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Chiang/Wainwright: Fundamental Methods of Mathematical Economics 
 

CHAPTER 11 
EXERCISE 11.2 

Use Table 11.1 to find the extreme value(s) of each of the following four 
functions, and determine whether they are maxima or minima: 
1. 3y2xyxz 22 +++=  
2. y2x6yxz 22 ++−−=  
3. cbyaxz 22 ++= ; consider each of the three subcases: 

(a) a>0, b>0     (b) a<0, b<0     (c) a and b opposite in sign 
4. 3y2x2ez 2x2 ++−=  

 
 Ans: 

1. The derivatives are: yx2f x += , y4xf y += , 2f xx = , 4f yy = , and 

1f xy = . Then first-order condition requires that 0yx2 =+  and 0y4x =+ . 

Thus we have 0yx ** ==  implying 3z* =  (which is a minimum) 

2. The derivatives are: 6x2f x +−= , 2y2f y +−= , 2f xx −= , 2f yy −= , and 

0f xy = . Then first-order condition requires that 6x2 =−  and 2y2 −=− . 

Thus we have 3x* =  1y* =  so that 10z* =  (which is a maximum) 

3. ax2f x = , by2f y = , a2f xx = , b2f yy = , and 0f xy = . The first-order 

condition requires that 0ax2 =  and 0by2 = . Thus 0yx ** ==  so that 

cz* = . The second derivatives give us ab4ff yyxx = , and 0f 2
xy = . Thus: 

(a) *z  is a minimum if a,b>0. 
(b) *z  is a maximum if a,b<0. 
(c) *z  gives a saddle point if a and b have opposite signs. 

4. )1e(2f x2
x −= , y4f y = , x2

xx e4f = , 4f yy = , and 0f xy = . The first-order 

condition requires that 1e x2 =  and 0y4 = . Thus 0yx ** ==  so that 

4z* = . Since )4(4ff yyxx =  exceeds 0f 2
xy = , 4z* =  is minimum. 
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5. Consider the function 44 )3y()2x(z −+−= . 
(a) Establish by intuitive reasoning that z attains a minimum )0z( * =  at 

2x* =  and 3y* = . 
(b) Is the first-order necessary condition in Table 11.1 satisfied? 
(c) Is the second-order sufficient condition in Table 11.1 satisfied? 
(d) Find the value of zd2 . Does it satisfy the second-order necessary 

condition for a minimum in (11.9)? 
 

Ans:  
(a) And pair )y,x( other than (2,3) yields a positive z value. 
(b) Yes. At 2x* =  and 3y* = , we find 3

x )2x(4f −=  and 

0)3y(4f 3
y =−= . 

(c) No. At 2x* =  and 3y* = , we have 0ffff yxxyyyxx ==== . 

(d) By (11.6), 0zd2 = . Thus (11.9) is satisfied. 
 
EXERCISE 11.3 

1. By direct matrix multiplication, express each of the following matrix 
products as a quadratic form: 

(a) [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
v
u

32
24

vu           (c) [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
y
x

04
25

yx  

(b) [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
v
u

41
32

vu        (d) [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
dy
dx

ff
ff

dydx
yyyx

xyxx  

 
Ans: 
(a) 22 v3uv4u4q ++=  
(b) 22 v4uv4u2q −+−=  
(c) xy6x5q 2 +=  

(d) 2
yyxy

2
xx dyfdxdyf2dxfq ++=  

 
2. In Prob.1b and c, the coefficient matrices are not symmetric with respect to 

the principal diagonal. Verify that by averaging the off-diagonal elements and 

thus converting them, respectively, into ⎥
⎦

⎤
⎢
⎣

⎡
−

−
42

22
and ⎥

⎦

⎤
⎢
⎣

⎡
03
35

we will get 

the same quadratic forms as before. 
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Ans: For (b): 22 v4uv4u2q −+−= . For (c): xy6x5q 2 += . Both are the same 
as before. 

