
Aircraft Performance 
 

Aircraft performance includes many aspects of the airplane operation. Here we deal with a few of the 
most important performance measures including airfield performance, climb, and cruise. The 
following sections describe how each of these may be calculated at the early stages of design, by 
combining fundamental calculations with statistical data from actual aircraft.  

Each of these performance measures will be used as a constraint in the airplane optimization process 
and are among many constraints imposed by the FARs. 

• Take-off field length  
• Landing field length  
• Climb performance  
• Cruise performance and range  

Take-Off Field Length 
 

Introduction 

Although the take-off field length may seem like a performance characteristic of secondary 
importance, it is very often one of the critical design constraints. If the required runway length is too 
long, the aircraft cannot take-off with full fuel or full payload and the aircraft economics are 
compromised.  
 
For example, In some cases aircraft take-off from San Jose and fly all the way to San Francisco (about 
40 miles) before making their first refueling stop. This is because the field length is insufficient to 
take-off with full fuel in San Jose and the tanks are topped off at SFO where the runways are longer. 
Since this kind of operating restriction is not desirable, the aircraft is designed to meet take-off field 
length requirements for selected airports with full payload and fuel.  
 
This constraint often sets the aircraft wing area, engine size, or high lift system design.  
 
To compute the required take-off distance, we consider the take-off profile shown below.  



 

Important Speeds 

The following speeds are of importance in the take-off field length calculation:  
 
Vmu Minimum Unstick Speed. Minimum airspeed at which airplane can safely lift off ground and 
continue take-off.  
 
Vmc Minimum Control Speed. Minimum airspeed at which when critical engine is made inoperative, it 
is still possible to recover control of the airplane and maintain straight flight.  
 
Vmcg Minimum control speed on the ground. At this speed the aircraft must be able to continue a 
straight path down the runway with a failed engine, without relying on nose gear reactions.  
 
V1 Decision speed, a short time after critical engine failure speed. Above this speed, aerodynamic 
controls alone must be adequate to proceed safely with takeoff.  
 
VR Rotation Speed. Must be greater than V1 and greater than 1.05 Vmc  
 
Vlo Lift-off Speed. Must be greater than 1.1 Vmu with all engines, or 1.05 Vmu with engine out.  
 
V2 Take-off climb speed is the demonstrated airspeed at the 35 ft height. Must be greater than 1.1 Vmc 
and 1.2 Vs, the stalling speed in the take-off configuration.  
 
[ 
  FAR Sec. 25.107  Takeoff speeds. 
   
    (a) V1 must be established in relation to VEF as follows: 



    (1) VEF is the calibrated airspeed at which the critical engine is assumed to fail. VEF must be 
selected by the applicant, but may not be less than VmcG determined under Sec. 25.149(e). 
    (2) V1, in terms of calibrated airspeed, is the takeoff decision speed selected by the applicant; 
however, V1 may not be less than VEF plus the speed gained with the critical engine inoperative 
during the time interval between the instant at which the critical engine is failed, and the instant at 
which the pilot recognizes and reacts to the engine failure, as indicated by the pilot's application of the 
first retarding means during accelerate-stop tests. 
    (b) V2MIN, in terms of calibrated airspeed, may not be less than-- 
    (1) 1.2 VS for-- 
    (i) Two-engine and three-engine turbopropeller and reciprocating engine powered airplanes; and 
    (ii) Turbojet powered airplanes without provisions for obtaining a significant reduction in the 
one-engine-inoperative power-on stalling speed; 
    (2) 1.15 VS for-- 
    (i) Turbopropeller and reciprocating engine powered airplanes with more than three engines; and 
    (ii) Turbojet powered airplanes with provisions for obtaining a significant reduction in the 
one-engine-inoperative power-on stalling speed; and 
    (3) 1.10 times VMC established under Sec. 25.149. 
    (c) V2, in terms of calibrated airspeed, must be selected by the applicant to provide at least the 
gradient of climb required by Sec. 25.121(b) but may not be less than-- 
    (1) V2MIN, and 
    (2) VR plus the speed increment attained (in accordance with Sec. 25.111 (c)(2)) before reaching 
a height of 35 feet above the takeoff surface. 
    (d) VMU is the calibrated airspeed at and above which the airplane can safely lift off the ground, 
and continue the takeoff. VMU speeds must be selected by the applicant throughout the range of 
thrust-to-weight ratios to be certificated. These speeds may be established from free air data if these 
data are verified by ground takeoff tests. 
    (e) VR, in terms of calibrated airspeed, must be selected in accordance with the conditions of 
paragraphs (e) (1) through (4) of this section: 
    (1) VR may not be less than-- 
    (i) V1; 
    (ii) 105 percent of VMC; 
    (iii) The speed (determined in accordance with Sec. 25.111(c)(2)) that allows reaching V2 before 
reaching a height of 35 feet above the takeoff surface; or 
    (iv) A speed that, if the airplane is rotated at its maximum practicable rate, will result in a VLOF 
of not less than 110 percent of VMU in the all-engines-operating condition and not less than 105 
percent of VMU determined at the thrust-to-weight ratio corresponding to the one-engine-inoperative 
condition. 
    (2) For any given set of conditions (such as weight, configuration, and temperature), a single 
value of VR, obtained in accordance with this paragraph, must be used to show compliance with both 
the one-engine-inoperative and the all-engines-operating takeoff provisions. 



