Sharefor N = = . =C
Q AK*L’N°

8. Let the production function Q =g(K,L) be homogeneous of degree 2.
(a) Write an equation to express the second-degree homogeneity property of

this function.
(b) Find an expression for Q in terms of ¢(k), in the vein of (12.45’).

(c) Findthe MPP, function. Is MPP, still a function of k alone, as in the

linear-homogeneity case?
(d) Isthe MPP, function homogeneous in K and L? If so, of what degree?

Ans:
@ j*Q=9(jK,jL)
1 ion i ield: Q=g Ka|ogfK)
(b) Let j= C Then the equation in (a) yield: 2 g(L ,1} ¢(Lj d(K).
This implies that Q = L*¢(k).

14



aQ 201 ak 201 1 ]
c) MPP, =—==L%'(k)] — |=L"¢0'(k)] — |= Lo'(k). Now MPP, depends
() =y (I)()(GKJ <I>()(Lj ¢'(k) x dep
on L as well as k.

(d) If Kand L are both increased j-fold in the MPP, expression in (c), we get
(jL)q)’(%] = qu)’(%) = jL¢'(K) = j- MPP,.. Thus MPP, is homogeneous
J

of degree one in K and L.

EXERCISE 12.7
1. Suppose that the isoquants in Fig. 12.9b are derived from a particular
homogeneous  production  function Q=Q(a,b) . Noting that
OE=EE'=E'EE", what must be the ratio between the output levels
represented by the three isoquants if the function Q is homogeneous
(a) of degree one? (b) of degree two?

Ans:

(a) Linear homogeneity implies that the output levels of the isoquants are in the
ratio of 1:2:3 (from southwest to northeast).

(b) With second-degree homogeneity, the output levels are in the ratio of
1:2%:3%, or 1:4:9.

2. For the generalized Cobb-Douglas case, if we plot the ratio b*/a* against
the ratio P, /P, , what type of curve will result? Does this result depend on
the assumption that o+ =1? Read the elasticity of substitution graphically
from this curve.

Ans: Since [bj = [Ej(%j it will plot as a straight line passing through the
a a P,

p

origin, with a (positive) slope equal to —. This result does not depend on the
a

assumption o +p =1. The elasticity of substitution is merely the elasticity of
this line, which can be read (by the method of Fig. 8.2) to be unity at all points.

3. Is the CES production function characterized by diminishing returns to each
input for all positive levels of input?

Ans: Yes, because Q,, and Q,, have both been found to be negative.
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4. Show that, on an isoquant of the CES function, d’K/d’L >0.

Ans: On the basis of (12.66), we have

d?’K  d |[8-1(K)™| §-1 KY d (K
== ||| |=—=Q+p) | 5|

dr? dL| & \L 8 L) dLiL

p
:E(l+p)(£j %(Ld—K—Kj>O (because d—K<0)
0 L) L dL dL

5. (a) For the CES function, if each factor of production is paid according to its
marginal product, what is the ratio of labor’s share of product to capital’s
share of product? Would a larger value of & mean a larger relative share for
capital?

(b) For the Cobb-Douglas function, is the ratio of labor’s share to capital’s
share dependent on the K/L ratio? Does the same answer apply to the CES
function?

Ans:

Laborshare Lf, 1-§(K)’ L .

@) : = = — | . Alarger p implies a larger capital share
Capital share  Kf 3 \L
in relation to the labor share.

(b) No; no.

6. (a) The CES production function rules out p=-1.If p=-1, however, what

would be the general shape of the isoquants for positive K and L?
(b) Is o defined for p=-1? What is the limitof ¢ as p —»>-1?

(c) Interpret economically the results for parts (a) and (b).

Ans:

(@ If p=-1, (12.66) yields (;—IE=—(1;88)=constant. The isoquants would
be downward-sloping straight lines.

(b) By (12.68), o isnot defined for p=-1.Butas p —»> -1, ¢ —> «.

(c) Linear isoquants and infinite elasticity of substitution both imply that the two

inputs are perfect substitutes.
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7. Show that by writing the CES function as Q:A[SK“’+(1—6)L“’]%,
where r>0 is a new parameter, we can introduce increasing returns to

scale and decreasing returns to scale.

Ans: If both K and L are changed j-fold, output will change from Q to:

Als(ik)® + @-8)(L)* |7 = AfPlsk* + @-8)LP T = (7)) " Q=jQ

Hence r denotes the degree of homogeneity. With r>1 (r<1), we have
increasing (decreasing) returns to scale.

8. Evaluate the following:

. X?—x-12 . BX_g¥
a) lim———— c) lim
( ) X—4 X—-4 ( ) x—0 X
) lim& =1 @ tim"X
X—0 X X—wo X

Ans: By L’Hopital’s Rule, we have:

2_ — —

(@) lim>* X1 _im&X-Ll_y
X—4 X -4 X—4 1
im—= =lim— =

(b) I e" -1 | e 1
x—0 X x—0 1

(© lim>—% _jim> 5= |51
Xx—0 X Xx—0

1

@ 1im "™ _limx Z 0

x—wo ¥ X~>001

9. By use of L’Hopital’s rule, show that

n

. X : .
(@ lim—=0 (b) limxInx=0 (©) limx* =1
X—0 @ x—0* x—0*
Ans:
(a) By successive applications of the rule, we find that
Cox" o™ n(n=1)x"? . nl
lim— = lim——=1lim ( X) =.=lim—=0
X—>0 e X—0 e X—0 e X—)Doe

(b) By taking m(x) =Inx, and n(x):i,we have
X
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. Inx . 1L )
lim——=Ilim—2—=1lim-x=0

Xx—0" = Xx—0" — = x—0*
X X

(c) Since x* =exp(Inx*)=exp(xInx) , and since, from (b) above, the
expression xInx tends to zero as x — 0", x* must tend to e’ =1 as
X—0".
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