 
3. On the basis of their coefficient matrices (the symmetric versions), determine 

by the determinantal test whether the quadratic forms in Prob. 1a, b, and c are 
either positive definite or negative definite. 

 
Ans: 

(a) 22)3(4,04:
32
24

>>⎥
⎦

⎤
⎢
⎣

⎡
  -- positive definite 

(b) 22)4(2,02:
42

22
>−−<−⎥

⎦

⎤
⎢
⎣

⎡
−

−
  -- negative definite 

(c) 23)0(5,05:
03
35

<>⎥
⎦

⎤
⎢
⎣

⎡
  -- neither 

 
4. Express each of the following quadratic forms as a matrix product involving 

a symmetric coefficient matrix: 
(a) 22 v7uv4u3q +−=   (d) 22 x2y5xy6q −−=  

(b) 22 v3uv7uq ++=    (e) 32
2
3

2
23121

2
1 uu2u4u5uu4uu2u3q −+++−=  

(c) 22 v31uuv8q −−=    (f) 222 w7v4uw6uv4uq −−−+−=  
 

Ans: 

(a) [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

v
u

72
23

vuq  

(b) [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

v
u

35.3
5.31

vuq  

(c) [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

v
u

314
41

vuq  

(d) [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

y
x

53
32

yxq  

(e) [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−
=

3

2

1

321

u
u
u

412
151

213
uuuq  

(f) [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−

−−
=

w
v
u

703
042
321

wvuq  
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5. From the discriminants obtained from the symmetric coefficient matrices of 
Prob. 4, ascertain by the determinantal test which of the quadratic forms are 
positive definite and which are negative definite. 

 
Ans:  
(a) 2)2()7(3,03 −>>   -- positive definite 
(b) 2)5.3()3(1,01 <>   -- neither 
(c) 24)31(1,01 >−−<−   -- negative definite 
(d) 23)5(2,02 >−−<−   -- negative definite 

(e) 037
412
151

213
,014

51
13

,03 >=
−

−−
−

>=
−

−
>   -- positive definite 

(f) 0
42

21
,01 =

−
−

<−   -- neither (no need to check 3D ) 

 
6. Find the characteristic roots of each of the following matrices: 

(a) ⎥
⎦

⎤
⎢
⎣

⎡
=

32
24

D     (b) ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

42
22

E     (c) ⎥
⎦

⎤
⎢
⎣

⎡
=

03
35

F  

What can you conclude about the signs of the quadratic forms Duu′ , Euu′  
and Fuu′ ? (Check your results against Prob.3.) 

 
Ans: 
(a) The characteristic equation is 

08r7r
r32

2r4 2 =+−=
−

−
 

Its roots are )177(r,r 2
1

21 += . Both roots being positive, Duu′  is positive 

definite. 

(b) The characteristic equation is 04r6r 2 =++ , with roots 53r,r 21 ±−= . 

Both roots being negative, Euu′ is negative definite. 

(c) The characteristic equation is 09r5r 2 =−− , with roots )615(r,r 2
1

21 ±= . 

Since 1r  is positive, but 2r  is negative, Fuu′  is indefinite. 
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7. Find the characteristic vectors of the matrix ⎥
⎦

⎤
⎢
⎣

⎡
12
24

. 

 

Ans: The characteristic equation 0r5r
r12

2r4 2 =−=
−

−
 has the roots 5r1 =  

and 0r2 = . (Note: This is an example where 0D = ). Using 1r  in (11.13’), we 

have 0
x
x

42
21

2

1 =⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
. Thus 21 x2x = . Upon normalization, we obtain the 

first characteristic vector 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

5
1
5

2

1v . Next, using 2r  in (11.13’), we have 

0
x
x

12
24

2

1 =⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
. Therefore, 22

1
1 xx −= . Upon normalization, we obtain 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡−
=

5
2

5
1

2v . These results happen to be identical with those in Example 5. 

 
8. Given a quadratic form Duu′ , where D is 22× , the characteristic equation 

of D can be written as 

0
rdd

drd

2221

1211 =
−

−
  )dd( 2112 =  

Expand the determinant; express the roots of this equation by use of the 
quadratic formula; and deduce the following: 

(a) No imaginary number (a number involving 1− ) can occur in 1r  and 

2r . 