    (3) It must be shown that the one-engine-inoperative takeoff distance, using a rotation speed of 5 
knots less than VR established in accordance with paragraphs (e)(1) and (2) of this section, does not 
exceed the corresponding one-engine-inoperative takeoff distance using the established VR. The 
takeoff distances must be determined in accordance with Sec. 25.113(a)(1). 
    (4) Reasonably expected variations in service from the established takeoff procedures for the 
operation of the airplane (such as over-rotation of the airplane and out-of-trim conditions) may not 
result in unsafe flight characteristics or in marked increases in the scheduled takeoff distances 
established in accordance with Sec. 25.113(a). 
    (f) VLOF is the calibrated airspeed at which the airplane first becomes airborne. 
  ] 

Estimating the Required Field Length 

The calculation of take-off field length involves the computation of the distance required to accelerate 
from a stop to the required take-off speed, plus a climb segment. Since the acceleration distance is 
typically about 80% of the total distance, we first consider this portion.  
 
The distance required to accelerate to the speed Vlo can be computed by noting that: 
dV = a dt and dx = V dt = V/a dV 
so:  

 
If the acceleration is assumed to vary as: 1/a = 1/a0 + kV2 then:  

 
So, we could either integrate the acceleration numerically or use an average value, computed at .70 of 
the lift-off speed.  
 
Ignoring the small speed change between lift-off and the 35 ft screen height, we can take Vlo = 1.2 Vs. 
Then, Vlo = 1.2 (2 W) / (ρS CLmax).  
 
With, a = F/ m = T-D / m (where T=Thrust, D=total drag including ground resistance, m=take-off 
mass), the expression for acceleration distance becomes:  
x = 1.44 W2 / (g ρ S CLmax (T-D))  
 
This expression is not very useful directly because it is difficult to estimate the drag, and we must add 
the climb portion of the take-off run. More importantly, commercial take-off distances assume engine 
failure at the worst possible time. If the engine fails sooner, the pilot can stop in a shorter distance. If 
the engine fails at a higher speed, the airplane can continue the take-off and reach a height of 35 feet 



in a shorter distance. This worst time corresponds to the critical engine failure speed VEFcrit. It is 
assumed that the pilot recognizes the engine failure and takes action a short time* later, at which time 
the speed is called the decision speed, V1. At a speed higher than V1, the pilot must continue the 
take-off; at a lower speed he or she must stop.  
 
The commercial take-off problem is very complex, involving acceleration on all engines, acceleration 
with one engine inoperative, deceleration after engine failure, and climb with one engine inoperative. 
This means that the design of spoilers, braking system, and rudder will affect the FAR take-off field 
length.  

 

The preliminary design computations, therefore, include correlation of the primary design parameters 
with actual demonstrated performance. The correlation parameter is closely related to that which 
appears in the simple analytical analysis on the previous pages. Examples of the correlations for 
take-off field length with engine failure are shown in the figure below. The propeller data is much 
more uncertain due to variations in propeller efficiency.  
 
The FAA take-off field length in some cases may be set, not by the field length based on engine 
failure, but on the all-engines operating performance. If the all-engines runway length multiplied by 
1.15 exceeds the 1-engine-out field length, the larger value is used. For four-engine aircraft the all 
engines operating condition times 1.15 is usually critical.  
 