(b) To have repeated roots, matrix D must be in the form of ⎥
⎦

⎤
⎢
⎣

⎡
c0
0c

. 

(c) To have either positive or negative semidefiniteness, the discriminant of 

the quadratic form may vanish, that is, 0D =  is possible. 
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Ans: The characteristic equation can be written as 
0)dddd(r)dd(r 211222112211

2 =−++−  

Thus ])dddd(4)dd()dd[(r,r 21122211
2

221122112
1

21 −−+±+=  

(a) The expression under the square-root sign can be written as  

21122211
2
222211

2
11 dd4dd4ddd2dE +−++=  

  0d4)dd(dd4ddd2d 2
12

2
22112112

2
222211

2
11 ≥+−=++−=  

Thus no imaginary number can occur in 1r  and 2r . 
(b) To have repeated roots, E has to be zero, which can occur if and only if 

2211 dd =  (say, =c) and at the same time 0dd 2112 == . This would mean 

that matrix D takes the form of ⎥
⎦

⎤
⎢
⎣

⎡
c0
0c

. 

(c) Positive or negative semidefiniteness allows a characteristic root to be zero 
(r=0), which implies the possibility that the characteristic equation reduces to 

0dddd 21122211 =− , or 0D = . 

 
EXERCISE 11.4 

Find the extreme values, if any, of the following four functions. Check whether 
they are maxima or minima by the determinantal test. 

1. 2
33221

2
2

2
1 x6xx4xx3x3xz ++−+=  

2. )xxx(29z 2
3

2
2

2
1 ++−=  

3. 2
3

2
2322

2
131 x3xxxxxxxz +++−+=  

4. )ye2x2(eeez wwyx2 2

−+−++= −  

Then answer the following questions regarding Hessian matrices and their 
characteristic roots. 
 
Ans: 
1. The first-order condition 

0x3x2f 211 =−=  
0x4x6x3f 3212 =++−=  

0x12x4f 323 =+=  
is a homogeneous linear-equation system in which the three equations are 
independent. Thus the only solution is 
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0xxx *
3

*
2

*
1 ===   so that  0z* =  

The Hessian is 
1240
463
032

−
−

, with 02H1 >= , 03H 2 >= , and 

04H3 >= . Consequently, 0z* =  is a minimum. 

2. The first-order condition consists of the three equations 
0x2f 11 =−=   0x2f 22 =−=   0x2f 33 =−=  

Thus 0xxx *
3

*
2

*
1 ===   so that  29z* =  

The Hessian is 
200

020
002

−
−

−
, with 02H1 <−= , 04H 2 >= , and 

08H3 <−= . Consequently, 29z* =  is a maximum. 

3. The three equations in the first-order conditions are 
0xx2 31 =+  
1xx2 32 =+  

0x6xx 321 =++  

Thus 20
1*

1x =  20
11*

2x =  20
2*

3x −=  so that 40
11*z −= . Since the Hessian is 

611
120
102

, with 02H1 >= , 04H 2 >= , and 020H3 >= , the *z  value 

is a minimum. 
4. By the first-order condition, we have 

02e2f x2
x =−= , 01ef y

y =+−= − , 0e2we2f ww
w

2

=−=  

Thus 0x* =  0y* =  1w* =  so that e2z* −=  
Note: The value of *x  and *y  are found from the fact that 1e0 = . Finding 

*w  is more complicated. One way of doing it is as follows: First, rewrite the 

equation 0f w =  as ww ewe
2

. Taking natural logs yield  

or ww elnelnwln
2

=+  
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or wwwln 2 =+  
or 2wwwln −=  
If we draw a curve for wln , and another for 2ww − , their intersection 
point will give us the solution. The wln  curve is a strictly concave curve 
with horizontal intercept at 1w = . The 2ww −  is a hill-type parabola with 
horizontal intercepts 0w =  and 1w = . Thus the solution is .1w* =  

The Hessian is 
e400

010
004

 when evaluated at the stationary point, with all 

leading principal minors positive. Thus *z  is a minimum. 
 

5. (a) Which of Prob. 1 through 4 yield diagonal Hessian matrices? In each such 
case, do the diagonal elements possess a uniform sign? 
(b) What can you conclude about the characteristic roots of each diagonal 
Hessian matrix found? About the sign definiteness of zd2 ? 
(c) Do the results of the characteristic-root test check with those of the 
determinantal test? 

 
Ans: 
(a) Problems 2 and 4 yield diagonal Hessian matrices. The diagonal elements are 

all negative fro problem 2, and all positive for problems 4 and 5. 
(b) According to (11.16), these diagonal elements represent the characteristic 

roots. Thus the characteristic roots are all negative ( zd2  negative definite) 
for problem 2, and all positive ( zd2  positive definite) for problem 4. 

(c) Yes. 
 

6. (a) Find the characteristic roots of the Hessian matrix for Prob. 3. 
(b) What can you conclude from your results? 
(c) Is your answer to (b) consistent with the result of t he determinantal test 
for Prob. 3? 

 
Ans: 
(a) The characteristic equation is, by (11.14): 

0
r611

1r20
10r2

=
−

−
−
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Expanding the determinant by the method of Fig. 5.1, we get 
0)r2()r2()r6)(r2)(r2( =−−−−−−−  

or  0]2)r6)(r2)[(r2( =−−−−   [factoring] 
or  0)10r8r)(r2( 2 =+−−  
Thus, from the )r2( − term, we have 2r1 = . By the quadratic formula, we 

get from the other term: 64r,r 32 ±= . 

(b) All three roots are positive. Thus zd2  is positive definite, and *z  is a 
minimum. 

(c) Yes. 
 
EXERCISE 11.5 

1. Use (11.20) to check whether the following functions are concave, convex, 
strictly concave, strictly convex, or neither: 
(a) 2xz =    (b) 2

2
2
1 x2xz +=   (c) 22 yxyx2z +−=  

 
Ans: 
(a) Let u and v be any two distinct points in the domain. Then 

2u)u(f =   2v)v(f =   2]v)1(u[]v)1(u[f θ−+θ=θ−+θ  
Substituting these into (11.20), we find the difference between the left- and 
right-side expressions in (11.20) to be 

222222 v)1(uv)1(2uv)1(u θ−−θ−θ−θ−θ−+θ  
22 v)1(uv)1(2u)1( θ−θ+θ−θ−θ−=  

0)vu)(1( 2 >−θ−=   [since vu ≠ ] 
Thus 2xz =  is strictly convex function. 

(b) Let )u,u(u 21=  and )v,v(v 21=  be any two distinct points in the domain. 
Then 

2
2

2
1 u2u)u(f +=    2

2
2
1 v2v)v(f +=  

2
22

2
11 ]v)1(u[2]v)1(u[]v)1(u[f θ−+θ+θ−+θ=θ−+θ  

The difference between the left- and right-side expressions in (11.20) is 
0])vu(2)vu)[(1()v2vu4u2vvu2u)(1( 2

22
2

11
2
222

2
2

2
111

2
1 >−+−θ−θ=+−++−θ−θ

Thus 2
2

2
1 x2xz +=  is a strictly convex function. 

(c) Let )u,u(u 21=  and )v,v(v 21=  be any two distinct points in the domain. 
Then 

221
2
1 uuuu2)u(f +−=    2

221
2
1 vvvv2)v(f +−=  

2
222211

2
11 ]v)1(u[]v)1(u[]v)1(u[]v)1(u[2]v)1(u[f θ−+θ+θ−+θ⋅θ−+θ−θ−+θ=θ−+θ

The difference between the left- and right-side expressions in (11.20) is 
)]vvu2u(vvuvvuuu)v2vu4u2)[(1( 2

222
2
221212121

2
111

2
1 +−+−++−+−θ−θ
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0])vu()vu)(vu()vu(2)[1( 2
222211

2
11 >−+−−−−θ−θ=  

because the bracketed expression is positive, like )1( θ−θ . [The bracketed 
expression, a positive-definite quadratic form in the two variables )vu( 11 −  
and )vu( 22 − , is positive since )vu( 11 −  and )vu( 22 −  are not both zero 
in our problem.] Thus 22 yxyx2z +−=  is strictly convex function. 