Fits have been made to the FAR field length requirements of 2,3,and 4 engine jet aircraft vs. the 
parameter:  

 
 
W is the take-off gross weight (lbs). 
 
Sref is the reference wing area (sq ft). 
 



s is the ratio of air density under the conditions of interest which might well be a hot day in Denver or 
another high altitude airport.  
 
CLmax is the aircraft maximum lift coefficient in the take-off configuration.  
 
T is the total installed thrust (all engines running). It varies with speed and must be evaluated at 70% 
of the lift-off speed which we take as 1.2 Vs. The variation of thrust with speed shown here may be 
used for this calculation if detailed engine data is not available.  
 
For 2 engine aircraft: TOFL = 857.4 + 28.43 Index + .0185 Index2 
For 3 engine aircraft: TOFL = 667.9 + 26.91 Index + .0123 Index2 
For 4 engine aircraft: TOFL = 486.7 + 26.20 Index + .0093 Index2 

Since for four engine aircraft, the all-engines operating (with 15% pad) case is critical, one may use 
this fit for the all-engines operating case with 2 or 3 engines as well. Note that the 15% markup is 
already included. 
 

 
 
The figure below illustrates the installed thrust vs. speed for a number of engine types for use in this 
calculation. 



 

 

 

Landing Field Length 

 

Introduction 

Landing distances consist basically of two segments: the air run from a height of 50 feet to the surface 
accompanied by a slight deceleration and flare, and the ground deceleration from the touchdown 
speed to a stop as shown in the figure below.  

 
 
Detailed requirements for landing are described in FAR 25.125.  

Estimating the Required Field Length 

http://adg.stanford.edu/aa241/performance/FAR125.html


The air run can be approximated by a steady state glide plus an air deceleration at constant altitude. In 
this case, the air distance is given by: 

 

Deff is the effective drag, T-D, and produces the acceleration, a. Since the maneuver is slight, if we 
take L = W the expression becomes: 

 

 
 
 
The ground deceleration distance is: dg = VL

2 / 2a = VL
2 W / 2gR 

 
where: R = the effective average resistance or total stopping force = µ (W - L) + D 
µ = braking coefficient of friction 
D = drag including drag of flaps, slats, and spoilers 
 
Since the lift and drag vary with V2 and the touch down speed is typically about 1.25 Vs, the average 
resistance and dg are functions of Vs

2. 
 
Note that dair and dg are related to V50

2 and VL
2. Both of these speeds are fixed percentages above Vs 

for safety reasons, thus, we expect the landing distance to be related to Vs
2 plus an offset to account 

for the glide from 50 ft., which depends only on the L/D in the landing configuration. Thus for similar 
airplanes with similar L/D values and equivalent braking systems (i.e. similar values of µ), landing 
distances should be reasonably correlated with Vs

2. 
 
The figure below shows the FAR landing field lengths on dry runways for seven transport airplanes 
plotted against the square of the stalling speed in the landing configuration. This configuration 
involves extended gear and usually full flap deflection. In recent years alternate lower flap deflection 
has been provided to reduce the power required on the approach along the usual three degree ILS 
(instrument landing system) descent to the landing runway. The purpose of this lower flap angle is to 
reduce the community noise below the approach path. The figure shows the landing data for two 
different flap angles for some airplanes. 
 



 

 
The FAR landing field length is defined as the actual demonstrated distance from a 50 ft. height to a 
full stop increased by the factor 1/0.60, a 67% increase. Although the individual points are omitted for 
clarity, the curves of landing field length vs. Vs

2 are almost linear. However, there are significant 
differences between the various airplanes. These differences are due to variations in the effective L/D 
in the air run, in the effective coefficient of friction, µ, and in the drag in the ground deceleration. 
 
Although flap drag plays a significant role in the air run, the pilot's control of the throttles is usually 
more important. If more power is maintained during the air run, the effect is the same as a higher 
effective L/D ratio. Furthermore, the touchdown speed is important since the wheel brakes are much 
more effective in retarding the airplane than the air drag during the air run. The sooner the airplane 
touches down and starts braking, the shorter the total distance will be. Thus, the human factor plays a 
large role in landing distances. The official landing distance is partly a reflection of how hard the 
flight test pilot worked to optimize the landing. In practice, this is dependent on how important the 
landing field length is to the usefulness of the airplane. If the landing distance is much shorter than the 
take-off distance, a little longer flight test landing may not be detrimental. 
 