 
2. Use (11.24) or (11.24’) to check whether the following functions are concave, 

convex, strictly concave, strictly convex, or neither: 
(a) 2xz −=    (b) 2

21 )xx(z +=   (c) xyz −=  
 

Ans: 
(a) With u2)u(f −=′ , the difference between the left- and right-side expressions 

in (11.24) is 
0)uv(uuv2v)uv(u2uv 22222 <−−=−+−=−++−  

Thus 2xz −=  is strictly concave. 
(b) Since )uu(2)u,u(f)u,u(f 21212211 +== , the difference between the left- 

and right-side expressions in (11.24’) is 
)]uv()uv)[(uu(2)uu()vv( 221121

2
21

2
21 −+−+−+−+  

2
212121

2
21 )uu()uu)(vv(2)vv( ++++−+=  

0)]uu()vv[( 2
2121 ≥+−+=  

A zero value cannot be ruled out because the two points may be, e.g., 
)3,5()u,u( 21 =  and )6,2()v,v( 21 = . Thus 2

21 )xx(z +=  is convex, but 
not strictly so. 

(c) Since 2211 u)u,u(f −= , and 1212 u)u,u(f −= , the difference between the 
left- and right-side expressions in (11.24’) is 

)uv(u)uv(uuuvv 2211122121 −+−++−  
0)uv)(uv(uuvuuvvv 221121212121 <

>−−=−++−=  
Thus xyz −=  is neither convex nor concave. 

 
3. In view of your answer to Prob. 2c, could you have made use of Theorem III 

of this section to compartmentalize the task of checking the function 
22 yxyx2z +−=  in Prob. 1c? Explain your answer. 

 
Ans: No. That theorem gives a sufficient condition which is not satisfied. 

 
4. Do the following constitute convex sets in the 3-space? 

(a) A doughnut   (b) A bowling pin   (c) A perfect marble 
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Ans: (a) No.  (b) No.  (c) Yes. 
 

5. The equation 4yx 22 =+  represents a circle with center at (0,0) and with a 
radius of 2. 

(a) Interpret geometrically the set { }4yx)y,x( 22 ≤+ . 

(b) Is this set convex? 
 

Ans:  
(a) The circle with its interior, i.e. a disk. 
(b) Yes. 

 
6. Graph each of the following sets, and indicate whether it is convex: 

(a) { }xey)y,x( =          (c) { }2x13y)y,x( −≤  

(b) { }xey)y,x( ≥         (d) { }0y,0x;1xy)y,x( >>≥  

 
Ans:  
(a) The set of points on an exponential curve; not a convex set. 
(b) The set of points lying on or above an exponential curve; a convex set. 
(c) The set of points lying on or below an inverse U-shaped curve; a convex set. 
(d) The set of points lying on or above a rectangular hyperbola in the positive 

quadrant; a convex set. 
 

7. Given ⎥
⎦

⎤
⎢
⎣

⎡
=

6
10

u  and ⎥
⎦

⎤
⎢
⎣

⎡
=

8
4

v , which of the following are convex 

combinations of u and v? 

(a) ⎥
⎦

⎤
⎢
⎣

⎡
7
7

     (b) ⎥
⎦

⎤
⎢
⎣

⎡
6.7
2.5

     (c) ⎥
⎦

⎤
⎢
⎣

⎡
2.8
2.6

 

 
Ans:  
(a) This is a convex combination, with 5.0=θ . 
(b) This is again a convex combination, with 2.0=θ . 
(c) This is not a convex combination. 
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8. Given two vectors u and v in the 2-space, find and sketch: 
(a) The set of all linear combinations of u and v. 
(b) The set of all nonnegative linear combinations of u and v. 
(c) The set of all convex combinations of u and v. 