Mechanical devices have a large influence on landing distances. Automatic spoilers are operated by 
the rotation of the wheels at touch-down. The spoilers greatly decrease the lift, dump the weight on 
the wheels and thereby make the brakes effective. Manual spoilers, operated by the pilot, involve a 
delay. Even two seconds at speeds of 200 ft/sec. can increase the stopping distance by almost 400 ft. 
Including the safety factor of 67%, the effect on the field length can be close to 600 ft. With one 
exception, the curves on the figure are for automatic spoilers. In the 747 example on the chart, manual 
spoilers are shown to cost 400 ft. in field length. The adjustment of anti-skid braking systems can also 
affect the average braking coefficient of friction during the deceleration. 
 
These factors explain why all aircraft are not the same in the figure. In addition, there is a difference 



between the large aircraft with four wheel landing trucks and those with two wheel trucks. It appears 
that the effective coefficient of friction is less for wheels rolling immediately behind other wheels. 
Thus, we have shown a scatter band for the four wheel truck aircraft and another band for the two 
wheel truck aircraft. The dashed fairings are in the center of the bands and are within 6% of the 
extremes of the scatter bands. 
 
The dashed average fairings in the figure represent a reasonable way to estimate landing field lengths. 
The landing field length prediction is a function only of the square of the true stall speed. 
 
This data is based on transport aircraft with highly developed anti-skid braking systems. Aircraft with 
simple brakes and without spoilers will have considerably longer stopping distances than are built into 
the curves. However, quoted landing distances for small aircraft are sometimes based only on the 
ground run without a safety factor. The total distance over a 50 ft. height with the 1/0.6 factor is about 
2.5 times as long. 
 
Reverse thrust is not used in determining the dry runway field length, either for landing or for the 
accelerate and stop portion of the take-off problem. It is considered a 'pad'. To establish wet runway 
landing performance one may either add 15% to the dry runway results (which already have the 67% 
safety factor), or one may perform a very realistic test with 3° glide slope approach, 80% worn tires, a 
higher than normal approach speed and thrust reversers on all but one engine. A 15% pad is then 
added to that test. 
 

 

Climb Performance 

 

Introduction 

 
Constraints on aircraft climb performance are also specified in the federal air regulations. These 
include a minimum landing climb gradient with all engines running, and minimum climb gradients 
with one engine inoperative during three take-off segments, an approach segment, and an enroute case. 
 
These regulations are discussed in the section of FAR Part 25 included in these notes. They are 
summarized in the table below: 

Required Climb Gradient 

Number of Engines: 4 3 2 



Flight Condition:    

First Take-Off Segment 0.5% 0.3% 0.0%

Second Take-Off Segment 3.0% 2.7% 2.4%

Final Take-Off Segment 1.7% 1.5% 1.2%

Enroute Climb 1.6% 1.4% 1.1%

Approach Segment 2.7% 2.4% 2.1%

Landing Segment 3.2% 3.2% 3.2%

 
 
 
The flight conditions are as follows: 
 
First Take-Off Segment is with the critical engine inoperative, take-off thrust, landing gear extended, 
flaps in take-off position, V = Vlo, and weight that exists at the time gear retraction is started 
(essentially the take-off weight). 
 
Second Take-Off Segment is similar to first segment climb except that gear is up, V = 1.2 Vs, and the 
altitude is 400 feet above the ground. 
 
Final Take-Off Segment also has one engine inoperative, but the others are operating at maximum 
continuous thrust rather than at take-off thrust. The altitude is that achieved when transition to enroute 
configuration is accomplished (flaps, slats, gear up) or 1500 feet (whichever is higher). Speed is 1.25 
Vs at the weight at the end of the take-off segment. 
 
Enroute Climb also requires one engine out, although there are requirements for two engine-out 
performance of 3 and 4 engine aircraft. One may choose a favorable speed, and an altitude that is 
sufficiently high to clear obstacles. 
 
Approach Segment is again with one engine out and take-off thrust. Gear is up. Flaps are retracted a 
bit to increase stall speed by 10% above the stall speed with landing flap deflection. With this flap 
setting the airplane is flown at V = 1.5 Vs at the landing weight. 
 
Landing Segment is the only case with all engines operating. Gear is extended, flaps in landing 
position, V = 1.3 Vs and thrust that is available 8 secs. after the throttle is moved from idle to take-off 
thrust position.  
 
 
The second segment climb and, for two engine aircraft, the enroute climb are often the critical design 



requirements affecting the required engine thrust and wing aspect ratio. 
 
 
Detailed requirements for climb are described in FAR 25.115.  

Estimating the Climb Gradient 

Climb performance is specified in terms of the climb gradient, the ratio of climb rate to forward speed. 
For small angles of climb, the climb gradient and the flight path angle are essentially the same: 

 
If the speed V is constant, the rate of change of potential energy must be equal to the product of V and 
the net force in the direction of motion: 
W V sin γ = (T - D) V or: γ ≈ (T - D) / W 
 
 
When the aircraft is flown at a fixed Mach number or equivalent airspeed, the true airspeed changes. 
In this case, the total energy change is: 
W/g V dV/dt + W V sin γ = (T - D) V 
so, γ ≈ (T - D) / W - 1/g dV/dt  
 
and, dV/dt = dV/dh dh/dt = dV/dh V sin g 
After some algebra: 
γ ≈ [ (T - D) / W ] / (1 + V/g dV/dh ) 
 
The value of dV/dh depends on the type of operation as shown below: 

Climb Operation Altitude V/g dV/dh (approx.)

Constant Vtrue All 0 

Constant Vequiv Above 36,089 ft 0.7 M2 

Constant Vequiv Below 36,089 ft 0.567 M2 

Constant M Above 36,089 ft 0 

Constant M Below 36,089 ft -0.133 M2 

http://adg.stanford.edu/aa241/performance/FAR125.html


 
Engine-out Climb Performance 
 
In computing FAR 25 climb performance, the effects of one engine inoperative must include not only 
a decrease in thrust, but an increase in drag due to: 
 
1) windmilling drag of inoperative engine or windmilling or feathered drag of propeller. Modern 
propellers on larger aircraft would always be equipped with automatic feathering provisions. 
 
2) rudder and aileron drag associated with counteracting asymmetric thrust. 
 
At low speeds, the windmilling drag of a high bypass ratio turbofan may be estimated empirically by 
the expression: 
Dwindmill = .0044 p Ac 
where: p is the ambient static pressure, and Ac is the inlet area. 
 
The second component of the drag increment may be estimated by computing the induced drag of the 
vertical tail when it is carrying the lift needed to trim the asymmetric yawing moment due to the failed 
engine: 

 

where: 
Lv is the trimming load on the vertical tail 
hv is the vertical tail height 
yengine is the distance from fuselage centerline to critical engine 
T is the take-off thrust for the critical engine 
lv is the vertical tail length (distance from c.g. to vertical tail a.c.) 
 
The total drag increment is the sum of the windmilling term and the trim drag. 
 
These climb gradients are determined for all applicable weights, altitudes, and temperatures. From this 
data, the maximum permissible weight for a given condition are established. 
 
Operational Climb 
 
Normal climb to cruise altitude is carried out at the speed for best overall economy (high speed climb) 
which is considerably faster than the speed for maximum rate of climb, which, in turn, is much faster 
than the speed for maximum climb gradient. If fuel quantity is limiting, climb may be performed at 
the speed for best fuel economy (long range climb speed), a speed between the best overall economy 



climb speed and the best gradient climb speed. Speed schedules are selected to be easily followed by 
the pilot with available instrumentation. Recent introduction of automatic flight directors makes this 
task easier. The computed climb rates are integrated to produce time, fuel, and distance to climb to 
any altitude. 
 
For approximate calculations, the additional fuel to climb to altitude (as compared with cruising the 
same distance at the cruise altitude) can be approximated by adding an increment to the total cruise 
fuel. This increment has been determined for a wide range of weights for the DC-9-30, the DC-8-62, 
and the DC-10-10. The results, expressed as a percentage of take-off weight are summarized in the 
following figure. 
 

 
For different aircraft such as SST's we might think more fundamentally about the cause of this fuel 
increment. With a rough estimate of the overall propulsion efficiency, we can express the extra fuel 
used in terms of the change in kinetic and potential energy. The net result, expressed as a percentage 
of take-off weight, is: 
Wclimb_fuel_inc / Wto (%) = h(kft) / 31.6 + [V(kts) / 844]2 

This agrees with the plot above, indicating a 1.3% increment for flight at M = .8 and 30,000 ft, while 
for an SST that climbs to 60,000 ft and Mach 2.4, the increment is over 4.5%.  