 
Ans:  
(a) This set is the entire 2-space. 
(b) This set is a cone bounded on one side by a ray passing through point u, and 

on the other side by a ray passing through point v. 
(c) This set is the line segment uv. 

 
9. (a) Rewrite (11.27) and (11.28) specifically for the cases where the f and g 

functions have n independent variables. 
(b) Let 2n = , and let the function f be shaped like a (vertically held) 
ice-cream cone whereas the function g is shaped like a pyramid. Describe the 
sets ≤S  and ≥S . 

 
Ans:  

(a) { }k)x,,x(fx,,x(S n1n1 ≤≡≤ KK   (f convex) 

{ }k)x,,x(gx,,x(S n1n1 ≥≡≥ KK   (g concave) 

(b) ≤S  is a solid circle (or disk); ≥S  is a solid square. 
 
EXERCISE 11.6 

1. If the competitive firm of Example 1 has the cost function 2
2

2
1 Q2Q2C +=  

instead, then: 
(a) Will the production of the two goods still be technically related? 
(b) What will be the new optimal levels of 1Q  and 2Q ? 
(c) What is the value of 12π ? What does this imply economically? 

 
 Ans: 

(a) No, because the marginal cost of one commodity will be independent of the 
output of the other. 

(b) The first-order condition is  
0Q4P 1101 =−=π    0Q4P 2202 =−=π  

Thus 104
1*

1 PQ =  and 204
1*

2 PQ = . The profit is maximized, because the 
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Hessian is 
40

04
−

−
, with 0H1 <  and 0H2 > . The signs of the 

principal minors do not depend on where they are evaluated. Thus the 
maximum in this problem is a unique absolute maximum. 

(c) 012 =π  implies that the profit-maximizing output level of one commodity 
is independent of the output of the other (see first-order condition). The firm 
can operate as if it has two plants, each optimizing the output of a different 
product. 

 
2. A two-product firm faces the following demand and cost functions: 

211 PP240Q −−=    212 PP35Q −−=    10Q2QC 2
2

2
1 ++=  

(a) Find the output levels that satisfy the first-order condition for maximum 
profit. (Use fractions.) 

(b) Check the second-order sufficient condition. Can you conclude that this 
problem possesses a unique absolute maximum? 

(c) What is the maximal profit? 
 
 Ans:  

(a) By the procedure used in Example 2 (taking 1Q  and 2Q  as choice 

variables), we can find 7
4*

1 3Q = , 14
9*

2 4Q = , 14
1*

1 6P = , 7
2*

2 24P = . 

(b) The Hessian is 
82

24
−

−
, with 4H1 −=  and 28H2 = . Thus the 

sufficient condition for a maximum is met. 
(c) Substituting the *P ’s and *Q ’s into the R and C functions, we get 

98
43* 134R = , 98

85* 65C = , and 7
468r =  

 
3. On the basis of the equilibrium price and quantity in Example 4, calculate the 

point elasticity of demand diε  (for 2,1i = ). Which market has the highest 

and the lowest demand elasticities? 
 

Ans: 8
13

6
39

4
1

Q
P

dP
dQ

1d *
1

*
1

1

1c === . Similarly, 3
4

9
60

5
1

2dc == , and 2
3

5
45

6
1

3dc == . 

The highest is 1dc ; the lowest is 2dc . 
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4. If the cost function of Example 4 is changed to 2QQ1520C ++=  
(a) Find the new marginal-cost function. 
(b) Find the new equilibrium quantities. (Use fractions.) 
(c) Find the new equilibrium prices. 
(d) Verify that the second-order sufficient condition is met. 

 
 Ans:  

(a) 321 Q2Q2Q215Q215C +++=+=′  
(b) Equating each MR to the MC, we obtain the three equations: 

48Q2Q2Q10 321 =++  90Q2Q12Q2 321 =++  and 
60Q14Q2Q2 321 =++  

Thus 97
88*

1 2Q = , 97
51*

2 6Q = , 97
91*

3 2Q = . 