Cruise Performance and Range 

 

Introduction 

 
The calculation of aircraft range requires that we describe the entire "mission" or flight profile. A 



typical mission is illustrated below. Altitude is shown as the vertical coordinate and distance on the 
horizontal axis. Note that the altitude is greatly exaggerated: even on a short trip, the maximum 
altitude is only 1% to 2% of the distance flown. 
 
The mission profile consists of two portions: the nominal mission and the reserves. Each of these is 
divided into several segments. 

 
 
 
Taxi and take-off 
A certain period of time is assumed for taxi and take-off. This time varies depending on traffic and 
airport layout, but a period of about 15 minutes is a reasonable average, used in cost estimates. The 
take-off segment also includes acceleration to the initial climb speed. 
 
Initial Climb and Maneuver 
The initial climb and air maneuvering involves airport-specific noise alleviation procedures and is 
constrained by other regulations such as a 250 kt CAS speed limit below 10,000 ft. in the U.S. and 
some other countries. This segment also involves acceleration to the enroute climb speed. 
 
Climb  
The climb segment of the mission is discussed in the previous section of these notes. Detailed 
calculations of time and fuel burned during climb may include several climb segments flown at 
different speeds. Climb computations for supersonic aircraft are especially important, with several 
subsonic and supersonic segments computed separately. For very short range missions the optimum 
cruise altitude is not reached and the climb may constitute half of the flight. 
 
Cruise 
One cannot continue climbing for long because as the altitude increases at a given speed the CL 
increases. Speeding up would reduce CL, but this is limited by Mach number constraints or engine 
power. Thus, there is a best altitude for cruise and this optimum altitude increases as the aircraft 
weight decreases (as fuel is burned). For long range missions, the initial and final cruise altitudes are 
quite different since the airplane weight changes substantially. 
 
We could compute the altitude that leads to lowest drag at a given Mach number, but the optimum 
altitude is usually a bit lower since it results in higher true speeds, smaller engines, reduced pressure 



loads on the fuselage, and more margin against buffet. Thus, we will consider both initial and final 
cruise altitudes as design variables in the aircraft optimization. Except in a few lightly-traveled 
regions, variable altitude, or climbing cruise is not practical from a traffic control standpoint. Thus the 
true optimum is not generally attainable. In the U.S. ATC rules specify that aircraft be flown at 
specific flight altitudes so that the aircraft must cruise at constant altitude, and request clearance to 
climb to the next highest available altitude when sufficient fuel is consumed. This leads to "step 
cruise" profiles shown on the previous page, with 1 to 3 steps of 4000 ft in altitude due to airway 
requirements. Such stepped profiles lead to reductions in cruise range by 1%-2% if the altitudes are 
chosen to be optimal for the weight at the beginning of the step. 
 
Descent, Approach, and Landing 
Like the climb segment, the descent is performed according to a specified airspeed schedule with 
speed limit restrictions below 10,000 ft and extra fuel associated with maneuvers on approach. 
 
 
Reserves 
Reserve fuel is carried to allow for deviations from the original flight plan, including a requirement 
for diversion to an alternate airport when the planned destination is unavailable. The FAA specifies a 
minimum amount of reserve fuel as described below, but many airlines have additional requirements 
that result in reserves usually being somewhat higher than the FAA minimums. The FAR's establish 
different requirements for domestic and international flights as shown below.  
 
There are also other "reserve" requirements such as those associated with "ETOPS" (extended twin 
engine operations). ETOPS rules currently require that the airplane be capable of flying with one 
engine inoperative to the nearest "suitable" airport. Some operators are certified for 180 minute 
ETOPS. Some are allowed 120 minutes, some 90, some only 75. Some aren't allowed to fly ETOPS 
under any circumstances. (Typically this is an economic decision made by the airline - not a reflection 
of relative safety - because of the onerous bookkeeping requirements.) 
 
Domestic Reserves:  
1. Climb from sea level to cruise altitude 
2. Cruise to alternate airport at best speed and altitude (typ. 250 n.mi.) 
3. Descend to sea level 
4. Cruise for 45 minutes at long range cruise speed and altitude 
 
International Reserves: 
1. Fuel to fly 10% of planned block time at long range cruise speed 
2. Climb from sea level to cruise altitude 
3. Cruise to alternate 
4. Descend to 1500 ft and hold for 30 minutes 
5. Descend to sea level 



Estimating the Aircraft Range 

For the purposes of this course, we compute an equivalent still-air range (no wind) using a simplified 
mission profile. 
 