(c) Substituting the above into the demand equations, we get 

97
36*

1 51P = , 97
36*

2 72P = , 97
36*

3 57P =  

(d) Since 8R1 −=′′ , 10R 2 −=′′ , 12R 3 −=′′ , and 2C =′′ , we do find that: (1) 
10CR1 −=′′−′′   (2) 01163680C)RR(RR 2121 >=+=′′′′+′′−′′′′ , and (3) 

01552)2)(1209680(960H <−=++−−=  

 
5. In Example 7, how would you rewrite the profit function if the following 

conditions hold? 
(a) Interest is compounded semiannually at an interest rate of 0i  per annum, 

and the production process takes 1 year. 
(b) Interest is compounded quarterly at an interest rate of 0i  per annum, and 

the production process takes 9 months. 
 
 Ans:  

(a) bPaP)i1)(b,a(QP 0b0a
2

02
1

0 −−+=π −  

(b) bPaP)i1)(b,a(QP 0b0a
3

04
1

0 −−+=π −  

 
6. Given )b,a(QQ = , how would you express algebraically the isoquant for 

the output level of, say, 260? 
 

Ans: 260)b,a(Q =  
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EXERCISE 11.7 
 For Probs. 1 through 3, assume that 0Qab > . 

1. On the basis of the model described in (11.45) through (11.48), find the 

comparative-static derivatives )Pa( 0a
* ∂∂  and )Pb( 0a

* ∂∂ . Interpret the 

economic meaning of the result. Then analyze the effects on *a  and *b  of 
a change in 0bP . 

 
Ans: 
(a) We may take (11.49) as the point of departure. Letting 0aP  alone vary (i.e., 

letting 0dtdrdPdP 0b0 ==== ), and dividing through by 0dP 0a ≠ , we get 
the matrix equation 

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

∂
∂
∂
∂

−−

−−

0
1

eQPeQP
eQPeQP

0a

*
0a

*

P
b
P
a

rt
bb0

rt
ab0

rt
ab0

rt
aa0  

Hence, by Cramer’s Rule, 

( ) 0J
eQP

P
a

rt
bb0

0a

* <=
−

∂
∂  and ( ) 0J

eQP
P
b

rt
bb0

0a

* <−=
−

∂
∂  

The higher the price of input a, the smaller will be the equilibrium levels of 
inputs a and b. 

(b) Next, letting 0bP  alone vary in (11.49), and dividing through by 0dP 0b ≠ , 
we can obtain results similar to (a) above: 

( ) 0J
eQP

P
a

rt
ab0

0b

* <−=
−

∂
∂  and ( ) 0J

eQP
P
b

rt
aa0

0b

* <=
−

∂
∂  

 
2. For the problem of Example 7 in Sec. 11.6: 

(a) How many parameters are there? Enumerate them. 
(b) Following the procedure described in (11.45) through (11.50), and 

assuming that the second-order sufficient condition is satisfied, find the 

comparative-static derivatives )Pa( 0
* ∂∂  and )Pb( 0

* ∂∂ . Evaluate their 

signs and interpret their economic meanings. 

(c) Find )ia( 0
* ∂∂  and )ib( 0

* ∂∂ , evaluate their signs, and interpret their 

economic meanings. 
 

Ans: 
(a) 0P , 0i , 0aP , 0bP . 
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(b) From the first-order condition, we can check the Jacobian 

bbab

abaa2
0

2
01

0bb0
1

0ab0

1
0ab0

1
0aa0

b
F

a
F

b
F

a
F

QQ
QQ

)i1(P
)i1(QP)i1(QP
)i1(QP)i1(QP

J 22

11

−
−−

−−

∂
∂

∂
∂

∂
∂

∂
∂

+=
++
++

==  

the be positive at the initial equilibrium (optimum) since the second-order 
sufficient condition is assumed to be satisfied. By the implicit-function 
theorem, we can then write 