The fuel required for warm-up, taxi, take-off, approach, and landing segments is sometimes taken as a 
single item called maneuver fuel. For our purposes, we estimate this as 0.7% of the take-off weight. 
 
The fuel consumed in the climb segment is estimated in the previous section as a certain percentage of 
take-off weight above that needed to cruise the same distance at initial cruise altitude. 
 
The descent segment of the mission requires slightly less fuel than would be required to cruise the 
same distance at the final cruise speed and altitude, so in the simplified computation the cruise extends 
to the destination airport and the mission is completed at the final cruise altitude. 
 
The simplified mission is shown in the figure that follows. 

 

In order to compute the cruise range, we estimate the weight at the beginning and end of the cruise 
segment: 
Wi = Wtow - .5 Wmaneuver - Wclimb 
Wf = Wzfw + Wreserves + .5 Wmaneuver  
 
Where: 
Wmaneuver is estimated (roughly) as 0.7% of the take-off weight 
Wreserves is estimated even more roughly as 8% of the zero fuel weight 
and Wclimb is estimated from the plot in the climb section of these notes. 
 
 
The difference between initial and final cruise weights is the amount of fuel available for cruise. This 
is related to the cruise range as follows.  
 
The specific range is the distance flown per unit weight of fuel burned, often in n.mi. / lb. It can be 
related directly to the engine specific fuel consumption: 
 
Specific Range = V / cT 



 
where V is the true speed, c is the thrust specific fuel consumption, and T is the thrust. 
 
In level flight (or approximately when the climb angle is very small):  
T = D = W / (L/D), 
so, Specific Range = V/c L/D 1/W 
 
V/c L/D is sometimes called the range factor. It is related to the aerodynamic (L/D) and propulsion 
system (V/c) efficiencies. 
 
The cruise range is then computed by integrating the specific range: 

 
 
If the airplane is flown at a constant angle of attack (constant CL) and Mdiv in the isothermal 
atmosphere (above 36,089 ft) where the speed of sound is constant, then V, L/D, and c are nearly 
constant and: 

 
This is known as the Breguet Range Equation. When the altitude variation is such that L/D, V, or c is 
not constant, the integral may be evaluated numerically.  
 
When the value of brake power specific fuel consumption is assumed constant (propeller aircraft), the 
range equation becomes: 
 

 
 
where h is the propeller efficiency and BSFC is the power specific fuel consumption in consistent 
units. 
 
 
Range / Payload Diagram 
 
An aircraft does not have a single number that represents its range. Even the maximum range is 
subject to interpretation, since the maximum range is generally not very useful as it is achieved with 
no payload. To represent the available trade-off between payload and range, a range-payload diagram 
may be constructed as shown in the figure below. 
 



 
 
At the maximum payload weight is often constrained by the aircraft structure, which has been 
designed to handle a certain maximum zero fuel weight. (Sometimes the maximum payload weight is 
limited by volume, but this is rather rare. It has been noted that the MD-11 would exceed its 
maximum zero fuel weight if the fuselage were filled with ping pong balls.) 
 
So, the airplane take-off weight can be increased from the zero fuel weight by adding fuel with a 
corresponding increase in range. This is the initial flat portion of the payload-range diagram.  
 
At some point, the airplane could reach a limit on maximum landing weight. This usually happens 
only when the required reserve fuel is very large. Usually we can increase the weight until the airplane 
reaches its maximum take-off weight, with the full payload.  
 
If we want to continue to add fuel (and range) from this point on, we must trade payload for fuel so as 
not to exceed the maximum take-off weight.  
 
At some point, the fuel tanks will be full. We could increase the range further only by reducing the 
payload weight and saving on drag with a fixed fuel load. This is the final very steep portion of the 
payload range diagram. 
 
Usually we are most interested in the range with maximum take-off weight and here we will focus on 
the range of the aircraft with a full compliment of passengers and baggage. This point is somewhere 
on the portion of the curve labeled maximum take-off weight, but often at a point considerably lower 
than that associated with maximum zero fuel weight (since the maximum zero fuel weight may be 
chosen to accommodate revenue cargo on shorter routes and to provide some growth capability.)  
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