)P,P,i,P(aa 0b0a00
** =  and )P,P,i,P(bb 0b0a00

** =  

we can also write the identities 

0P)i1)(b,a(QP 0a
1

0
**

a0 ≡−+ −  

0P)i1)(b,a(QP 0b
1

0
**

a0 ≡−+ −  

Taking the total differentials, we get (after rearrangement) the following pair 
of equations corresponding to (11.49): 

0a0
2

0a00
1

0a
*1

0ab0
*1

0aa0 dPdi)i1(QPdP)i1(Qdb)i1(QPda)i1(QP ++++−=+++ −−−−

0b0
2

0b00
1

0b
*1

0bb0
*1

0ab0 dPdi)i1(QPdP)i1(Qdb)i1(QPda)i1(QP ++++−=+++ −−−−

Letting 0P  alone vary (i.e., letting 0dPdPdi 0b0a0 == ), and dividing 
through by 0dP0 ≠ , we get 

⎥
⎦

⎤
⎢
⎣

⎡

+−
+−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

++
++

−

−

∂
∂
∂
∂

−−

−−

1
0b

1
0a

P
b
P
a

1
0bb0

1
0ab0

1
0ab0

1
0aa0

)i1(Q
)i1(Q

)i1(QP)i1(QP
)i1(QP)i1(QP

0

*
0

*

 

Thus ( ) 0J
)i1(P)QQQQ(

P
a

2
00bbaabb

0

* >=
−+−

∂
∂  

  ( ) 0J
)i1(P)QQQQ(

P
b

2
00aababa

0

* >=
−+−

∂
∂  

(c) Letting 0i  alone vary, we can similarly obtain 

⎥
⎦

⎤
⎢
⎣

⎡

+
+

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

++
++

−

−

∂
∂
∂
∂

−−

−−

2
0b0

2
0a0

i
b
i
a

1
0bb0

1
0ab0

1
0ab0

1
0aa0

)i1(QP
)i1(QP

)i1(QP)i1(QP
)i1(QP)i1(QP

0

*
0

*

 

Thus ( ) 0J
)i1(P)QQQQ(

i
a

3
0

2
0abbbba

0

* >=
−+−

∂
∂  

  ( ) 0J
)i1(P)QQQQ(

i
b

3
00abaaab

0

* >=
−+−

∂
∂  

 



 17

3. Show that the results in (11.50) can be obtained alternatively by 
differentiating the two identities in (11.48) totally with respect to 0P , while 
holding the other exogenous variables fixed. Bear in mind that 0P  can affect 

*a  and *b  by virtue of (11.47). 
 
 Ans: Differentiating (11.49) totally respect to 0P , we get 

 ( ) ( ) 0eQPeQPeQ rt
dP
db

ab0
rt

P
a

aa0
rt

a 0

*

0

*
=++ −−

∂
∂−  

 ( ) ( ) 0eQPeQPeQ rt
dP
db

bb0
rt

P
a

ab0
rt

b 0

*

0

*
=++ −−

∂
∂−  

 Or, in matrix notation, 

 
( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡

−
−

=⎥
⎦

⎤
⎢
⎣

⎡

∂∂
∂∂

⎥
⎦

⎤
⎢
⎣

⎡
−

−

−−

−−

rt
b

rt
a

0
*

0
*

rt
bb0

rt
ab0

rt
ab0

rt
aa0

eQ
eQ

Pb
Pa

eQPeQP
eQPeQP

 

 which leads directly to the results in (11.50). 
 

4. A Jacobian determinant, as defined in (7.27), is made up of first-order partial 
derivatives. On the other hand, a Hessian determinant, as defined in Sec. 11.3 
and 11.4, has as its elements second-order partial derivatives. How, then, can 

it turn out that HJ = , as in (11.46)? 

 
Ans: In (11.46), the elements of the Jacobian determinant are first-order partial 
derivatives of the components of the first-order condition shown in (11.45). Thus, 
those elements are really the second-order partial derivatives of the (primitive) 
objective function – exactly what are used to construct the Hessian determinant. 

 


